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ABSTRACT: We present the theory of “Markov decision processes (MDP) with rare state observation” and apply it
to optimal treatment scheduling and diagnostic testing to mitigate HIV-1 drug resistance development in resource-
poor countries. The developed theory assumes that the state of the process is hidden and can only be determined by
making an examination. Each examination produces costs which enter into the considered cost functional so that
the resulting optimization problem includes finding optimal examination times. This is a realistic ansatz: In many
real world applications, like HIV-1 treatment scheduling, the information about the disease evolution involves
substantial costs, such that examination and control are intimately connected.

However, a perfect compliance with the optimal strategy can rarely be achieved. This may be particularly true for
HIV-1 resistance testing in resource-constrained countries. In the present work, we therefore analyze the sensitivity
of the costs with respect to deviations from the optimal examination times both analytically and for the considered
application. We discover continuity in the cost-functional with respect to the examination times. For the HIV-
application, moreover, sensitivity towards small deviations from the optimal examination rule depends on the
disease state. Furthermore, we compare the optimal rare-control strategy to (i) constant control strategies (one
action for the remaining time) and to (ii) the permanent control of the original, fully observed MDP. This comparison
is done in terms of expected costs and in terms of life-prolongation. The proposed rare-control strategy offers a
clear benefit over a constant control, stressing the usefulness of medical testing and informed decision making.

This indicates that lower-priced medical tests could improve HIV treatment in resource-constrained settings and
warrants further investigation.
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1. INTRODUCTION

The theory of Markov decision processes (MDP) is a well established tool to analyze situations in which
the dynamics of a stochastic process may be influenced by a decision maker. A basic component of a
Markov control model is the observability of the process: in standard Markov control theory the process is
assumed to be observable at all times, while in the theory of partially observable Markov decision processes
the information about the process is incomplete. In both cases, the degree of information is predefined and
cannot be influenced by the decision maker. However, in many real world applications (like medical therapies,
asset management...) it is possible to decide whether to deduce information or not – and this information is
in general not gratis. Instead, the problem is to find the right balance between optimal interaction and
reduction of information costs.
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In this article, we present a model for Markov decision processes with information costs. The process
is assumed to be continuous in time, while the state space is discrete. We define a suitable cost criterion
including the costs of the process and the costs for information and denote the corresponding Bellman
equation with reference to [1]. In this model, a control strategy has to declare for each state x not only an
action a, but also a lag time � until the next state observation.

Given the optimal strategy, we analyze how small deviations from this strategy affect the cost criterion.
The research question is motivated by the fact that a perfect compliance with the optimal strategy may not
be accomplished in many real world applications. A meaningful example is the treatment of HIV-1 in
Africa, which will serve as an application of the presented control model. Due to limited infrastructure it
may not be possible to follow a recommended diagnostic surveillance scheme accurately. In this case,
knowledge of potential invariability with respect to patient health damage is required.

Many researchers have studied optimal treatment strategies against HIV, e.g., [2-4]. However, the question
of sensitivity with respect to deviations from the optimal examination rule has not been addressed, and
rare-state examination/medical testing has not been a part of the previous control approaches. We believe,
however, that it is an important pre-requisite for the implementation of such strategies.

After exposing the fundamental components of the HIV-model presented in [1], we specify the optimal
therapeutic strategy and analyze the sensitivity of the optimal costs with respect to changes in the examination
lag times �. Furthermore, we assess the benefit of information/interaction by comparing the optimal treatment
– and examination strategy of our framework with two opposed modifications of the problem: (i) the case
of constant control which consists of maintaining one action for the remaining time without any further
state examination, and (ii) the case of permanent control, which assumes full observability and continuous
interaction as in original MDP.

In order to analyze the differences between these approaches, we decompose the costs into components
of state-, action- and information costs. As a second criterion for the quality of a therapeutic strategy we
consider the probability of death after fixed time intervals for the different approaches.

2. THEORY OF MARKOV CONTROL WITH RARE STATE OBSERVATION

In the following, we describe the Markov control model derived in [1] and complement the theory by a
sensitivity analysis with respect to deviations from the optimal strategy.

2.1 The Control Model

We consider a continuous time Markov control process (X
t
)

t � 0
 on a discrete state space �. There is a finite

set � of actions that are available in order to influence the process. Given action a � �, the dynamics of the
process are defined by the generator L

a
 where L

a 
(x, y) � 0 is the transition rate for a transition from x � �

to y � �, y � x, while L
a 
(x, x) satisfies L

a 
(x, x) = –

y x�
� L

a 
(x, y). The cost function c : � � � � [0, �) denotes

the costs produced by the process per unit of time depending on the actual state and the chosen action. In
the application, the states describe the health status of a patient, while the actions refer to different medical
treatments. The cost function measures the costs of the treatments as well as the health damage to the
patient.

In opposition to original Markov control theory, we assume that the process cannot be continuously
observed and influenced. Instead, each examination of the process produces costs k

info
 > 0 which enter the

cost functional, such that a fundamental part of the optimization problem is to determine optimal examination
times. Controlling the process then proceeds according to the following structure: Starting with some known
state X

0
 � � at some examination time t

0
 � 0 one chooses an action a � � as well as an examination lag time
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�
 
(X

0
) > 0 defining the next examination time t

1
 = t

0
 + �

 
(X

0
) > t

0
. During the time interval (t

0
, t

1
] the (random)

behavior of the process (X
t
) is fully described by the infinitesimal generator L

a
 and produces costs according

to the cost function c
 
(�, a). We do not observe this behavior but only determine the state Xt1

 of the process
at time t

1
. For this information expenses k

info
 accrue. Knowing the new state Xt1

 at time t
1
, we choose again

an action and a lag time and the procedure restarts. During a time interval [t
j 
, t

j + 1
) the action is fixed, i.e.,

it can only be changed after examination.

In this context, a strategy is a function

u : � � � � (0, �], x � u
 
(x) = (a

 
(x), �

 
(x)), (2.1)

giving for each state x � � both an action a � � and an examination lag time � > 0. The lag time � is
allowed to be infinite which is appropriate in situations where state examinations/interaction cannot change
anything (e.g., because the actual state is absorbing) and which in the same time will guaranty the existence
of an optimal strategy.

The set of all strategies is denoted by � .

2.2. Cost Criterion and Bellman Equation

As an optimality criterion we choose expected discounted costs over an infinite horizon. Given a
strategy u � � , an initial state x � � and a discount factor � > 0, these are defined by

0

( )

info( , ) ( ( , ( ), ( )) )tj j

j j j

j

Xtu
x t t t

j
t

J x u e C X a X X e k
�����

�
� �

� �� � �
� �� �
� �

� , (2.2)

where �u
x
 stands for the expectation value with respect to the measure determined by x and u, while

� �0
:( , , ) ( , )a s

x sC x a e c X a ds
� ��� � � (2.3)

are the expected discounted costs for the time interval (0, �] when starting in state x � � and choosing
action a � �. Moreover, it holds t

j + 1
 = t

j
 + �

 
(Xtj 

).

The corresponding value function

( ) : min ( , )
u

V x J x u
�

� (2.4)

is characterized by the Bellman equation

info ,, (0, ]
( ) min ( ( , , ) ( ( )))a

a
V x C x a e k T V x���

�� �� �
� � � � (2.5)

where T
a, � : �

| � | � �| � |, T
a, � v := eLa � � v is the transition matrix on � for some fixed lag time � > 0 and

action a, see [1].1

2.3 Sensitivity Analysis w.r.t. Deviation from Optimal Examination Rule

In the following we will be interested in computing the cost functional J
 
(x, u) for strategies that slightly

differ from the optimal strategy u*. In order to give a compact formula for J we introduce a few notations:

Given a strategy u
 
(x) = (a

 
(x), �

 
(x)), define a discount vector e� � �� by e� (x) := e– ���(x) (with e– �� := 0)

and a diagonal discount matrix D� � ��, � by D� (x, x) := e� (x) and D� (x, y) := 0 for x � y. Let P � ��, � with
P

 
(x, y) := (eLa (x) � � (x))

 
(x, y) be the transition rule under u for the observed process Xt0

, Xt1
, ..., and define

C
u
 � �� by C

u
(x) := C

 
(x, a

 
(x), �

 
(x)).

1 For � = � the right handside of 2.5 is given by C
 
(x, a, �) := � a

x 
(�0

�
 e– � s c

 
(X

s
, a)

 
ds).
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Lemma 2.1: The cost functional J = J
 
(�, u) (as a vector in ��) for a strategy u � � is given by

J = (Id – D� P)– 1(C
u
 + k

info 
e�). (2.6)

Proof: In analogy to the Bellmann equation (see Eq. (2.5)), J fulfills the recursion

J
 
(x) = C

 
(x, a

 
(x), �

 
(x)) + e– ���(x) (k

info
 + T

a (x), � (x) 
J

 
(x))

which can be written in the form

J = C
u
 + k

info 
e� + D� PJ.

This is equivalent to

(Id – D� P)
 
J = C

u
 + k

info 
e�.

It remains to take the inverse of Id – D� P, which exists by the following argumentation. If the matrix
Id – D� P was not invertible, the equation

(Id – D� P)
 
v = 0 (2.7)

would have a solution v � �| � | � 0. As D� is a diagonal matrix with diagonal entries 0 < e– ��(x) < 1, its
inverse D�

– 1 exists and is again diagonal with D�
– 1(x, x) = e��(x) > 1. We rewrite (2.7) as Pv = D�

– 1 v and take
the maximum norm on both sides. As P is a transition matrix, the entries of Pv are convex combinations of
the entries of v, such that it holds ||

 
Pv

 
||� � ||

 
v

 
||�. On the other hand, it holds ||

 
D�

– 1 v
 
||� > ||

 
v

 
||�, as each entry

of v is multiplied by a constant > 1. Together we get

||
 
v

 
||� � ||

 
Pv

 
||� = ||

 
D�

– 1 v
 
||� > ||

 
v

 
||�,

a contradiction to v � 0.

Theorem 2.2: (Continuity of J with respect to �). The cost functional J as a function of the strategy
u(x) = (a(x), �(x)) is continuous with respect to the parameter �(x) for all x � �.

Remark 2.3: The continuity of J with respect to some �
 
(x), x � � fixed, refers to all components

J
 
(y, u), y � �, of J. In other words, “small” modifications in �

 
(x) lead to “small” modifications in J

 
(y, u) for

all states y � �, and not only for y = x.

Proof: The continuity of J with respect to � follows from the continuity of the expressions e– ��, eL� and
C

 
(x, a, �) which are the �-dependent components in

J = (Id – D� P)– 1(C
u
 + k

info 
e�),

compare equation (2.6).

3. APPLICATION

Given the theoretical ansatz of section 2, we will now formulate a model for HIV-dynamics and analyze the
valuefunction with respect to deviations from the optimal strategy.

3.1 HIV Model

Action Space. In line with [1] we choose the set of treatments � = {a
Ø
, a

1
, a

2
}, where a

Ø
 denotes the

absence of medical intervention, while a
1
 and a

2
 denote the application of two distinct treatment lines. This

choice is motivated by the fact that in the sequel we will focus on HIV treatment in resource-constrained
settings in which only two treatment lines are available (a

1
 & a

2
).

State Space. In brief, the HIV-model contains four lumped states for each virus type: The respective
virus type can either be absent, or present in low-, medium- or high copy numbers, denoted by 0, �, m and
h respectively. The �-states are reflecting states, which are justified by the inability to eradicate HIV [5, 6]
and the h-states are reflecting states, because there is a maximum carrying capacity of the system.
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According to their treatment susceptibility, our model further distinguishes 4 viral strains M (“mutants”):
a strain WT (wild type) that is susceptible to all treatment lines, a strain R1 which is susceptible to treatment
2 (a

2
), but unaffected by (resistant to) treatment 1 (a

1
), a strain R2 that is susceptible to a

1
, but unaffected by

a
2
 and a highly resistant strain HR which is resistant to all treatments (a

1
 & a

2
).

We consider all permutations of viral strains M � {WT, R1, R2, HR} and respective copy numbers
n

C 
(M) � {0, �, m, h} and patient death �, resulting in state space dimension |

 
�

 
| = 44 + 1 = 257, with

� ={0, �, m, h}4 � �.

In order to describe a state x � � we will use the compact vector notation

x = [n
C 

(WT), n
C 

(R1), n
C 

(R2), n
C 

(HR)].

For example, the state x = [0, h, 0, �] describes the absence of wild type strains, a high number of
R1-mutants, the absence of R2-mutants and a �ow number of highly resistant mutants. The proposed Markov
model of HIV-dynamics [1] is particularly suited to describe the long term dynamics of drug resistance
development after treatment application.

Generator Entries. The distinct treatments a � � are related to distinct generators L
a
 of our HIV-

model. The basic transitions between copy number states n
C 

(M) are shown in Fig. 1 and exemplified for
the wild type strain WT below.

, ,

[ , , , ] [ , , , ], [ , , , ] [ , , , ]* * * * * * * * * * * *
a m a

m h

k k
m m h

� �
��� ������ ����
�

� (3.8)

[ , , , ] , [ , , , ] , [ , , , ]* * * * * * * * *h md d dh m��� ��� ����� , (3.9)

where * indicates an arbitrary number of the respective virus strain (R1, R2 and HR in the example above).
The parameters k

�, a
 and k

m, a
 denote the reaction propensities of going from copy number � to copy number

m and from copy number m to copy number h respectively (viral growth), which are decreased depending
on the treatment a � {a

Ø
, a

1
, a

2
}. The parameters �

m
 and �

h
 are independent of the treatment and denote the

reaction propensities for going from copy number m to copy number � and from copy number h to copy
number m respectively (virus elimination). The parameters d

h
 > d

m
 > d

�
 denote the propensity for the death

of the patient. These parameters are unaffected by the treatments, as well [1]. We assume that high viral
burden (states h and m respectively) increases the risk of death, whereas d

�
 equals the propensity for “natural

Figure 1: Simplified HIV Model. A: Transitions in between viral strains M in terms of mutations in the virus’ genome. The horizontal
line with the small boxes shall schematically represent the viral genome and the codons (boxes) that are relevant for drug
resistance development. A blank box shall indicate the absence of any mutations, whereas the blue- and red coloring
indicates a pattern of mutations that confers resistance to treatment line one (blue coloring, virus type R1) and -two (red
coloring, virus type R2). B: Transitions between copy number states n

C
.
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death”. The propensity for death was computed according to d = 1/(residual life expectancy), and is
exemplified in [1].

The considered transitions (mutations) between viral strains M are depicted in Fig 1. Specifically,
mutation generates a �ow number of viral particles from either a medium or high number of viruses belonging
to a distinct strain. Exemplified for the wild type strain WT those are:

, R1, , R1,[ , 0, , ] [ , , , ], [ , 0, , ] [ , , , ]* * * * * * * *h a m ah h m m
� ����� ����� � (3.10)

, R 2 , , R 2,[ , , 0, ] [ , , , ], [ , , 0, ] [ , , , ]* * * * * * * *h a m ah h m m
� ����� ����� � (3.11)

, R1, , R1,[0, , , ] [ , , , ], [0, , , ] [ , , , ]* * * * * * * *h a m ah h m m
� ����� ����� � (3.12)

, R 2 , , R 2,[0, , , ] [ , , , ], [0, , , ] [ , , , ]* * * * * * * *h a m ah h m m
� ����� ����� � (3.13)

where the first two lines indicate mutation arising from the wild type strain and the remaining two lines
indicate mutations yielding the wild type strain. The parameters �

h, R1, a
 and �

h, R2, a
 denote the propensity for

the emergence and disappearance of a mutation that confers drug resistance to treatment 1 or 2 (a
1
, a

2
),

respectively, emanating from copy number state h. Analogously �
m, R1, a

 and �
m, R2, a

 denote the propensity
for the emergence- and disappearance of a mutation emanating from copy number states m. Note, that we
consider only the following mutations: WT � R1, WT � R2, R1 � HR and R2 � HR, which is motivated
by the fact, that a direct transition from WT � HR is very unlikely, because the genetic distance between
the two viral strains is too large to be overcome at once.

The effect of treatment a is considered in the following way:

k
�, a

 = (1 – �
 
(a, M))

 
k
�, Ø

, k
m, a

 = (1 – �
 
(a, M))

 
k

m, Ø
(3.14)

�
h, M

~
, a

 = (1 – �
 
(a, M))

 
�

h, M
~

, Ø
, �

m, M, a
 = (1 – �

 
(a, M))

 
�

m, M
~

, Ø
(3.15)

The parameter �
 
(a, M) is a constant that denotes the efficacy of treatment a � {a

1
, a

2
} on viral strain M

� {WT, R1, R2, HR}; i.e., if strain M is susceptible to treatment, then 0 < � � 1 and if the viral strain M is
insusceptible to treatment then � = 0. The parameters k

�, Ø
 and k

m, Ø
 rsp. �

h, M
~

, Ø
 and �

m, M
~

, Ø
 denote the growth

rates rsp. mutation rates in the absence of intervention, i.e. for a* (see Table A1).

The model building process as well as the process of parameter estimation for the model are described
in [1] in more detail. Final model parameters are shown in the Table A1 (appendix).

Costs. We assume the cost function c to be of the form

c
 
(x, a) = c

� 
(x) + c

� 
(a),

where c
�
 measures the costs related to the health damage of the individual while c

�
 describes the treatment

costs. The aim is thus to find a cost-effective strategy that ensures good health of a patient. We parameterized
our model in terms of values that are representative for South Africa. The costs c

��
(x) of being in the

respective states x � � were computed based on the average productivity loss times the average daily
monetary contribution of one individual (assessed in terms of daily per capita GDP), where death is interpreted
in terms of a complete loss in productivity, see [1]. The examination costs k

info
 accrue each time a medical

test is made. The direct costs for treatment and examination are displayed in appendix Table A1 together
with the indirect costs for health damage.

Given this structure of the cost function, also the value function V (optimal total discounted costs) can
be split up into parts of state costs V

�
 (health damage of a patient), action costs V

�
 (costs for medical

treatment) and information costs V
info

 (costs for medical tests), see [1].
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3.2 Optimal Strategy in a Resource-Poor Setting

We applied the theory described in Section 2 to the model presented in Section 3.1 using the cost-parameters
in Table A1 (appendix), which are representative for South Africa. We computed the cost-optimal treatment-
and diagnostic strategy using a modified version of the standard policy-iteration algorithm [7]. In our
application, we set �

min
 = 1 days and �

max
 = 5000 days in order to numerically solve the optimization

problem. The computed optimal strategy is shown in Table 1. In brief, there are two states, in which
diagnostic testing is indicated: state [{m}, 0, 0, 0] and [{h}, 0, 0, 0]. A switch to treatment line a

2
 is

indicated, if viral strain R1 is present, i.e. after resistance development to treatment line a
1
. I.e., our

computation indicates that it would be cost-optimal to implement a sparse diagnostic surveillance depending
on the health status of the patient. Currently, this is not standard-of-care in South Africa.

Table 1
Optimal Strategy

state

[{m}, 0, 0, 0] [{h}, 0, 0, 0], [*, {�, m, h}, 0, 0] otherwise

action a
1

a
1

a
2

a
1

� 11 45 � �
max

� �
max

Calculated optimal strategy for the resource-poor settings (South Africa) giving the treatment, the examination lag time �
(in days) and the valuefunction (in US$) depending on the state of the patient. For clarity reasons, states are merged according
to their related treatment choice.

However, an exact implementation of the proposed diagnostic surveillance may not be possible, because
patients may not be able to perfectly comply with the indicated scheme (shown in Table 1). Implementation
of a diagnostic surveillance scheme may be further complicated in resource-constrained settings due to
infra-structural deficiencies. We will in the next section assess the sensitivity of the valuefunction with
respect to deviations from the optimal examination rule and in the section thereafter, we will compare the
“optimal strategy with rare state observations” with the two opposed cases in which the action is either
constant over all times (which corresponds to infinite lag times) or continuously adapted to the process as
in original Markov control theory without examination costs (which stands for infinitesimally small lag
times).

3.3 Sensitivity Analysis w.r.t. Deviation from Optimal Examination Rule

We have shown in Theorem 2.2 that the cost functional J is continuous with respect to the lag time parameters
�

 
(x) for all x � �. In our application, we have only two states ([m, 0, 0, 0] and [h, 0, 0, 0]) for which

diagnostic testing is indicated. We therefore computed the impact of �-variations around the optimum in
Fig. 2A & B for the indicated states by using Eq. (2.6). For state [h, 0, 0, 0], the total costs sharply rise if �
is decreased or -increased (solid blue line in Fig. 2A) in relation to its optimum value �* (solid dot). The
increase of J

 
(x) upon increasing values of � are paralleled by an increase in J

� 
(x) (the “pure” state costs;

dashed red line). When decreasing �, the opposite is true, namely J
� 

(x) decreases, but the overall costs J
 
(x)

increase. Note that the slope of J
� 
(x) (dashed red line) corresponds to the cost-increase attributed to patient

health damage.

Although we observe a very sensitive response towards changes in � for state [h, 0, 0, 0], for the other
state, [m, 0, 0, 0], we get much less sensitivity towards deviations from �* (see Fig. 2B, solid blue line and
solid black dot). In particular, upon increases in �, total- (solid blue line) and state costs (dashed red line)
are only marginally increased.
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A summary in terms of a two-dimensional contour plot, which takes variation in both �
 
([h, 0, 0, 0]) and

� ([m, 0, 0, 0]) simultaneously into account, is shown in Fig. 3 and confirms the observations made from
Fig. 2A&B, indicating that if patients have a high viral load (state [h, 0, 0, 0]), they should strictly comply
with the optimal strategy. If we focus on the potential health damage to the patient (dashed red lines in
Fig. 2), we can conclude that there is little margin if diagnostic testing is behind schedule for patients that
are in state [h, 0, 0, 0] (high virus load). For state [m, 0, 0, 0] belated diagnosis will have little consequences
for the health of the patient. In a setting with constrained resources this means that patients with high virus
loads should be prioritized for subsequent diagnosis over patients with less virus.

Figure 2: Sensitivity with respect to . Cost functional J
 
(x, u) and J

� 
(x, u) for x = [h, 0, 0, 0] (left graphic) and x = [m, 0, 0, 0] (right

graphic) with u varying in 
 
([h, 0, 0, 0]) or 

 
([m, 0, 0, 0]) (while being optimal in all other parameters).

Figure 3: Sensitivity with respect to . Cost functional J
 
(x, u) for x = [h, 0, 0, 0] and u varying in 

 
([h, 0, 0, 0]) (x-axis) and

 
([m, 0, 0, 0]) (y-axis), while being optimal in all other parameters.
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4. COMPARISON WITH CONSTANT CONTROL AND ORIGINAL MARKOV CONTROL THEORY

In this section we will compare the optimal strategy given in section 3.2 to two extreme cases: Namely,
(i) the process under constant control, i.e., the action is fixed for all times, and (ii) the case where we can
permanently observe the process and adapt the action, i.e. as in the original Markov control theory. The
resulting costs and the probability of death (which treatment is intended to prevent) will be computed.

(i) The process under constant control refers to the condition in which an action is initially chosen and
maintained for the remaining time. It can be associated to infinitesimal large information costs
(k

info
 = �) which make testing unaffordable (�

 
(x) = � for all x � �). In the presented model this

situation refers to the choice of either a
Ø
, a

1
, or a

2
 for all times. The corresponding costs are given

by

� �0
( ) : ( , )a s

a x sJ x e c X a ds
� ��� � , (4.16)

with a � {a
Ø
, a

1
, a

2
}. Especially, the choice of a = a

Ø
 stands for “natural” disease process without

medical intervention.

(ii) We assume that the process is all the time freely observable (k
info

 = 0) and that actions can immediately
be adapted. In our model, this immediately results in vanishing lag times, i.e., �

 
(x) = 0 for all x � �,

such that the discrete structure of the cost functional (Eq. (2.2)) gets lost and the given Bellman
equation (2.5) is not anymore suited to characterize the optimal strategy. Instead, this situation
corresponds to an original (continuous time) Markov control process. Here, a deterministic stationary
strategy is given by a function f : � � �, declaring for each state which action to chose. The
corresponding costs are given by

� �0
ˆ ( , ) : ( , ( ))f s

x s sJ x f e c X f X ds
� ��� � (4.17)

fulfilling

( )
ˆ ˆ( , ) ( , ( )) ( , )f xJ x f c x f x L J x f� � � , (4.18)

see [8]. The optimal strategy f * and the value function V̂
 
(x) = Ĵ

 
(x, f *) = min

f
 Ĵ

 
(x, f ) are characterized

by the Bellman equation

ˆ ˆ( ) min ( ( , ) ( ))a
a

V x c x a L V x
�

� � � , (4.19)

with f *(x) = argmin
a � � 

(c
 
(x, a) + L

a
 V̂

 
(x)), see [8].

The cost functional Ĵ  correlates with the cost functional J defined in 2.2 in the following way: Given a
strategy f : � � � of the original Markov control process, consider the strategy u � � with u

 
(x) = (

 
f

 
(x), �

0
)

for �
0
 > 0 independent of x. Setting k

info
 = 0 in 2.6 and taking the limit �

0
 � 0 gives

0

0

0

0

1

10

0

1

0 0

0 1

( )

( )

1 1
( )

( )

ˆ

u

u

u

f f

J Id D P C

Id D P C

Id D P C

Id L c

j

�
�

�
�

�

�

� � �

� �

�
� �
�

� �
� �� �� �� �
���� � �
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with L
f 
(x, y) = L

f (x) 
(x, y) and c

f 
(x) = c

 
(x, f

 
(x)), where the limit is determined by considering the series

expansion of the matrix exponential P
 
(x, y) = eLf (x) �0 (x, y) and the last equality follows by (4.18).

Table 2

k
info

 = � constant control

a
Ø

a
1

a
2

k
info

 = 500 MDP wt. rare obs. k
info

 = 0 original MDP

total costs (V
�
 + V

�
 + V

info
) 107 350 76 790 70 030 69 149 61 420

netto costs (V
�
 + V

�
) 107 350 76 790 70 030 66 855 61 420

state costs (V
�
) 107 350 76 024 66 940 65 116 59 589

�
 
(X

3y
 =��

 
|
 
X

0
 = [h, 0, 0, 0]) 0.44 0.22 0.15 0.15 0.13

�
 
(X

5y
 = �

 
|
 
X

0
 = [h, 0, 0, 0]) 0.63 0.34 0.24 0.23 0.21

�
 
(X

15y
 = �

 
|
 
X

0
 = [h, 0, 0, 0]) 0.95 0.69 0.62 0.60 0.54

The netto costs are given by J
a 
([h, 0, 0, 0]) in the case of constant control, by V

� 
([h, 0, 0, 0]) + V

� 
([h, 0, 0, 0]) in the case of

MDP with rare state observation and by V̂ ([h, 0, 0, 0]) in the case of original MDP.

The probability of death �
 
(X

t
 = �

 
|
 
X

0
 = [h, 0, 0, 0]) after 3, 5 or 15 years when starting in state [h, 0, 0, 0] was computed by

analytically solving the Kolmogorov equations in the case of constant control and in the original MDP setting, where we used
the generator under optimal control L*(x, y) = L

a* (x) 
(x, y). In the MDP with rare state observation setting, we approximated

�
 
(X

t
 = �

 
|
 
X

0
 = [h, 0, 0, 0]) using a well-established Monte-Carlo-Method [9].

Obviously, it holds

J
a 
(x) � V

 
(x) � V̂

 
(x) �

 
a � �, (4.20)

where V is the valuefunction defined in (2.4): The first inequality follows from the fact that the strategy of
constant control is contained in the set of strategies � over which we minimize in section 2.2, while the
second inequality is due to the fact that a continuous adaption of the optimal action choice combined with
cost free state information (k

info
 = 0) can only lead to an improvement of the total costs. The same is true if

we consider – instead of the total optimal costs V – the netto costs V
netto

 = V
�
 + V

�
 which are the total costs

without information costs. As both J
a
 and V̂ do not contain any information costs (in setting (i) there are no

tests at all and in setting (ii) information is for free), considering the netto costs V
netto

 instead of V is better
suited to make a comparison.

Table 2 shows the (netto) costs and the probability of death for setting (i) and (ii) as well as for k
info

 = 500
(compare appendix Table A1).

We can make the following observations. In accord with (4.20), the costs of the optimal MDP scheme
with rare state observation go below those of any constant control, while they exceed the costs of the
original MDP scheme with permanent optimal control. There is a huge difference between the costs resulting
from an absence of medical treatment (a

Ø
 at all times) and those arising under constant control with a

1
 or a

2
.

While the values of the netto costs all significantly differ from each other, the value of the total optimal
costs V

 
([h, 0, 0, 0]) = 69149 arising from optimal control with rare state observation is very close to the

costs under constant control with a
2
. This means that in terms of the total costs, the optimal strategy with

rare state observation is only slightly better than a “blind“/constant control which could challenge the
utility of medical testing. In fact, it is the reduction of action- and state costs which justifies the medical tests.

In terms of survival benefit, the optimal MDP scheme with rare state observation is better than the
absence of medical intervention (a

Ø
 at all times) and better than a constant treatment with only therapy line

a
1
, however, it is only slightly better than a constant treatment with a

2
 for the time horizon analyzed (3, 5

and 15 years), which is however much more expensive in terms of treatment costs (netto costs – state
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costs). Also, for larger time horizons, the differences between constant treatment with only a
2
 and the

optimal MDP scheme with rare state observation are expected to further increase.

Again, the biggest difference in the probability of death can be found when comparing the absence of
medical intervention with all other considered strategies. This emphasizes that the fundamental step is to
start a medical treatment, while the details of the treatment strategy are secondary.

Best in terms of survival and costs is, as expected, the permanent control of the original Markov Control
problem. However, for many applications (as the one considered here) the assumption of continuous and
cost-free observation and interaction is unrealistic. It is a matter of fact that information itself has a worth,
and it makes sense to take account of this worth. This is exactly what is done by our model, where the value
of the information costs on the optimization problem is determined by the value of k

info
.

5. CONCLUSION

We presented a model for continuous time Markov decision processes that can be observed and influenced
at variable discrete time points. Each observation produces costs which enter the cost functional such that
the optimization problem consists of finding for each state an action and a lag time determining the date for
the next examination. Given an adequate cost criterion we discovered a continuity with respect to the lag
times of all states which means that “small” deviations from the optimal strategy do not lead to a huge
increase (jump) in the costs.

We exemplified this continuity for HIV-therapies in Africa where a high prevalence of HIV-infections
coheres with a restricted infrastructure, which complicates an exact adherence to testing dates. We found
that sensitivity of the expected costs towards “small” deviations from the optimal lag times �* depend on
the considered state: For the more critical state [h, 0, 0, 0] (indicating a high copy number of wild type
virus) the costs sharply increase. However, for the less critical state [m, 0, 0, 0] (indicating a medium copy
number of wild type virus) the response towards changes in the lag time is not that problematic. This means
that a patient with high virus load should strictly comply with the next examination date, while a patient
with medium virus load is more flexible.

In order to overview the range of possible costs we gave an upper bound by considering constant
strategies (no further adjustment of the action) and a lower bound by calculating the costs for the original
Markov control problem (continuous interaction). We distinguished state-, action- and information costs
and found out that as for the netto costs (state costs + action costs) the optimal strategy of the new model is
clearly better than any constant strategy and worse than the optimal continuous strategy (original MDP).
The differences in the probability of death are not that significant. It is mainly the absence of medical
intervention that dramatically decreases the chances of survival.

Although the permanent control without information costs naturally delivers the best results, a more
realistic ansatz is to take into account the costs of state testing - which is done by the proposed model.

As demonstrated in [1], the optimal strategy and the valuefunction strongly depend on the cost parameter
k

info
. An interesting future problem is to find out about monotony and continuity of the time parameters and

the valuefunction with respect to this parameter – both within the framework of the new model (at k
info

 > 0)
and with respect to the original Markov model (at k

info
 = 0).
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APPENDIX

Table A1
General Model Parameters

param. [unit] value param. [unit] value param. [unit] value

�
h

[1/d] 6.13 � 10– 2 �h, R1, Ø
[1/d] 1.24 �

 
(a

1
, {WT, R2}) 0.979

�
m

[1/d] 5.1 � 10– 2 �m, R1, Ø
[1/d] 4.34 � 10– 2 �

 
(a

1
, {R1, HR}) 0

k
�, Ø

[1/d] 0.13 �h, R2, Ø
[1/d] 2.41 � 10– 4 �

 
(a

2
, {WT, R1}) 0.966

k
m, Ø

[1/d] 0.13 �m, R2, Ø
[1/d] 2.33 � 10– 2 �

 
(a

2
, {R2, HR}) 0

d
�

[1/d] 9.4 � 10– 5 c
� 

(a
Ø
) [US$/d] 0 c

� 
(�) [US$/d] 0

d
m

[1/d] 2.7 � 10– 4 c
� 

(a
1
) [US$/d] 0.3 c

� 
(�) [US$/d] 2.2

d
h

[1/d] 5.5 � 10– 4 c
� 

(a
2
) [US$/d] 1.08 c

� 
(�) [US$/d] 8.8

k
info

[US$] 500 �‡ [1/d] 1.75 � 10– 4 c
� 

(�) [US$/d] 22.1

� denotes the set of states for which condition n
C 

(M) � � for all possible virus mutants M holds, i.e., � �, � �, � �, � �. Set � is
defined as all states where at least one n

C 
(M) > m and set � denotes the remaining states (except death). ‡ Assuming an annual

inflation of 6.2% for South Africa.
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