
IJMS, Vol. 18, No. 3-4, (July-December 2019), pp. 269-276

ON THE BEHAVIOR OF MEMBERS AND THEIR STOPPING
TIMES IN COLLATZ SEQUENCES GENERATED BY

VARIATIONS IN POWERS OF TWO

Shayon Sengupta

Abstract: This paper proposes some results that are related to the Collatz sequences
generated by some variations in consecutive powers of two. We then examine these series
from the perspective of strings, and match patterns and generate formulas that further
prove the former claims. This paper further attempts to prove that the Collatz conjecture
holds true for values greater than those which it has been computationally tested.
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1. INTRODUCTION

The Collatz conjecture is named after Lothar Collatz, who first proposed it in 1937. The
conjecture is also known as the 3n + 1 conjecture, the Ulam conjecture (after Stanislaw
Ulam), Kakutani’s problem (after Shizuo Kakutani), the Thwaites conjecture (after Sir
Bryan Thwaites), Hasse’s algorithm (after Helmut Hasse), or the Syracuse problem.

Take any natural number n. If n is even, divide it by 2 to get n/2. If n is odd, multiply it
by 3 and add 1 to obtain 3n + 1. The Conjecture is that irrespective of the initial number,
upon the application of this function, the result will always end up as 1. This property is
known as oneness[1-3].

Consider a function:

έ (n) = n/2 if n � 0 (mod 2),

έ (n) = 3n + 1 if n � 1 (mod 2).

Define the iterate of έ :

έ (0)(n) = n

έ (i + 1) (n) = ( έ i(n)).

The Problem is to prove that for all integral n, there exists a finite number k, which is
defined as the stopping time of n, such that:

έ (k)(n) = 1.
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A thabit number is any number of the form 3.2n – 1.

Consider the function:

f (n) = 3.2n – 1.

However this paper is only concerned with numbers of the form

3.2n

i.e., numbers of the form f (n) + 1.

Collatz sequences are defined only for positive numbers. There is no closed-form formula
to predict either the sequence or the stopping time of a number. There are also very few
patterns that have been observed when it comes to Collatz sequences. Purely because the
stopping times of numbers are not generated in a uniform manner. This paper does not
attempt to prove the Collatz conjecture, but rather seeks to provide some insight into some
interesting patterns related to thabit numbers and collatz sequences that have, to the best of
the author’s knowledge, not been observed before. It has also been written in the hope that
it provides some hint for solving the problem.

In the following sections, we show some patterns in Collatz sequences generated by
numbers of the form (a.2n)-(3.2m) and (a.2(n + 1))-(3.2m) such that the value of (a.2n)-(3.2m)
is at least the sixth smallest positive element of the set of values that this expression can
take.

2. CODE AND LOGIC

2.1 Generating Collatz Sequences

Here we present the simple C++ code to return the stopping time of any integer n, along
with its entire cycle.

k:

a=0;

c=0;

cin >> a;

step:

if(n%2==0)

{

n = n/2;

c++;

if(n!=1){

cout << n << “ “;
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goto step;}

else {cout << “1” << endl << c << endl;

goto k;

}

}

else {

n = (3*n) + 1;

c++;

if(n!=1){

cout << n << “ “;

goto step;}

else { cout << “ “ << c << endl;

goto k;

}

}

This gives us an idea of how the Collatz sequences are generated. Most results in this
paper were derived using this program.

2.2 Generating Numbers of the Form (2n.3)

for(k=1; k<k_n; k++)

t=((pow(2,k))*3 + 1)

The above code will return the variation in thabit numbers that we require (the addition
of 1) to show the results mentioned earlier.

3. RESULTS AND OBSERVATIONS

Theorem 1: For any p and q of opposite parities, such that

(2p) – (3.2q)

is the 6th smallest positive element of the set of values that it can take

έ ((2p + 1)-(3.2q)) – έ ((2p)-(3.2q)) = 1.

Theorem 2: After the first 2p – q – 1 terms of the Collatz sequence formed by
((2p)-(3.2q)) and the first 2p – q terms of the Collatz sequence formed by ((2p + 1)-(3.2q)),
the cycles will meet and the terms that follow the sequence will be common.

Combined Proofs:

Let us begin with the first term in the cycles of these two cases:
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We split the cycles into sub-cycles to assess and determine the relation between these
sequences.

Sub-cycle 1:

For ((2p + 1)-(3.2q)) and ((2p)-(3.2q)) it is obvious that these integers are even. So, we
divide by 2 to get:

((2p)-(3.2q)) � ((2p – 1)-(3.2q – 1)) � q iterations... � (2p – q-3)

and

((2p + 1)-(3.2q)) � ((2p)-(3.2q – 1)) � q iterations... � (2p – q + 1-3).

Observations:

1. And so, the values of q and p will continue to decrease by 1 until q reaches the
value of zero, as before that value is reached, the value of both expressions will be
even.

2. At this point, we can clearly see that after q iterations, both the terms acquire
values that are odd.

Sub-cycle 2:

(2p – q-3) � (3.2p – q-23) � (3.2p – q – 1-22) � (3.2p – q – 2-2) � (3.2p – q – 3-1)

and

(2p – q + 1-3) � (3.2p – q + 1-23) � (3.2p – q-22) � (3.2p – q – 1-2) � (3.2p – q – 2-1).

Observations:

1. At this point, seeing as the cycle length is already at a minimum of 6 (taking q = 0),
we observe that the theorem we present will hold true only for values of (2p)-(3.2q)
that are greater than or equal to the 6th positive element in the set of values
that this expression can take.

2. The difference between the nth term for the sequence (2p – q-3) and n + 1th (2p – q + 1-3)
decreases from 22 for n = 2, to 21 for n = 3, to 20 for n = 4.

Sub-cycle 3:

(3.2p – q – 3-1) � (32.2p – q – 3-2) � (32.2p – q – 4-1) � (33.2p – q – 4-2) � (33.2p – q – 5-1)
� 2.(p – q – 3) iterations... � 3p – q – 2-1

and

(3.2p – q – 2-1) � (32.2p – q – 2-2) � (32.2p – q – 3-1) � (33.2p – q – 3-2) � (33.2p – q – 4-1)
� 2.(p – q – 2) iterations... � 3p-q-1-1
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Observations:

1. As we can observe, in this series the functions έ (n) = n/2 and έ (n) = 3n + 1 are
applied alternatively, as the parity changes continually when the first term is of
the form (k.2l-1) for any k, i � N. As a result, the exponent of 3 increments
continually, that is, after every alternate term; and the exponent of 2 decrements
every alternate term as well, eventually reaching the value of 0.

2. The difference between the (2n + 1)th term of the (3.2p – q – 3-1) sequence and the
(2n + 2)th term of the (3.2p – q – 2-1) sequence is consistently 1. We observe that in
these cases, the exponents of 3 and 2 are equal, and the only difference is in the
constant term, which alternated between 1 and 2, leading to the unit difference.

Sub-cycle 4:

Let us define (p – q – 2) as g.

So, as we know, p and q are of opposite parities. So p – q – 2 will always be odd.

Therefore, g + 1 will be even.

The value of (3g – 1)/2 is always odd for an odd g.

3g – 1 � (3g – 1)/2 � (3g + 1-1)/2

and

3g + 1-1 � (3g + 1-1)/2.

Conclusion:

After this point, the remaining terms in the series formed by both these expressions
will be same, and the number of terms will ergo be equal. In the final sub-cycle, the έ (n)
function has to be applied one more time for 3g – 1 so as to equate the values.

At this time, the sub-cycle for each of the terms has reached the same number. Let us
define the stopping time of this number, ((3g + 1-1)/2) as k. Now, the stopping times of the
full cycles of these expressions will be equal to the sum of the stopping times of each
sub-cycle and k.

So we can clearly see that the stopping times for the expressions up to the ((3g + 1-1)/2)th

terms are (We subtract 1 to prevent double counting in sub-cycle 4):

((2p)-(3.2q)): q + 4 + 2 (p – q – 3) + 2 – 1 = 2p – q – 1

((2p + 1)-(3.2q)): q + 4 + 2 (p – q – 2) + 1 – 1 = 2p – q.
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Theorem 2 is Hence Proved.

Let us assess the stopping times of these sequences sub-cycle wise:

έ ((2p)-(3.2q)) = q + 4 + 2 (p – q – 3) + 2 – 1 + k = 2p – q + k – 1

έ ((2p + 1)-(3.2q)) = q + 4 + 2 (p – q – 2) + 1 – 1 + k = 2p – q + k.

Therefore:

έ ((2p + 1)-(3.2q)) – ((2p)-(3.2q)) = 1.

Theorem 1 is hence proved.

Extension of Theorem 1and 2: For all odd a, and any p and q of opposite parities,
such that

(a) (2
p) – (3.2q)

is the 6th smallest positive element of the set of values that it can take

έ ((a) (2
p + 1)-(3.2q)) – έ ((a) (2

p)-(3.2q)) = 1.

After the first 2p – q – 1 terms of the Collatz sequence formed by (a (2
p)-(3.2q)) and the

first 2p – q terms of the Collatz sequence formed by (a (2
p + 1)-(3.2q)), the cycles will meet

and the terms that follow the sequence will be common.

Proof: The observations from Theorems 1 and 2 still hold for this proof. All one needs
to do is repeat the procedures for Theorem 1 but with a as the coefficient of the term 2p and
2p + 1.

Sub-cycle 1:

For (a (2
p + 1)-(3.2q)) and (a.(2p)-(3.2q)) it is obvious that these integers are even. So,

we divide by 2 to get:

(a (2
p)-(3.2q)) � (a(2p – 1)-(3.2q – 1)) � q iterations... � (a.2p – q-3)

and

(a (2
p + 1)-(3.2q)) � (a (2

p)-(3.2q – 1)) � q iterations... � (a.2p – q + 1-3)

Sub-cycle 2:

(a.2p – q-3) � (a.3.2p – q-23) � (a.3.2p – q – 1-22) � (a.3.2p – q – 2-2) � (a.3.2p – q – 3-1)

and

(a.2p – q + 1-3) � (a.3.2p – q + 1-23) � (a.3.2p – q-22) � (a.3.2p – q – 1-2) � (a.3.2p – q – 2-1)

Sub-cycle 3:

(a.3.2p – q – 3-1) � (a.32.2p – q – 3-2) � (a.32.2p – q – 4-1) � (a.33.2p – q – 4-2)
� (a.33.2p – q – 5-1) � 2.(p – q – 3) iterations... � a.3p – q – 2-1
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and

(a.3.2p – q – 2-1) � (a.32.2p – q – 2-2) � (a.32.2p – q – 3-1) � (a.33.2p – q – 3-2)
� (a.33.2p – q – 4-1) � 2.(p – q – 2) iterations... � a.3p – q – 1-1.

Sub-cycle 4:

Now, at this point, we know that a id odd. It is clear that both values are even.

a.3p – q – 2-1 � (a.3p – q – 2-1)2 � (a.3p – q – 1-1)/2

and

a.3p – q – 1-1 � (a.3p – q – 1-1)/2.

After this point, the remaining terms in the series formed by both these expressions
will be same, and the number of terms will ergo be equal. In the final sub-cycle, the έ (n)
function has to be applied one more time for 3p – q – 2 – 1 so as to equate the values.

At this time, the sub-cycle for each of the terms has reached the same number. Let us
define the stopping time of this number, ((3p – q – 1-1)/2) as k. Now, the stopping times of the
full cycles of these expressions will be equal to the sum of the stopping times of each
sub-cycle and k. (We subtract 1 to prevent double counting in sub-cycle 4):

(a (2
p)-(3.2q)): q + 4 + 2 (p – q – 3) + 2 – 1 = 2p – q – 1

(a (2
p + 1)-(3.2q)): q + 4 + 2 (p – q – 2) + 1 – 1 = 2p – q.

Extension of Theorem 2 is Hence Proved.

Let us assess the stopping times of these sequences sub-cycle wise:

(a (2
p)-(3.2q)) = q + 4 + 2 (p – q – 3) + 2 – 1k = 2p – q + k – 1

(a (2
p + 1)-(3.2q)) = q + 4 + 2 (p – q – 2) + 1 – 1 + k = 2p – q + k.

Therefore:

(a (2
p + 1)-(3.2q)) – (a (2

p)-(3.2q)) = 1.

Extension of Theorem 1 is hence proved.

4. EXAMPLES AND ILLUSTRATIONS

Example 1: p = 7; q = 2

((2p)-(3.2q)) = 27-3.22

((2p)-(3.2q)) = 28-3.2
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Terms upto
Expression Sequence Stopping time common sequence

116 58 29 88 44 22 11 34 17 52 26 13 20 11
40 20 10 5 16 8 4 2 1

244 122 61 184 92 46 23 70 35 106 53 21 12
160 80 40 20 10 5 16 8 4 2 1

Example 2: a = 5; p = 6; q = 1

((5)(2p)-(3.2q)) = 5.26-3.21

((5)(2p)-(3.2q)) = 5.27-3.21

Terms before
Expression Sequence Stopping time common sequence

314 157 472 236 118 59 178 89 268 134 67 202 37 10
101 304 152 76 38 19 58 29 88 44 22 11 34
17 52 26 13 40 20 10 5 16 8 4 2 1

634 317 952 476 238 119 358 179 538 269 808 38 11
404 202 101 304 152 76 38 19 58 29 88 44
22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

5. CONCLUSION

Generally, patterns in the Collatz series are very rare. In this paper we have not only found
some interesting results on the sequences of a large set of numbers as per theorems 1 and 2
and their extensions, but we have also found patterns within the sequences generated. With
the expansion of Theorem 1 in section 3, we have also shown that the Collatz Conjecture
holds true for values greater than it has been computationally tested for. Analyzing the
stopping time and the properties of these sequences will have provided some insight into
this beautiful conjecture.
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