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“Markov Control with Rare State Observation”:
Sensitivity Analysis with Respect to Optimal
Treatment Strategies Against HIV-1

SreraNiE WINKELMANN?, CHRISTOF SCHUTTE? & M aAx voN K LEIST®

AsstracT: We present thetheory of “Markov decision processes (MDP) with rare state observation” and apply it
tooptimal treatment scheduling and diagnostic testing to mitigate HIV-1 drug resi stance devel opment in resource-
poor countries. The devel oped theory assumes that the state of the processis hidden and can only be determined by
making an examination. Each examination produces costs which enter into the considered cost functional sothat
theresulting optimization problem includesfinding optimal examination times. Thisisarealisticansatz: In many
real world applications, like HIV-1 treatment scheduling, the information about the disease evolution involves
substantial costs, such that examination and control are intimately connected.

However, a perfect compliance with the optimal strategy can rarely be achieved. This may be particularly true for
HIV-1 resistance testing in resource-constrained countries. In the present work, wetherefore analyze the sensitivity
of the costs with respect to deviationsfrom the optimal examination times both analytically and for the considered
application. We discover continuity in the cost-functional with respect to the examination times. For the HIV-
application, moreover, sensitivity towards small deviations from the optimal examination rule depends on the
disease state. Furthermore, we compare the optimal rare-control strategy to (i) constant control strategies (one
action for theremaining time) and to (ii) the permanent control of the original, fully observed MDP. Thiscomparison
is done in terms of expected costs and in terms of life-prolongation. The proposed rare-control strategy offers a
clear benefit over a constant control, stressing the usefulness of medical testing and informed decision making.

Thisindicatesthat lower-priced medical tests could improve HIV treatment in resource-constrained settings and
warrantsfurther investigation.

AMS SusJect CuLassiFicaTions: 49N30, 60327, 60328, 93B07, 90C40, 93E20

KEevworbs: Information costs, Hidden state, Bellman equation, Optimal therapeuti c strategies, Diagnostic frequency,
Resource-poor

1. INTRODUCTION

The theory of Markov decision processes (MDP) is a well established tool to analyze situations in which
the dynamics of a stochastic process may be influenced by a decision maker. A basic component of a
Markov control model isthe observability of the process:. in standard Markov control theory the processis
assumed to be observable at all times, while in the theory of partially observable Markov decision processes
the information about the process isincomplete. In both cases, the degree of information is predefined and
cannot beinfluenced by the decision maker. However, in many rea world applications (like medica therapies,
asset management...) it is possible to decide whether to deduce information or not — and thisinformation is
in general not gratis. Instead, the problem is to find the right balance between optimal interaction and
reduction of information costs.
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In this article, we present amodel for Markov decision processes with information costs. The process
is assumed to be continuous in time, while the state space is discrete. We define a suitable cost criterion
including the costs of the process and the costs for information and denote the corresponding Bellman
equation with reference to [1]. In this model, a control strategy has to declare for each state x not only an
action a, but also alag time t until the next state observation.

Given the optimal strategy, we analyze how small deviations from this strategy affect the cost criterion.
The research question is motivated by the fact that a perfect compliance with the optimal strategy may not
be accomplished in many real world applications. A meaningful example is the treatment of HIV-1 in
Africa, which will serve as an application of the presented control model. Due to limited infrastructure it
may not be possible to follow a recommended diagnostic surveillance scheme accurately. In this case,
knowledge of potential invariability with respect to patient health damage is required.

Many researchers have studied optimal treatment strategiesagainst HIV, e.g., [2-4]. However, the question
of sengitivity with respect to deviations from the optimal examination rule has not been addressed, and
rare-state examination/medical testing has not been a part of the previous control approaches. We believe,
however, that it is an important pre-requisite for the implementation of such strategies.

After exposing the fundamental components of the HIV-model presented in [1], we specify the optimal
therapeutic strategy and analyze the sensitivity of the optima costswith respect to changesin the examination
lag timest. Furthermore, we assessthe benefit of informatiorvinteraction by comparing the optimal treatment
—and examination strategy of our framework with two opposed modifications of the problem: (i) the case
of constant control which consists of maintaining one action for the remaining time without any further
state examination, and (ii) the case of permanent control, which assumes full observability and continuous
interaction as in original MDP.

In order to analyze the differences between these approaches, we decompose the costsinto components
of state-, action- and information costs. As a second criterion for the quality of a therapeutic strategy we
consider the probability of death after fixed time intervals for the different approaches.

2. THeory oF MARkov CoNTROL WITH RARE STATE OBSERVATION

In the following, we describe the Markov control model derived in [1] and complement the theory by a
sengitivity analysis with respect to deviations from the optimal strategy.

2.1 The Control Moded

We consider a continuous time Markov control process (X)), , , on a discrete state space S. There is afinite
set A of actionsthat are availablein order to influence the process. Given action a € A, the dynamics of the
process are defined by the generator L_ where L_(X, y) > O isthe trandition rate for atrangition fromx e S

toy e S, y=x whileL_(x, X) satisfiesL_(X, X) = —Z L (X, y). Thecost functionc: S x A — [0, «) denotes

the costs produced by the process per unit of timgaepmding on the actual state and the chosen action. In
the application, the states describe the health status of a patient, while the actions refer to different medical
treatments. The cost function measures the costs of the treatments as well as the health damage to the
patient.

In opposition to original Markov control theory, we assume that the process cannot be continuously
observed and influenced. Instead, each examination of the process produces costs k > 0 which enter the
cost functional, suchthat afundamental part of the optimization problemisto determine optima examination
times. Controlling the processthen proceeds according to the following structure: Starting with some known
state X, € S at some examinationtimet, > 0 one choosesan actiona € A aswell asan examination lag time
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T(X,) > 0 defining the next examinationtimet, =t + t(X) >t . During thetimeinterval (t,, t,] the (random)
behavior of the process (X)) isfully described by theinfinitesimal generator L and produces costs according
to the cost function c (-, a). We do not observe this behavior but only determine the state X;, of the process
at timet,. For thisinformation expensesk _accrue. Knowing the new state X,, at timet,, we choose again
an action and alag time and the procedure restarts. During a time interval [tj 4, ) the action isfixed, i.e.,
it can only be changed after examination.

In this context, a strategy is a function
u:S—> Ax(0,©], x—uX =(@a),r(x), (2.1)

giving for each state x € S both an action a € 4 and an examination lag time t > 0. The lag time t is
allowed to be infinite which is appropriate in Situations where state examinations/interaction cannot change
anything (e.g., because the actual state is absorbing) and which in the same time will guaranty the existence
of an optimal strategy.

The set of all strategiesis denoted by /.

2.2. Cost Criterion and Bellman Equation

As an optimality criterion we choose expected discounted costs over an infinite horizon. Given a
strategy u € U, aninitial state x € S and adiscount factor A > 0, these are defined by

I(x,u)=E! LZ ™ (C(X, . a(X, ), t(X,)) + e“‘x‘”hmo)}, (22)

where B! stands for the expectation value with respect to the measure determined by x and u, while
C(x,a1)=E (IO e’c(X,,a) ds) (2.3)
are the expected discounted costs for the time interval (O, t] when starting in state x € S and choosing
action a € .A. Moreover, it holds b, =t+1 (th).
The corresponding value function
V(X) = mizgl J(x, u) (2.4
is characterized by the Bellman equation
V(X)= min ] (C(x,a,1)+e""(k

aeA,1e(0,0

+T,. V(X)) (2.5)

info

where T, RI®I — RIS, T v:=¢ar - visthe transition matrix on S for some fixed lag time © > 0 and
action a, see[1].1

2.3 Sensitivity Analysisw.r.t. Deviation from Optimal Examination Rule

In the following we will be interested in computing the cost functional J(x, u) for strategies that dlightly
differ from the optimal strategy u’. In order to give a compact formulafor J we introduce a few notations:

Givenastrategy u(x) = (a(x), t(x)), define adiscount vector e e R° by e (x) := e**(x) (withe*~:=0)
and adiagonal discount matrix D_e R®®by D_(x, X) :=e (X) andD_(x,y) :=0forx=y. Let P € R*with
P(x, y) := (€=w *®) (X, y) be the transition rule under u for the observed process X, X, ..., and define
C, € R°by C (X) := C(x, a(x), T(x)).

1 For t = « theright handside of 2.5 is given by C(x, a, «) := ]E:(Lf e**c(X, a)ds).
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Lemma 2.1: The cost functional J= J(-, u) (as avector in R®) for a strategy u € U/ is given by
J=(d-D_P)XC,+k_e). (2.6)
Proof: In analogy to the Bellmann equation (see Eq. (2.5)), J fulfills the recursion
I =C(xa(), () +e Wk +T  _ IX)
which can be written in the form
J=C, +k _ e +DPJ
This is equivalent to
(Id-D_P)J=C +k _ €.
It remains to take the inverse of Id — D_P, which exists by the following argumentation. If the matrix
Id—D_P was not invertible, the equation
(Id-D_P)v=0 2.7)
would have a solution v € R!91'# 0. As D_is a diagonal matrix with diagonal entries 0 < e *™® < 1, its
inverse D_* exists and is again diagonal with D_'(x, x) = €® > 1. We rewrite (2.7) as Pv = D_'v and take
the maximum norm on both sides. As P is a transition matrix, the entries of Pv are convex combinations of

the entries of v, such that it holds || Pv|| _ <[|v]| . Onthe other hand, it holds |[D-*v|[ >||v]| , aseachentry
of vis multiplied by a constant > 1. Together we get

IvIl, = IIPvIl, = ID;tvIlL, > VI,
acontradictionto v 0.

Theorem 2.2: (Continuity of J with respect to t). The cost functional J as a function of the strategy
u(x) = (a(x), t(x)) is continuous with respect to the parameter t(x) for al x € S.

Remark 2.3: The continuity of J with respect to some t(x), X € S fixed, refers to all components
J(y, u),y € S, of J. In other words, “small” modificationsin t(x) lead to “small” modificationsin J(y, u) for
al statesy € S, and not only for y = x.

Proof: The continuity of Jwith respect to t follows from the continuity of the expressions e **, € and
C(x, a, t) which are the t-dependent components in
J=(d-D_P)XC,+k _e),
compare equation (2.6).

3. APPLICATION

Given thetheoretical ansatz of section 2, we will now formulate a model for HI'V-dynamics and analyze the
valuefunction with respect to deviations from the optimal strategy.

3.1 HIV Modsdl

Action Space. In line with [1] we choose the set of treatments A = {a,, a,, a;}, where a, denotes the
absence of medical intervention, while a, and a, denote the application of two distinct treatment lines. This
choice is motivated by the fact that in the sequel we will focus on HIV treatment in resource-constrained
settings in which only two treatment lines are available (a, & a,)).

State Space. In brief, the HIV-model contains four lumped states for each virus type: The respective
virus type can either be absent, or present in low-, medium- or high copy numbers, denoted by O, /, mand
h respectively. The /-states are reflecting states, which are justified by the inability to eradicate HIV [5, 6]
and the h-states are reflecting states, because there is a maximum carrying capacity of the system.
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According to their treatment susceptibility, our model further distinguishes4 viral strains M (“mutants’):
astrain WT (wild type) that is susceptibleto all treatment lines, astrain R1 whichis susceptible to treatment
2 (a,), but unaffected by (resistant to) treatment 1 (a,), astrain R2 that is susceptible to a,, but unaffected by
a, and a highly resistant strain HR which is resstant to all treatments (a, & a,).

We consider all permutations of viral strains M € {WT, R1, R2, HR} and respective copy numbers
n.(M) € {0, ¢, m, h} and patient death »Xv, resulting in state space dimension | S| = 4* + 1 = 257, with
S={0, £, m, h}* U k.

In order to describe a state x € S we will use the compact vector notation
x=[n_(WT), n.(R1), n_(R2), n_.(HR)].

For example, the state x = [0, h, O, /] describes the absence of wild type strains, a high number of
R1-mutants, the absence of R2-mutantsand a /ow number of highly resistant mutants. The proposed Markov
model of HIV-dynamics [1] is particularly suited to describe the long term dynamics of drug resistance
development after treatment application.

Generator Entries. The distinct treatments a € A are related to distinct generators L of our HIV-
model. The basic transitions between copy number states n_(M) are shown in Fig. 1 and exemplified for
the wild type strain WT below.

kf,a kma
[5,*,*,*](?[”],*,*,* , [m* * *](:[h * ok *] (38)
[h'*’*,*]%%’ [m,*’*’*]%%’ [g’*'*’*]L)%, (39)

where * indicates an arbitrary number of the respective virus strain (R1, R2 and HR in the example above).
The parametersk, _and k  _denote the reaction propensities of going from copy number ¢ to copy number
m and from copy number m to copy number h respectively (viral growth), which are decreased depending
onthetreatment a € {a,, a,, a,}. The parameters§_and 5, areindependent of the treatment and denote the
reaction propensities for going from copy number m to copy number ¢ and from copy number h to copy
number m respectively (virus elimination). The parametersd. > d_> d, denote the propensity for the death
of the patient. These parameters are unaffected by the treatments as weII [1]. We assume that high viral
burden (states h and mrespectively) increasesthe risk of death, whereasd, equalsthe propensity for “natural

A B high copy numbers
w:ldtype WT s | >4000 co/m blood
NCA
m% Wn Rla . patient
. i death
resistant to tr. 2 s M resistantto tr. 1 ""'n‘ﬁ'fn"li,';"’ d‘: ¥
R2 —f-i-GH~  =i=E=iE=8 R1 [* % % *] >k
P %:u ltﬂ‘% I J I low copy num- ’ d,
WR1a [T WT R ’ R2 HR bers Zf&?/mL
-
highly resistant
HR no virus

Figure 1: Simplified HIVV Model. A: Transitionsin between viral strainsM in terms of mutationsin thevirus genome. Thehorizontal
line with the small boxes shall schematically represent the viral genome and the codons (boxes) that arerelevant for drug
resistance development. A blank box shall indicate the absence of any mutations, whereas the blue- and red coloring
indicates a pattern of mutations that confersresistance to treatment line one (blue coloring, virus type R1) and -two (red
coloring, virus type R2). B: Transitions between copy number states n_.
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death”. The propensity for death was computed according to d = 1/(residua life expectancy), and is
exemplified in [1].

The considered transitions (mutations) between viral strains M are depicted in Fig 1. Specifically,
mutation generatesa /ow number of viral particlesfromeither amediumor high number of viruses belonging
to a distinct strain. Exemplified for the wild type strain WT those are:

[h,0,%,*] —tmes sk g% «],  [m,0,%, %] —im=e s m 7, %, *] (3.10)
[h*,0,4] —tmze s[h o« ¢ %], [m*,0,%] —tneze s [m «, 7 +] (3.11)
[0, h, %, ] e s g s «], [0, m,*, %] —tmme 5[0 m, %, *] (3.12)
[0,*, h*] —2E22 5[0, % h,x],  [0,%, m*] —""22 5 [/, %, m,*] (3.13)

where the first two lines indicate mutation arising from the wild type strain and the remaining two lines
indicate mutations yielding the wild type strain. The parameters u, ., . and p, ., , denote the propensity for
the emergence and disappearance of a mutation that confers drug resistance to treatment 1 or 2 (a,, ),
respectively, emanating from copy number state h. Analogously p_ ., . and p_ ., . denote the propensity
for the emergence- and disappearance of a mutation emanating from copy number states m. Note, that we
consider only the following mutations: WT <> R1, WT <> R2, R1 <> HR and R2 <> HR, whichismotivated
by the fact, that a direct transition from WT <> HR is very unlikely, because the genetic distance between
the two viral strainsistoo large to be overcome at once.

The effect of treatment a is considered in the following way:
k,,=(1-n(a M)k, K,.=@—n(a M)k , (3.14)

Moo= @=n@M)u, g4 Mowa=@=n@M)p g, (3.15)

The parameter n (a, M) isaconstant that denotes the efficacy of treatment a € {a,, a,} onvira strain M
e {WT, R1, R2, HR}; i.e,, if strain M is susceptible to treatment, then 0 <n < 1 and if the viral strain M is
insusceptible to treatment thenn = 0. The parametersk, ,andk_,rsp. p, z,andp , denotethe growth
rates rsp. mutation rates in the absence of intervention, i. e for a* (see Table Al).

The model building process as well as the process of parameter estimation for the model are described
in [1] in more detail. Final model parameters are shown in the Table A1 (appendix).

Cogsts. We assume the cost function ¢ to be of the form
c(x,a) =c,(x) +c,(a),

where ¢, measures the costs related to the health damage of the individual while ¢ , describes the treatment
costs. Theamisthusto find a cost-effective strategy that ensuresgood health of apatient. We parameterized
our model in terms of values that are representative for South Africa. The costs ¢, (x) of being in the
respective states x € S were computed based on the average productivity loss times the average daily
monetary contribution of one individua (assessed in terms of daily per capita GDP), wheredeathisinterpreted
in terms of a complete loss in productivity, see [1]. The examination costs k . accrue each time a medical
test is made. The direct costs for treatment and examination are displayed in appendix Table A1 together
with the indirect costs for health damage.

Given this structure of the cost function, also the value function V (optimal total discounted costs) can
be split up into parts of state costs V, (health damage of a patient), action costs V , (costs for medical
treatment) and information costs V. . (costs for medical tests), see [1].



“Markov ConNTRoOL WITH RARE STATE OBSERVATION”: SENSITIVITY ANALYSIS WITH RESPECT TO OPTIMAL TREATMENT... 53

3.2 Optimal Strategy in a Resource-Poor Setting

We applied the theory described in Section 2 to the model presented in Section 3.1 using the cost-parameters
in TableA1 (appendix), which are representative for South Africa. We computed the cost-optimal treatment-
and diagnostic strategy using a modified version of the standard policy-iteration algorithm [7]. In our
application, we set t . =1 daysand t = 5000 days in order to numericaly solve the optimization
problem. The computed optimal strategy is shown in Table 1. In brief, there are two states, in which
diagnostic testing is indicated: state [{m}, O, 0, O] and [{h}, O, O, Q]. A switch to treatment line a, is
indicated, if viral strain R1 is present, i.e. after resistance development to treatment line a,. I.e., our
computationindicatesthat it would be cost-optimal to implement a sparse diagnostic surveillance depending
on the health status of the patient. Currently, thisis not standard-of-care in South Africa.

Table1
Optimal Srategy
state
[{m},0,0,Q] [{h},0,0,0], [*,{¢,m h},0,0Q] otherwise
action 3 3 a, 3
T 11 45 2T 2 T

Calculated optimal strategy for the resource-poor settings (South Africa) giving the treatment, the examination lag time t
(in days) and the val uefunction (in US$) depending on the state of the patient. For clarity reasons, states are merged according
totheir related treatment choice.

However, an exact implementation of the proposed diagnostic surveillance may not be possible, because
patients may not be able to perfectly comply with the indicated scheme (shown in Table 1). Implementation
of a diagnostic surveillance scheme may be further complicated in resource-constrained settings due to
infra-structural deficiencies. We will in the next section assess the sensitivity of the valuefunction with
respect to deviations from the optimal examination rule and in the section thereafter, we will compare the
“optimal strategy with rare state observations’ with the two opposed cases in which the action is either
constant over all times (which corresponds to infinite lag times) or continuously adapted to the process as
in original Markov control theory without examination costs (which stands for infinitesmally small lag
times).

3.3 Sensitivity Analysisw.r.t. Deviation from Optimal Examination Rule

We have shownin Theorem 2.2 that the cost functional J is continuouswith respect to thelag time parameters
t(X) for al x € S. In our application, we have only two states ([m, O, O, O] and [h, O, O, 0]) for which
diagnostic testing is indicated. We therefore computed the impact of t-variations around the optimum in
Fig. 2A & B for the indicated states by using Eq. (2.6). For state [h, O, O, O], the total costs sharply riseif ©
is decreased or -increased (solid blue line in Fig. 2A) in relation to its optimum value t* (solid dot). The
increase of J(x) upon increasing values of t are paralleled by an increase in J, (X) (the “pure” state costs;
dashed red line). When decreasing t, the oppositeistrue, namely J, (x) decreases, but the overall costs J(x)
increase. Notethat the slope of J, () (dashed red line) correspondsto the cost-increase attributed to patient
health damage.

Although we observe a very senditive response towards changesin t for state [h, O, O, O], for the other
state, [m, O, O, O], we get much less sensitivity towards deviations from t* (see Fig. 2B, solid blue line and
solid black dot). In particular, upon increases in t, total- (solid blue line) and state costs (dashed red line)
are only marginaly increased.
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Figure 2. Sensitivity with respect to 7. Cogt functional J (x, u) and J(x, u) for x=[h, 0, 0, 0] (l&ft graphic) and x = [m, 0, 0, 0] (right
graphic) with u varyingin t([h, 0, 0, 0]) or = ([m, O, 0, 0]) (while being optimal in all other parameters).

A summary in terms of atwo-dimensional contour plot, which takes variation in both = ([h, O, 0, 0]) and
T ([m, 0, 0, 0]) simultaneoudly into account, is shown in Fig. 3 and confirms the observations made from
Fig. 2A&B, indicating that if patients have a high viral load (state [h, O, 0, Q]), they should strictly comply
with the optimal strategy. If we focus on the potential health damage to the patient (dashed red lines in
Fig. 2), we can conclude that there is little margin if diagnostic testing is behind schedule for patients that
areinstate[h, 0, 0, 0] (high virusload). For state[m, O, O, O] belated diagnosis will havelittle consequences
for the health of the patient. In a setting with constrained resources this means that patients with high virus
loads should be prioritized for subsequent diagnosis over patients with less virus.

x 10*

©([m,0,0,0])

72

7.1
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100
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Figure 3: Sensitivity with respect to . Cost functional J (x, u) for x = [h, 0, O, 0] and u varying in < ([h, O, 0, 0]) (x-axis) and
t([m, 0, O, 0]) (y-axis), while being optimal in all other parameters.
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4. CompraRIsON WITH CoNsTANT CoNTRoL AND ORIGINAL M ARKOV CONTROL THEORY

In this section we will compare the optimal strategy given in section 3.2 to two extreme cases: Namely,
(i) the process under constant contral, i.e., the action is fixed for al times, and (ii) the case where we can
permanently observe the process and adapt the action, i.e. as in the origina Markov control theory. The
resulting costs and the probability of death (which treatment is intended to prevent) will be computed.

(i) The process under constant control refers to the condition in which an action isinitially chosen and
maintained for the remaining time. It can be associated to infinitesimal large information costs
(k ., = o) which make testing unaffordable (t (X) = « for all x € S). In the presented model this
situation refersto the choice of either a, a,, or a, for al times. The corresponding costs are given

by
J(x) =B ( [“ere(x,.a) ds) | (4.16)
witha e {a,, a,, a;}. Especially, the choice of a = a, stands for “natural” disease process without

medical intervention.

(ii) We assumethat the processisal thetime freely observable (k . =0) and that actions canimmediately
be adapted. In our model, thisimmediately resultsin vanishing lag times, i.e., t(xX) = 0for al x € S,
such that the discrete structure of the cost functional (Eqg. (2.2)) gets lost and the given Bellman
eguation (2.5) is not anymore suited to characterize the optimal strategy. Instead, this situation
correspondsto anoriginal (continuoustime) Markov control process. Here, adeterministic stationary
strategy is given by a function f : S — A, declaring for each state which action to chose. The
corresponding costs are given by

J(x f)=E' (j: e*sc(X., F(X) ds) (4.17)
fulfilling
A (% F)=c(x (X)) + Ly d (% ), (4.18)

see[8]. Theoptimal strategy f* and the value function V(x) = J (x, f*) = min, J (x, f) are characterized
by the Bellman equation

AV (X) = min (c(x, @) + LV (X)), (4.19)

withf*(x) = argmin__  (c(x, @) + L, \7(x)), see[§].

The cost functional J correlates with the cost functional J defined in 2.2 in the followi ng way: Given a
strategy f : S — A of the original Markov control process, consider the strategy u e U with u(x) = (f(x), t,)
for T, > 0 independent of x. Setting k .= 0in 2.6 and taking the limit t, — O gives

J=(1d-D, P)C,

-2 (1d- D, P)™C,

To
1 o1
=[—(|d—DTOP)J —C,
To To

—02% 5 (AMd - L,) "¢

=]
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with L (x, y) = Lo (X, y) and c,(x) = c(x, f(x)), where the limit is determined by considering the series
expansion of the matrix exponentlal P(x,y) = e+w™(x, y) and the last equality follows by (4.18).

Table2

K, = c constant control

a, a a, K., =500 MDPwt. rareobs. k_ =0 original MDP
total costs (V,+V, +V, ) 107350 76790 70030 69 149 61 420
netto costs (V,+ V) 107350 76790 70030 66 855 61 420
state costs (V) 107350 76024 66 940 65 116 59 589
P(X,, = x[X,=1[h,0,0,0]) 0.44 0.22 0.15 0.15 0.13
P (X, ="%|X,=[h,0,0,0]) 0.63 0.34 0.24 0.23 0.21
P (X, ="%IX,=[h,0,0,0]) 0.95 0.69 0.62 0.60 0.54

The netto costsare given by J, ([h, 0, 0, 0]) in the case of constant control, by V([h, 0, 0, O]) +V ,([h, 0, O, 0]) in the case of
MDPwith rare state observation and by V ([h, 0, 0, 0]) in the case of original MDP,

The probability of death IP (X =X| X, = [h, 0, 0, O]) after 3, 5 or 15 yearswhen starting in state [h, 0, 0, 0] was computed by
analytically solving the Kolmogorov equations in the case of constant control and in the original MDP setting, where we used
the generator under optimal control L'(x,y) = L, ® (%, y). In the MDP with rare state observation setting, we approximated
P (X, ="|X,=[h, 0,0, Q]) using awell-established Monte-Carlo-Method [9].

Obvioudly, it holds
IV =2V(X) Vae A, (4.20)

whereV is the valuefunction defined in (2.4): The first inequality follows from the fact that the strategy of
constant control is contained in the set of strategies &/ over which we minimize in section 2.2, while the
second inequality is due to the fact that a continuous adaption of the optimal action choice combined with
cost free state information (k .= 0) can only lead to animprovement of the total costs. The same istrue if
we consider —instead of thetotal optimal costs V —the netto costs V=V +V  which arethetotal costs
without information costs. As both J_and V do not contain any mformatlon costs (|n setting (i) thereare no
testsat al and in setting (ii) mformatlon isfor free), considering the netto costs V. instead of V is better
suited to make a comparison.

Table 2 showsthe (netto) costs and the probability of death for setting (i) and (ii) aswell asfor k =500
(compare appendix Table Al).

We can make the following observations. In accord with (4.20), the costs of the optimal MDP scheme
with rare state observation go below those of any constant control, while they exceed the costs of the
original MDP scheme with permanent optimal control. Thereis ahuge difference between the costsresulting
from an absence of medical treatment (a, at al times) and those arising under constant control with a, or a,.
While the values of the netto costs all significantly differ from each other, the value of the total optimal
costs V ([h, O, 0, O]) = 69149 arising from optimal control with rare state observation is very close to the
costs under constant control with a,. This means that in terms of the total costs, the optimal strategy with
rare state observation is only dightly better than a “blind“/constant control which could challenge the
utility of medicd testing. In fact, it isthe reduction of action- and state costs which justifies the medical tests.

In terms of survival benefit, the optimal MDP scheme with rare state observation is better than the
absence of medical intervention (a, at all times) and better than a constant treatment with only therapy line
a,, however, it is only dightly better than a constant treatment with a, for the time horizon analyzed (3, 5
and 15 years), which is however much more expensive in terms of treatment costs (netto costs — state
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costs). Also, for larger time horizons, the differences between constant treatment with only a, and the
optimal MDP scheme with rare state observation are expected to further increase.

Again, the biggest difference in the probability of death can be found when comparing the absence of
medical intervention with all other considered strategies. This emphasizes that the fundamental step is to
start amedical treatment, while the details of the treatment strategy are secondary.

Best interms of survival and costsis, as expected, the permanent control of the original Markov Control
problem. However, for many applications (as the one considered here) the assumption of continuous and
cost-free observation and interaction isunrealistic. It isa matter of fact that information itself has aworth,
and it makes sense to take account of thisworth. Thisis exactly what is done by our model, where the value
of the information costs on the optimization problem is determined by the value of k _ .

5. CoNcLUSION

We presented a model for continuous time Markov decision processes that can be observed and influenced
at variable discrete time points. Each observation produces costs which enter the cost functional such that
the optimization problem consists of finding for each state an action and alag time determining the date for
the next examination. Given an adequate cost criterion we discovered a continuity with respect to the lag
times of al states which means that “small” deviations from the optimal strategy do not lead to a huge
increase (jump) in the costs.

We exemplified this continuity for HIV-therapies in Africa where a high prevalence of HIV-infections
coheres with aregtricted infrastructure, which complicates an exact adherence to testing dates. We found
that sensitivity of the expected costs towards “small” deviations from the optimal lag times t* depend on
the consdered state: For the more critical state [h, O, 0, 0] (indicating a high copy number of wild type
virus) the costs sharply increase. However, for the less critical state [m, O, O, 0] (indicating a medium copy
number of wild type virus) the response towards changesin the lag time is not that problematic. This means
that a patient with high virus load should strictly comply with the next examination date, while a patient
with medium virus load is more flexible.

In order to overview the range of possible costs we gave an upper bound by considering constant
strategies (no further adjustment of the action) and alower bound by calculating the costs for the original
Markov control problem (continuous interaction). We distinguished state-, action- and information costs
and found out that asfor the netto costs (state costs + action costs) the optimal strategy of the new model is
clearly better than any constant strategy and worse than the optimal continuous strategy (original MDP).
The differences in the probability of death are not that significant. It is mainly the absence of medical
intervention that dramatically decreases the chances of survival.

Although the permanent control without information costs naturaly delivers the best results, a more
realistic ansatz isto take into account the costs of state testing - which is done by the proposed model.

Asdemonstrated in[1], the optimal strategy and the valuefunction strongly depend on the cost parameter
k .. Aninteresting future problemisto find out about monotony and continuity of the time parameters and
the valuefunction with respect to this parameter — both within the framework of the new model (at k > 0)
and with respect to the original Markov model (at k = 0).
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APPENDIX
TableAl
General M odel Parameters

param. [ unit] value param. [ unit] value param. [ unit] value
3, [1/d] 6.13- 102 Hh Ry o [1/d] 1.24 n(a, {WT, R2}) 0.979
S, [1/d] 5.1.102 Hm Ry g [1/d] 43410 n(a, {R1, HR}) 0
K, 5 [1/d] 0.13 Hh Ry [1/d] 241101 n(a, {WT, R1}) 0.966
Ko [1/d] 0.13 Hm Ry g [1/d] 2.33-102 n(a, {R2, HR}) 0
d, [1/d] 9.4.10° c,(a) [US$/d] 0 c,(£) [USH/d] 0
d, [1/d] 2.7-10* c,(a) [Us$/d] 0.3 c (M) [USH/d] 22
d, [1/d] 55-10* c,(a) [Us$/d] 1.08 c,(H) [USH/d] 8.8
K o [US$] 500 AF [1/d] 1.75- 10+ c, () [USH/d] 221

L denotes the set of states for which condition n_(M) < / for all possible virusmutantsM holds, i.e., </, </, </, < /. Set'H s
defined as all stateswhere at least onen_(M) > mand set M denotes the remaining states (except death). * Assuming an annual
inflation of 6.2% for South Africa.
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