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Control of Vibrations using Adaptive Filters 
Bipin Krishna and Manal Ubaidullah

Abstract: Vibrations are a primary factor for wear and tear of a lot of machines, machine parts, structures, vehicles, 
motors, etc. A small but consistent amount of vibration can also cause major disturbance and damage. It has a long 
list of causes as well. But human involvement and environmental involvement are the two most major factors that 
cannot be decremented or controlled. Hence, it is of utmost necessity that these rogue vibrations are suppressed or 
better yet, controlled. There are various techniques in recent times that have been developed to combat this problem. 
One of the most effective methods are adaptive filtering algorithms. We will be taking a close look at these algorithms 
in this paper. Among these adaptive filtering algorithms, the highest convergence rate is possessed by the Least 
Mean Square Algorithms. These algorithms play a vital role in detecting, analyzing, understanding and controlling 
of Vibrations. After successful control and suppression of these vibrations, the quality of a particular adaptive filter 
can be determined using the Mean Square Error of the resultant signals.
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1.	 INTRODUCTION 
Vibration control of flexible structures is of high importance as these structures are dynamic systems 
subjected to external excitation. When the excitation equals the natural frequency of the structure, 
resonance occurs and thereby damaging the structures. Cantilever beams are such structures used for 
investigation of vibration control. Beams supported with piezoelectric actuators and sensors are called as 
piezoactuated cantilever beams or smart beams. Though active vibration control with the use of sensors and 
actuators is not a new concept, it is still a developing area of research in the fields of civil and aerospace 
applications.

Adaptive filtering is playing an important role not only within the domain of system identification as in 
[8, 9] but also in vibration control applications [1, 2]. Filters based on LMS and RLS are the two primary 
algorithms used for adaptation but RLS is attractive because of the faster convergence [3]. Recently, 
there is a great interest in active vibration control of beam, plate and shell structures [8]. Vibration is an 
undesirable phenomenon in aerospace, mechanical and civil systems. Certain specific aerospace structures 
be it curved, flat, thin walled, etc. are operated in harsh and adverse aerodynamic environments, who in turn 
fall prey to random and uncontrolled vibrational disturbances. Enhancement of the performance of these 
particular structures is possible with the concept of active vibration [5]-[7]. PZT materials that are electro-
mechanically coupled [4] are behave as actuators and sensors in many active vibration control applications.

A number of studies are reported on the modeling of electromechanical coupling with different 
structural applications in active vibration control. A few experimental studies are also available on the 
active vibration control of composite beams and plates. 
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2. METHODOLOGY

2.1. The Least Mean Squares (LMS) algorithm
The LMS algorithm is quite advantageous and simple to determine. This algorithm shall possesses excellent 
performance if the adaptive filter system is formulated as an adaptive linear combiner, provided, that this 
n-dimensional vector input X (k) as well as the desired output d (k) are present in every iteration, here X 
(k) is represented as,
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Here, the n-dimensional arbitrary set of tunable weights W (k) is,
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Now that we have the input vector X (k), the approximated output y (k) can be determined as the linear 
combination of the input vector X (k) along with the weight vector W (k) as given,

)()()( kWkXky T=

Hence, the approximated error e (k), the difference between the approximated output y (k), and the 
required signal d (k), can be calculated as,

)()()()()()( kWkXkdkykdke T−=−=

Now applying expectation on either sides of the following equation,
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Hence, E {e2 (k)} can be formulated as,
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Since the LMS algorithm descends on the performance surface algorithm, we utilize e2 (k) to 
approximate the gradient vector, which is,
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From the steepest descent type of adaptive algorithm.

	 )()()1( kkWkW ∇−=+ µ 	

After replacing for D(k), we obtain,

	 )()(2)()1( kXkekWkW µ+=+ 	
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After substituting for e (k), we obtain,

	 ( ) )()()()()1( kXkdkykWkW −−=+ µ 	  2.1

It is evident that the linear combination of said input signal, X (k) and the weight vector, W (k) gives 
us the approximated output vector Y (k). Now the difference in the approximated output Y (k) and the 
required output d (k) gives us the value of error, e (k). This inaccuracy value can be utilized as a feedback 
signal for adjustment of the weight vector W (k). In an ideal system, the value of this error would be zero 
or very close to it.

2.2.	Understanding the LMS Algorithm
The fact that the LMS algorithm is very simple to follow and is not a hassle while implementation talks 
about it being a remarkable option for various real-time applications.

The phases for the implementation of the LMS algorithm:

1.	 The desired response should be defined. Each coefficient weight should be set to zero. 

	                                  

	 For every sampling instant (n), carried out phases (2) up to (4):

2.	 Every sample within the input array should be moved one spot towards the right and the present 
data sample n should be loaded into the primary spot in the array. 

	                                               

3.	 The error should be computed prior to the updating of the filter coefficients, viz. find the difference 
of the result of the adaptive filter and the desired response.

	                                        	      

4.	 The error must be multiplied by µ, the learning rate parameter, so that the updating of the filter 
coefficients can take place. Now, the result of this multiplication must be further multiplied with 
the filter input and summed with the previous filter coefficient values.	

	                                                   

2.2.	The Normalized LMS
The normalized LMS (NLMS) algorithm can be called as a modification of the typical LMS algorithm. 
The equation used by the NLMS algorithm for the purpose of updating the coefficients of the adaptive 
filter is given below:

                                           

Which is also interpreted as,
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Where,  

Now, (2.8) which is the NLMS algorithm closely resembles the standard LMS algorithm excluding 
the fact that in this case the NLMS algorithm makes use of a time-varying learning rate μ (n). This varying 
learning rate can further enhance the convergence rate of this adaptive filter. The LMS algorithm is a 
somewhat slower in converging when associated to the NLMS algorithm. But, the tradeoff in this case is 
that of residual error. The sensitivity to the surmounting of its input vector x (n) is the primary drawback of 
the standard LMS algorithm. This makes choosing a suitable learning rate μ, which assures this algorithm’s 
stability, very difficult.

2.3.	Recursive least squares (RLS) algorithms
The operations performed by the standard RLS algorithm for the purpose of updating the adaptive filter’s 
coefficients are given below.

1.	 Firstly, the output y (n) of the adaptive filter is calculated. 
2.	 Then, the error e (n) is computed utilizing the equation below:
	 e (n) = d (n)–y (n).
3.	 Lastly, the coefficients of the filter are updated by applying the equation below: 

		                                                                        2.9

Where  is called the filter coefficients vector and  is the gain vector.  is: 

		                                         		  	          2.10

Here, the regularization factor is δ. The typical RLS algorithm utilizes the equation below to update 
the inverse correlation matrix. 

		                                                           2.11

Where, N is termed as filter length and λ is termed as forgetting factor. This algorithm computes the 
value e2 (n) and the previous values which are e2 (n–1), e2 (n–2)... e2 (n–N+1). The forgetting factor value 
ranges from (0, 1). If the forgetting factor were to fall lower than 1, it would signify that this algorithm 
places a smaller weight on the past value and a larger weight on the current values. The resulting E [e2 (n)] 
of the RLS algorithms is more accurate than that of the LMS algorithms. 

3.	 EMPIRICAL DATA

3.1.	Filter Length Effect:
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Figure 3.1: Behavior of NLMS algorithm for different filter length.
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The NLMS algorithm is a fast convergence algorithm, at the expense of having larger steady state error 
for small filter length, but for larger filter length we have faster convergence and minimum steady state 
error. We also need less number of iteration to reach the steady state of our system.

3.2.	STEP SIZE EFFECT:
For a very large mu the system the system will ripple until reach the steady state, this will affects the 
stability of the system, it maybe unstable, but if we decrease the value of mu the ripple will decrease, 
system becomes stable and converge faster. For a suitable step size our system will converge fast, will be 
stable and we can get minimum steady state error.
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Figure 3.2: Behavior of NLMS algorithm for varying step size (mu).

3.3.	CONVERGENCE OF WEIGHTS:

Figure 3.3: Varying Convergence curves of the NLMS algorithm

The NLMS is a fast convergence algorithm but its coefficients will ripple up and down before reaching 
their steady state. 

As we see from the above figures, when the number of coefficients are large our system will converge 
faster, and the steady state error will be minimum. But by decreasing the number of coefficients we require 
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higher amount of iterations to converge, and the steady state error gets increased. For a system having four 
coefficients, we note that if we decrease the value of step size the steady state error decrements, but we 
need a larger number of iterations to converge and reach the steady state.

4.	 RESULTS
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Figure 4.1: Raw input data
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Figure 4.2: The Mean Square Error for the LMS, RLS and NLMS algorithms
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Figure 4.3: Comparison of performance of NLMS, LMS and RLS algorithms

5.	 CONCLUSION
The proposed work concentrates on the active vibration control of piezoactuated cantilever beam using 
LMS, NLMS, and RLS based adaptive filters. This algorithm proved to suppress vibrations of cantilever 
beams at its natural frequency and the percentage of suppression depending on the natural frequencies 
which is shown in the figures above. In LMS and NLMS algorithms, the mean values of the filter 
coefficients will keep converging to a more optimum solution. Hence, the filter coefficients will vary about 
their optimum values. The step size controls the amplitude of the fluctuations. The lower the value of step 
size, the smaller the fluctuations (less final maladjustments) and the slower the adaptive coefficients will 
converge to their optimal values.
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