
1119 International Journal of Control Theory and Applications

International Journal of Control Theory and Applications

ISSN : 0974–5572

© International Science Press

Volume 9 • Number 40 • 2016

V. Ramya, G. Senthil kumar, S. Veena, A. Maria Nancy and S. Saranya

Performance Improvement of Geometric Decision Tree using Parallel
Approach and XGBoost Algorithm

V. Ramyaa G. Senthil kumarb S. Veenab A. Maria Nancyb and S. Saranyab

aAsst.Proff, Department of Computer Science,Facuty of Science & Humanities, SRM University, Katankulathur, TN, India
E-mail: ramya.v@ktr.srmuniv.ac.in, Corresponding Author
bAsst.Proff, Department of Software Engineering, SRM University, Katankulathur, TN, India
E-mail: chenthi2004@hotmail.com, veena.s@ktr.srmuniv.ac.in marianancy.a@ktr.srmuniv.ac.in, saranya.s@ktr.srmuniv.ac.in

Abstract: Decision trees are widely used in classifi cation methods, specifi cally in the operation research, for decision
analysis decision trees are used. It helps in taking the decision that meets organizations goal. Decision trees are also
used in data mining. Geometric decision trees are used to come over the drawback of previous algorithms which are
unable to capture geometric structure from the data. The idea of the algorithm is taken from the SVM machine, which
will capture the geometric structure very well. So this algorithm gives better accuracy than previously proposed
algorithms. In this paper, we analyzed the sequential performance of the geometric decision tree algorithm. Then
we executed this code on multiple cores and analyzed its parallel performance. The system is divided into different
sub modules which are independently executed on the multiple cores. Then we discussed performance comparison
between parallel and sequential execution. From these results we concluded that the parallel execution gives faster
solution. Apart from this we can implement XGBoost algorithm as a gradient boosted decision trees designed for
performance and speed.
Keywords: Decision Tree, SVM, XGBoost.

1. INTRODUCTION
Decision trees are the most simple and easy way for decision making task. It came out as a better replacement
for the different tools used in data mining. A decision tree is a decision support tool which uses a tree-
like graph or model of various decisions and their possible consequences, which includes chance event outcomes,
resource costs, and utility. A decision tree is one way to display an algorithm. Decision trees are commonly
used in operations research, mainly in decision analysis, to identify a strategy most likely to reach a goal, and
also a popular tool for machine learning. Now days the decision trees are used in every business applications.
Many algorithms were proposed for generating the decision trees. These algorithms split sets of data into
branches in which root node is kept at the top. This root node describes the main objective of analysis along
with its contained values. Decision rules are discovered on the basis of which methods are used to capture

1120International Journal of Control Theory and Applications

V. Ramya, G. Senthil kumar, S. Veena, A. Maria Nancy and S. Saranya

the relationship between the root node and the fi elds that are used as input for generating the branches of the
decision tree. A general decision tree is as shown in the following fi g 1.1. In the fi gure one branch is shown,
when such branches are nested into each other form a decision tree. In which every branch is termed as the node
and the bottom node as leaves.

Figure 1: Decision tree illustration

The class label is attached to the every leaf node from the decision tree. Amongst all of the decision tree
algorithm, the GDT (Geometric Decision Tree) is a more feasible algorithm which tries to construct the tree by
using geometric structures [1].

There are two main types of Decision trees as axis parallel decision tree and oblique decision tree. In the
axis parallel trees, the splitting rule used for splitting each node depends upon the single component of feature
vector whereas in the other it depends on the combination of components. The GDT presents an algorithm
for learning such oblique trees. For oblique trees also two approaches are described as in the fi rst approach
the structure of the tree is fi xed. This kind of approach is used very rarely. In the second approach the tree is
designed in the top down manner [4] [5]. GDT algorithm designed mainly for learning these oblique trees.
Another important algorithm is the XGBoost , which is a library designed and optimized for boosting trees
algorithms. The algorithm of XGBoost is a similar extension of the classic gbm algorithm. XGBoost is able
to utilize the more computational power and get more accurate prediction by employing multi-threads and
regularization.

2. LITERATURE SURVEY
As the data size is increasing, the trouble to handle the data and to retrieve information from data is also
increasing .Hence the data warehouse and data mining came in to existence. So many algorithms are proposed
for data warehouse and data mining, but we are mainly deal with data mining where we deal with classifi cation
means to fi nd out which dataset will fall in which class.

In this paper, we are dealing with decision tree based classifi cation. So many algorithms are proposed for
decision tree based classifi cation, we will discuss some of them here.

An oblique decision tree is also used for classifi cation which combines deterministic hill climbing and two
randomized forms for each node of the decision tree. This is mainly used for the numeric data type, but we can
adopt for symbolic attributes also. [3]

1121 International Journal of Control Theory and Applications

Performance Improvement of Geometric Decision Tree using Parallel Approach and XGBoost Algorithm

Decision trees are the method for doing classifi cation,this is proved by so many statistics, pattern matching
and data mining tool, for proving this a unifi ed algorithm was taken and various splitting criteria and pruning
technique is implemented. [6]

In decision tree so many rules is generated ,unneccesary we have to check each rule individually, so
to remove this problem researcher gave the GID algorithm which will convert the rules according to their
semantics of the decision tree, as the algorithm is dealing with the semantics so cost of computation and
construct the decision tree is negligible.

 In traditional decision tree method, there are so many drawbacks which can be removed when we use
multi class, so for multi class, multi stage decision tree algorithm is used which deal with highest cohesion
and lowest coupling degree of clustering .the problem of multi class is diveded into two classes i.e highest
cohesion degree and lowest coupling degree based on inner class and intra class margin.this way we can
decrease the complexity and computation time of the decision tree which is lacking in the traditional decision
tree algorithms.[8]

Parallel to construct the decision ,we also pruned some items with the help of split rules, which is generated
at each node, Alopex algorithm is used for evaluating the split rules at each node,but this methodology also has
some drawback, i.e., it works for two class only.[7]

3. GEOMETRIC DECISION TREE ALGORITHM
As we already discussed in above discussion that the GDT uses top- down approach. Any decision tree based
algorithm has two issues that are how to store training data on a node and how to do rating in between hyperplanes
for classifi cation. In every this kind of algorithm, the performance depends upon rating of hyperplanes at every
node. For this algorithm, two cases are considered that is ‘two class problem’ and the ‘Multiclass problem.’

In two class problem, the geometric decision tree algorithm, in which the node splits into a left child and
right child based on the split rule. The author considers the hyper plane as the split rule at the node. Firstly fi nd
the two clustering hyper planes at any node having set of patterns and then one of the hyperplanes among two
hyper planes used as angle bisector. The gini index approach gives the better hyperplane that is used as bisector.
Each hyperplane is such that it is having the maximum number of points to one class only among two classes
that are each plane nearest to the one plane among two sets of data and farther from another set. Generalization
errors are minimized for fi nding the optimal tree. The impurity at each node gets reduced using this GDT
algorithm.

The difference between two class and multiclass is, in multiclass for deciding the node is a leaf or not, take
some points from the class having maximum points.

In the multiclass problem, the input is training data and output is a class label.
Algorithm for multiclass GDT [1]:
1. Let S be our training data then divide S into two parts S+ and S– .

2. S+ is majority class and S– contains the remaining data.

3. Find two matrices for both classes and also compute two hyperplanes.

4. Find angle bisector using Gini index.

5. If (Depth of tree = Maximum depth) then

 Node Leaf Node
 Node  Class label
6. Else Repeat steps 3 to 5.

1122International Journal of Control Theory and Applications

V. Ramya, G. Senthil kumar, S. Veena, A. Maria Nancy and S. Saranya

The previous section describes the working of GDT. Now in further work, we execute this code parallely
on the multiple cores. Then we check the performance gap between the serial execution of code and parallel
execution.

4. XGBOOST
Xgboost to build a model and make predictions. It is an effi cient and scalable implementation of gradient
boosting framework

linear model, tree learning algorithm. It supports various objective functions, Including regression,
classifi cation and ranking. The package is made to be extendible, so that users are also allowed to defi ne their
own objective functions easily.

It has several features:
1. Speed: It can automatically do parallel computation on Windows and Linux, with OpenMP. It is

generally over 10 times faster than the classical gbm.

2. Input Type: it takes several types of input data:

a) Dense Matrix: R‘s dense matrix, i.e. matrix ;

b) Sparse Matrix: R‘s sparse matrix, i.e. Matrix::dgCMatrix ;

c) Data File: local data fi les ;

d) xgb.DMatrix: its own class (recommended).

3. Sparsity: It accepts sparse input for both tree booster and linear booster, and is optimized
for sparse input.

4. Customization: It supports customized objective functions and evaluation functions.

5. PERFORMANCE ANALYSIS
Here we implemented Geometric decision Tree through Java. So, we have used Java Open Multi-Programming
[9] (JOMP) for parallelization, to increase the performance. Java has no specifi c compiler directive, so we
embedded FORTRAN as a comment in our code to parallelize the serial code.

JOMP architecture is based on Fork Join model, and it uses work sharing construct (used to share the
work among threads), Data Environment constructs (used to defi ne the scope of the data) and extensive API for
control the program.

In this paper we consider the multicores to see the performance of GDT algorithm across them. For
performance measure, we checked execution time of program for different table sizes. Following table illustrate
the difference between serial execution and parallel execution.

Table 1
Execution Time

Table Size(in Tuple) Serial Execution Time Parallel Execution Time
(for 2 cores)

Parallel Execution Time
(for 4 cores)

500 1.4703 0.8914 0.3172

1000 1.9784 1.3424 0.6847

1500 2.7205 1.7872 0.8723

2000 3.1238 2.1623 1.0623

1123 International Journal of Control Theory and Applications

Performance Improvement of Geometric Decision Tree using Parallel Approach and XGBoost Algorithm

The performance can be illustrated using graphically as shown below.

Figure 2: Histogram Representation of Execution Time

6. CONCLUSION
In this paper, we have analyzed the GDT algorithm for two class and multiclass problems. We have implemented
GDT algorithm using Java. Firstly, we determine the serial execution of code on multicores. By using the JOMP
we parallelized the code to improve the performance. Parallel implementation of code is checked on 2 cores and
4 cores and determined the difference in execution time. Serial implementation takes more time as compared to
the parallel implementation. Using the multicores, the performance can be improved.

REFERENCES
[1] Manwani, N.; Sastry, P.S.,”Geometric Decision Tree,” IEEE Trans. Syst., Man, and Cybernetics, Part B: Cybernetcs, vol.

42, no. 1, pp. 181-192, Feb. 2012.
[2] B. Chandra and P.P. Varghese, “Fuzzy SLIQ decision tree algorithm,” IEEE Trans. Syst., Man, Cybern. B, Cyberen., vol.

38, no. 5, pp. 1294-1301, Oct. 2008.
[3] S.K. Murthy, S. Kasif, and S. Salzberg,”A system for induction of oblique decision trees,” J. Artif. Intell. Res., vol. 2, no.

1, pp. 1-32, Aug. 1994.
[4] R. O. Duda and H. Fossum,”Pattern classifi cation by iteratively determined linear and piecewise linear discriminant

functions,” IEEE Trans. Electron. Comput., vol. EC-15. No.2, pp.220-232, Apr. 1966
[5] A. Suarez and J.F. Lutsko,”Globally optimal fuzzy decision trees for classifi cation and regression,” IEEE Trans. Pattern

Anal. Mach. Intell., vol.21, no. 12, pp. 476-487, Nov.2005
[6] L. Rolakh and O. maimon. “Top-down induction of decision trees classifi ers- A survey,” IEEE Trans. Syst., Man, Cybern.

C, Appl. Rev., vol. 35, no.4,pp 476-487,Nov.2005.
[7] C. Ferri, P.Flach,and j. Hernandez-orallo,” Learning decision trees using the area under the ROC curve,”in proc. 19th

ICML, San Francisco, CA, Jul. 2002, pp. 139-146.
[8] M. Lu, C. L. P.Chen, J.Huo, and X. Wang,”Multistage decision tree based on interclass and inner cfl ass margin of SVM,”

in Proc. IEEE Int. Conf. Syst., Man, Cybern, San Antonio, TX, 2009, pp.1875-1880
[9] Mark Kamnites,”Java OpenMP,” http://www2.epcc.ed.ac.uk/computing/reaserchactivites/jomp/papers/sss0599.pdf.

