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DECOMPOSITION OF 6-CONTINUOUS
FUNCTIONSIN TOPOLOGICAL SPACES
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Abstract

Inthe present paper, we introduce and study the Bwa -continuous and fwa

-irresolute functions. The class of fwa -continuous functions properly
placed between the classes of @ -continuousand &9 -continuous functionsin
topological spaces. Moreover, we have introduced and obtained the

characterizations of theBwa -closed, Bwa -open functions and Bwc -
homeomorhisms. Also we observed the relation of these functions with the
existing functions between topological spaces.
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The concept of continuity is very important in genera topology. Fomin [7]
introduced the notions of & -continuous functionsin 1943. These functions acts as
natural tools for studying the almost compact spaces of Alexandroff and Urysohn.
Later, these functions were investigated by Iliadis [8], Iliadis and Fomin [9] and
Arockiarani et.al. [1].

The main aim of this paper is to introduce and study the properties of new
spacessuchas T, -spaces

T -spaces, ,, T,,, -Spacesand T, -spaces, the

! Ooa

sk

Department of Mathemati cs, Karnatak University, Dharwad-580 003, Karnataka, India. Email:
pgpatil01@gmail.com

Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India. Email:
benchalliss@gmail.com

Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India. Email:
tulasabr @gmail.com



128 P.G. Patil, SS Benchalli and Tulasa Rayanagoudra

generalisation of @-continuous functions called Bwe -continuous functions in
topological spaces. Further, the concepts of fwa -irresolute, Bwear -closed, Gwar

-open functions and Hwea -homeomorphisms are studied and also obtained some
of their characterizations.

2. PRELIMINARY

Throughout this paper the spaces (X, 7), (Y, ) and (Z, y) (or smply X, Y and
Z) aways represents the topological space on which no separation axioms are
assumed unless otherwise mentioned. A set A< X is said to be fwo -closed [12]

if Cl,(A) cU whenever AcU and U is wa -openin X.

Definition 2.1: A function f: X—Y is called a (i) &9 -continuous [6]
(respectively @ -continuous [1], g -continuous [2], « -continuous [11], o« -
continuous [4]) if f (V) is @9 -closed (respectively @-closed, g-closed, « -
closed, wa -closed) in X for every closedset Vin'Y.

Remark 2.2: 1. [3] Every open set is wa -open.

2. [6] Every @-closed set is closed.

3. Owa -SPACESIN TOPOLOGICAL SPACES
Definition 3.1: A topological space X issadtobea T,

Ooa

-space (respectively
o | -SPaCE) if every Bwear -closed set is closed (respectively we -closed)in X.

Example3.2: Let X ={a, b, ¢} with z={ ¢, {a}, {a, b}, X} . Then the space

X, r)isT,,, -spaceand , T -space.

Ooa

Definition 3.3: If every €9 -closed set (respectively g-closed) is fwa -closed
(respectively wa -closed) in atopological space X, then X iscalled , T,

wa -$ace
(respectively (T, -space).

Example3.4: Let X ={a, b, c} and 7 ={ ¢, { a b}, X} . Thenthe space (X, )
iS 4 To, ~SP2CEEN T,

(0104 (0104

-space.
Remark 3.5: From Definitions 3.1 and 3.3, we observed that
T, -space = T,

Oova

1 -space = , T -space.

2

Reverseimplications are need not be true which can be seen in the following
examples.
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Example 3.6: A topological space X ={a, b, ¢} with z={ ¢, {a}, X} isT,,

space but not T, -space.
2

Example3.7: Let X ={a, b, ¢} with z={ ¢, {a, b}, X} is
T

Oova

o

T -space but not

Ooa

-space.

Example 3.8: A topological space X ={ a, b, ¢} with z={¢,{a}, {a, b}, {a, ¢},

X} is 4Ty, -SPaCE DUt Ot T, -SpaCce.

Ooa

Remark 3.9: T, -spaces are independent from T, , -Spaces and ,T,,,-

Spaces. We can seein the following examples.
Example 3.10: A topological space X ={ a, b, ¢} with z={ ¢, {a}, X} is T

Ooa

-space but not T, -spaceand ., T,

(0104

-space.

Example 3.11: A topological space X ={a, b, ¢} with z={ ¢, {a, b}, X} is
T
gla

(0104

-spaceand ,, T,

(0104

-spaces but not T,

Oova

-space.
Remark 3.12 , T -spaces are independent from T, -Spaces and ,T,,, -
Spaces. We can seein the following examples.

Example 3.13: A topological space X ={ a, b, ¢} with z={ ¢, {a}, { a, b}, X}

is T,,, -spacebut not T, -spaceand ,,T,,, -space.

Oova Ooa Ooa

Example 3.14: A topological space X ={ a, b, ¢} with z={ ¢, {a} {b, c}, X}

is 4 Ty, -Spaceand ,, T, -spacesbut not , T -space.

(0104

Theorem 3.15: Let (X, 7)) be atopological space then the following properties
are equivalent:

(i) XisaTy,,-space

(i) Every singleton set of X is either open or @« -closed [3].

Proof : (i)=> (i) : Lety € X. Suppose{y} isnot a wa -closed then X-{y} isnot
an wa -open in X. But X isonly an we -open set containing X-{y} . Therefore
Cl, X-{y})=X. Thus X -{y} is Owa -closed. By hypothesis X is T, -space
then X-{ y} isclosedit impliesthat { y} isopeninX.

(i) = (i) : Let A bea G -closed set in X and xe Cl, (A) then we have
following two cases:
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Case(a) : Let { x} beanopensetinX. Sincexe Cl, (A) then {x} NA# ¢
whichimpliesthat x € A.
Case (b) : Let { x} be wa-closed. Suppose x¢ A then we have xe Cl, (A)-

A whichis not possibleaccording to Theorem 3.20 [12]. Thereforex e A. Therefore
in both cases we have Cl, (A) c A. But Ac Cl, (A) is aways true. Therefore A

= Cl, (A) whichimpliesthat A is closed. Hence X is T, -space.

4. Bowoa -CONTINUOUSFUNCTIONSIN TOPOLOGICAL SPACES
Definition 4.1: A function f : X =Y iscalled wa -continuous function if for
each closed set V of Y, f (V) is Owa -closed in X.

Theorem 4.2: Every @-continuous function is Hwca -continuous but not
conversely.

Proof : Let f: X =Y bea @-continuous function and A be a closed set in Y

then f(A) is @-closedin X. From Theorem 2.2 [12], f (A) is Ower -closed.
Hence f isa @wea -continuous function.

Example4.3: Let X =Y ={a, b, c} with z={ ¢, {a}, {b}, {a b}, X} and 7
={ ¢, {a b}, Y}.Then the identity function f: (X, z)—(Y, ) is Owa -
continuous but not @-continuous, since for aclosed set {c} inY, f*({c})=
{c} g OC(X, 7).

Theorem 4.4: Every Gwa -continuous is &9 -continuous function and hence g -
continuous but not conversly.
Proof: Let A beclosedinY and f : X =Y bea fwa -continuousthen f *(A)

is Gwer -closed in X. From Theorem 2.4 and 2.6 [12] impliesthat f (A) is &Y
-closed and g -closed. Therefore f is &g -continuous and g -continuous.

Example 4.5 Let X =Y ={a, b, c} with z={ ¢, {a}, {a b}, X} and
n={¢{a},Y}.Lef: (X, £) > (Y, ) beafunction defined by f(a)=D,
f(b)=a and f(c)=c.Clearly, f*({b,c})={a,c} ¢ 8waC (X, 7). Hence
f isboth &g -continuous and g -continuous but not Hwa: -continuous.

Remark 4.6: Converse of the Theorem 4.4 holds if (X, 7) is 4T,

(0104

-space.
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Theorem 4.7: Every Gwa -continuous function is gawa -continuous function but
not conversly.

Proof : The proof follows from the Definition 4.1 and the Remark 2.9 [12].

Example 4.8: Let X =Y ={a, b, ¢} with z={ ¢, {a}, {a b}, {a c}, X},

n={ ¢.{a b}, Y}. Lef: (X, z)— (Y, ) beafunction defined by f(a)=a

, f(b)=cand f(c)=b.Clearly, f is gwa -continuousbut f*({c})={b}

¢ Owa C(X). Hence f isnot Bwa -continuous.

Theorem 4.9: A function f : X =Y is Gwa -continuousif and only if for every

openset U of Y, f(U) is fwa -openin X.

Proof : The proof is obvious.

Theorem 4.10: f : X > Yandg:Y — Z are 6wor -continuous functions then their

composition need not be a Bwea -continuous as seen from the following example.

Example 4.11: Lee X =Y =Z ={a, b, ¢} with z={ ¢, {a}, {b}, {4, b}, {a ¢},

X}, n={¢,{a b}, Y}and y ={¢,{a b}, Z}. Defineafunction f: (X, r)

— (Y, 7)by f(@=Db, f(b)=cand f(c)=aand g: (Y, ) > (Z, y)is

an identity function. But (gof): (X, z) — (Z, y) is not Owa -continuous,

since for the closed set {b, ¢} in Z, (gof)™*({b, ¢}) = f (g™ ({b, c}))

= f'({b, c}) ={a b} isnot Hwe -closed in X.

Remark 4.12: Let f: X —>Y and g:Y —>Z be Owa -continuous functions

then gof : X — Z is Bwa -continuousif Y is T, -space.

Theorem 4.13: Composition of Bwe -continuous and € -continuous function is a

Bwe -continuous function.

Proof : Let f: X —Y be Owa -continuous and g:Y — Z be @-continuous.

Let AcZ beclosed, then g™ (A) is @-closedinY as g is & -continuous function.

But from Remark (ii) in 2.2, g " (A) isclosedin Y. Since f is Bwer -continuous,

f (g7 (A)) = (gof ) " (A) is Bwe -closed in X. Then gof is Bwa -continuous.

Theorem 4.14: Let f: X—Y be a function then the following statements are

equivalent:

(i) T is Owa -continuous

(i) for each point xe X and each openset V inY containing f (X), there exists
an Owa - opensgt UinX suchthatx e U, f(U) cV.
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Proof : (i) = (ii) : Let V beanopensetinY containing f(X). Since f is Gwa
-continuous, x € (V) is Bwa -openinX. PutU=f (V) thenx e U f(U)
cV.

(i) = (i):LetVbeanopensetinY andxe f (V) then f(X) eV, thereexists
an Gwa -openset U, inX suchthat f(U,)cV. Thenx e U, < f (V)
and f*(V) =uU,. Therefore f*(V)is Owa -open set in X. Which
impliesthat f is Gwa -continuous.

Theorem4.15: Let X bea T, -spaceand f : X —Y beafunction then following

statements are equivalent:

(i) f is Bwa -continuous

(i) f(6wo—CI(A) < CI(f(A), for every subset A of X
(iii) Gwe -Cl(f1(B))c f(CI(B)), for every subset B of Y
(iv) f1(int(B))c Owa -int( f(B)).

Proof : (i) = (ii) : Let A be any subset of X. Since Ac f*(f(A) <
f (CI(f(A))). Now CI(f(A) isclosedin Y and f is Gwa -continuous
which implies that f(CI(f(A))) is a fwa -closed in X containing A.
Consequently fwa —CI(A) < f (CI(f (A))). Therefore f (Bwa —CI(A) <
f(f (CI(f(A)))) < CI(f(A).Hence f(Owa—CI(A) = CI(f(A).

(i) = (iii) : Let B be any subset of Y then f~(B) is subset of X. From (ii)
f(@wo-CI(f2(B)) < CI(f(f1(B) cClI(B). Theefore Owa -
cl(fB)) « fClI(B)).

(iif) = (iv) : Lee B < Y then (Y-B) cY. Since X is T, -space and by
hypothesis, Gwer (71(Y - B)) < fY(CI(Y - B)). Thisimplies X-( fwe -int
(£71(B))) = X-( fL(int(B))). Therefore f (int(B)) = Gwer -int( f 1 (B)).

(iv) = () :LetFbeaclosedsetinY then(Y - F)isanopensetinY. Therefore
2y = F) = fXint(Y = F)c Bwa -int( 1Y = F)) = X -Owa -
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Cl(fX(F)). Thisimplies f (F) is Owa -closed set. Thereforef is Ower -
continuous function.
Theorem 4.16: The following examples shows that the class of fwa -continuous
functions are independent with the class of continuous and « -continuous
functions.
Example 417: Let X =Y ={a, b, ¢} with z={ ¢, {a, b}, X}, n={ ¢, {a},
{a, b}, Y}.Let f:(X, 7)—(Y, 1) beanidentity function, then f is wa -
continuous but not continuous and ¢ -continuous function, since for the closed set
A={b,c}inY, f*{b,c})=({b,c})isclosed and o -closed in X.

Example4.18: Lee X =Y ={a, b, c} with z={ ¢, {a},{a b},{a c}, X},
={g{ab}, Y} Le T:(X, )—>(Y, ) betheidentity function, then f is
continuous and « -continuous but not Gwe -continuous function, since for the
cosedsat A ={c} inY, f*({c})=({c})isnot Bwe -closed in X.

Theorem 4.19: Following examples shows the concept of Gwa -continuous
function is independent with wer -continuous.

Example 4.20: Let X =Y ={a, b, ¢} with z={ ¢, {a}, {a, b}, {a c}, X},
n={¢,{a b}, Y}. A function f: (X, z)—(Y, n) defined by f(a)=a,
f(b)=c and f(c)=b. For theclosed set A = {c}, f*({c})={b} isnot a
Owa -closed in X. Therefore f is not Owa -continuous but it is a wa -
continuous function.

Example4.21: Lee X =Y ={a, b,c} with z={ ¢, {a},{b,c}, X}, n={ 4, {
a},Y}.Let f:(X, z)—(Y, n)bethefunctiondefinedby f(a)=b, f(b)=a
and f(c)=c.Then f is Bwa -continuous but not we: -continuous, sincefor the
closedsat A ={b,c} inY, f*({b,c})=({a c})isnot wa-closedin X.

Remark 4.22: Converse of the Theorems 4.16 and 4.19 holds if X is T, -
Space.

Remark 4.23: From the above results, it follows that the Gwca -continuous

functions are properly placed between @-continuous and 6 g-continuous
functions.we can see in the below Figure 1.
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B-continuous #  Gg-confinuous
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Figure 1

5. Owca -IRRESOLUTE FUNCTIONSIN TOPOLOGICAL SPACES

Definition 5.1: A function f: X =Y is caled fwa -irresolute it f (V) is
Owc -closed in X, for every Owa -closed in'Y.

Theorem 5.2: A function f : X =Y is fwa -irresolute if and only if for every
Oowa -openset AinY, f(A)is Gwa -openin X.

Proof : The proof is obvious.

Theorem 5.3 If f:X—Y is Owa -continuous and Y is T, -space, then f is
Owc -irresolute.

Proof: Let Y beT,, -spaceandF be 8wa -closedinY thenFFisclosedinY. Since

fis Bwa -continuous, f ™ (F) is@wer -closedin X. Thereforef is wa -irresolute.

Theorem 5.4: Let afunction f: X —Y be Owa -irresolute, closed and onto. If
XisT,,, -spacethenY is T, , -space.

Proof : Let F bea fwa -closed set in Y. Sincef is Gwae -irresolute then f ™ (F)
is O -closed in X. But X is T, -space, f (F) is closed in X. By hypothesis,
f closedand ontothen F= f(f (F)) isclosedin Y. Therefore Y is T, -space.

Remark 5.5: From below examples we have observed that the concept of fwer -
continuous function is independent of Hw« -irresolute.

Example 5.6: Let X =Y ={a, b, c}, z={ ¢, {a}, {b}, {a b}, {a c}, X}

with n={ ¢, {a}, {b, c}, Y}. Define a function f: (X, z)—>(Y, 1) by
f(a)=b, f(b)=a and f(c) =c. Clearly, f is Bwa -continuous but not Hcwc
-irresolute, since for thesubset { b} inY, f *({b}) = ({a}) ¢ wa C(X, 7).



Decomposition of ¢-Continuous Functions in Topological Spaces 135

Example 5.7: Lee X =Y ={a, b, ¢}, z={ 4, {a, b}, X} with n={ ¢, {a},

{a,b},{ac},Y}.Le f: (X, £)—>(Y, r7) beanidentity function then f is

Owa -irresolute but not a Gwa -continuous, since for the subset {b} in Y,

f1{b})=({b})¢ bwa CX, 7).

Theorem 5.8: Let X, Y and Z betopological spaces. Let f : X >Yand g:Y —

Z betwo functions then the following results are holds:

(i) If fis Bwa-irresolute and g is Bwa -continuous then (gof): X —=Z is
BwoL -continuous.

(i) If f and g are Bwo -irresolute functions then (gof ) is Bwe -irresolute.

(iii) (gof) is Bwe -irresolute, if f is Bwe-continuous, g is Bwo -irresolute
andYisT

Oova -q)ace'

Proof: (i) Let U bean opensetinZ then g~* (U) is Owa -openinY as ¢ is wa
-continuous. Since f is Gwa -irresolute then, (g™ (V) is Bwa -open in X.
But f(g™(U)) = (gof)™*(U). Therefore (gof )™ (U) is Bwa -open in X.
Hence (gof ) is Bwa -continuous.

(i) LetV < Zbean Gwea -openthen g2 (V)and f1(gt)(V)are Gwe -open,
since g and f are Gwe -irresolute functions. But f(g~1)(V) = (gof )™
(V) is Bwc -openin X. Therefore (gof ) is Bwa -irresolute.

(iii) Let Fbea @wa -closedinZ. Sincegis Owe -irresoluteand Y is T, , -space,
(g71(F)) is closed in Y. But f is Bwe -continuous then f~1(g™)(F) is

Owa -closed in X. We have f 1 (g™)(F) =(gof )X (F). Therefore (gof )
(F) is Bwa -closed in X. Hence (gof ) is Bw« -irresolute.

6. OHwa -CLOSED AND Hwa -OPEN FUNCTIONSIN TOPOLOGICAL
SPACES

Definition 6.1: A function f : X —>Y iscaled wa -closed if for each closed
st AinX, f(A) is Owa -closedin Y.

Theorem 6.2: A function f: X —Y is Owa -closed if and only if for each
subset A of Y and for each open set U containing f (A) then there exists an
Ooa -openset V of Y suchthat AcV and f (V) cU.
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Proof : Lee AcY and Uc X isan openset suchthat f *(A) cU. ThenV =Y -
f (U®)isan wa -openinY. So f (V) =X —(U°®)=((U°)°) = U such that
f(V) cu.

Conversely, let Sheaclosed set in X then f ™ ((f(S))°) < S° where S° is
openin X. By hyp, there exists Bwa -openset V of Y suchthat (f(S))° <V and
f V) = S°. So Sc(fH(V))°. Therefore VS < f(S) < f((f(S) ©)c
V¢ then f(S)=V°. Since V° is Owa -closed, f(S) is Owa -closed. Hence
f is Owa -closed.

Theorem 6.3: If f:X — Y is continuous, surjective function and composition
of any function g: Y — Z with f is Owa -closed then g is Owa -closed.

Proof : (i) Let ACY beclosed set then f " (A) isclosed in X. Since (gof) is
Owa closed  function, (gof )(f *(A)) is Owa -closed in Z. Now
(gof )(f *(A) = g(f(f(A)) = g(A) is Bwe -closed in Z. Therefore g is
HOwc -closed function.

Theorem 6.4: If the composition of two functions f : X ->Y and g: Y —>Zisa
Owa -closed and g is Gwa -irresolute and injectivethen f is Gwa -closed.

Proof : Let A be aclosed set in X. Since (gof) is Gwa -closed, (gof)(A) is

Oowa closed in Z. g7 (gof )(A) is Bwa -closed in Y as g is Gwa -irresolute.
Hence f (A) is Owa -closed in Y. Thereforef is Owar -closed function.

Theorem 6.5: Composition of two Hwa -closed functions need not be fwc -
closed which can be observed from the below example.

Example 6.6: Lee X =Y =Z ={a, b, c}, c={ ¢, {a}, X} and n={ ¢, { b},
Y} and y={ ¢, {a}, {a b}, {a c}, Z}. Define f: (X, )—>(Y, ) as
f(a)=a, f(b)=c and f(c)=b and g: (Y, n)—>(Z, y) as g(a)=Db,
g(b)=a and g(c)=c. Clearly, f and g are Owa -closed functions but their
composition (gof) : (X, 7)—(Z, y) isnot a Gwa -closed, sincefor a closed set
{b,c} =X, (gof) ({b,c})={a c} ¢ Bwa CZ, y).

Remark 6.7: Composition of continuous function f: X —Y and fwa -closed
function g: Y — Zisa fwo -closed.
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Definition 6.8: A function f: X —Y iscalled a dwa -open if theimage f (A)
is Bwc -openinY for each openset Ain X.

Theorem 6.9: Let f: X—Y be any bijective function then the following
statements are equivallent:

() f™:Y—>Xis Bwa -continuous

(i) T isa Gwa -open function

(iii) T isa Owa -closed function.

Proof : (i) = (i) : Let U< X bean open set. By hypothesis, (f ) ™" (U) = f (U)

is Bwa -openin Y. Therefore f is Gwa -open function.

(i) = (iii): Let K< X beaclosed set then K° isopenin X. By hypothesis,

f(K)is Bwa -openinY. Wehave f(K®) =(f(K)) is Bwa -openin
Y. So f(K) is Gwa -closedin Y. Hence f is Gwa -closed function.

(iii) = (i):LetK beaclosedin X then f (K) is Gwa -closedin Y. But f (K)
= (f ™)™ (K), whichimpliesthat (f ') " (K) is Owa -closedin Y.
Therefore f ™ is Gwer -continuous function.

Theorem 6.10: A function f : X —Y is Owa -open if and only if for any subset

A of Y and any closed set K containing f ™ (A) then ther exists an Gwa -closed
set BC Y containing A such that f ™ (B) K.

Proof : The proof is obvious.

Theorem 6.11: A function f : X >Y is Gwa -open if and only if f ™ (Owa -
CI(A)) c CI( f *(A)) for every subset A of Y.

Proof : Lee AcY then f *(A)cCI(f™ (A)). By Theorem 6.10, there exists a
Oowa closed set B < Y suchthat AcBand f *(B)cCI(f ™ (A)).

Conversely, let AcY and K be any closed set containing f ™ (A) in X. Now
put M = Gwer -CI(A). ThenM is Bwer -closedand Ac M. By hyp, f*(M)=f™
(Bwa -CI(A)) = CI( f ™ (A) =K. By Theorem 6.10, f is Bwe -open function.

Definition 6.12: A function f : X =Y is said to be Gwa ~-closed if for every
Owa -closed st K in X, f(K) is Bwa -closedinY.
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Example 6.13: Let X =Y ={a, b, c}, r={ ¢, {a}, {a b}, X} and n={ ¢,
{a}, {b}, {a b}, Y}. Define afunction f: (X, z)—(Y, )by f(a)=Db,
f(b)=a and f(c)=c. Clearly, f is Owa ~-closed function.

Remark 6.14: A Owa ~ -closed function f : X =Y isa Owa -closed function if
XisaT,,  -space.

Theorem 6.15: Thefollowing statements are equivalent for any bijective function
f:X->Y,

() f™:Y = Xis Owa -irresolute

(i) f isa Bwa " -open function

(i) f isa Owa " -closed function.

Proof: (i) = (ii) : Let V < X is O -open. Since =1 is Gwa -irresolute,

(f 1)1 (V)= f(V) is 6w -openinY. Therefore f is Bwe ~ -open function.

(i) = (iii): Let Fbea wa -closed in X. Since f is Gwa ~-open, f(F°)is
Owa -openinY. But f (F®) = (f(F))®, (f(F))° is Bwa -openin Y.

f

Whichimpliesthat f(F) is Gwa -closedin Y. Hence * is Gwa ~ -closed.

(i) = () :Let FcX bea Owa -closed set. f(F) is Owe -closedinY as f
is Bwa " -closed map. But f (F) = (f™1) ™)(F) is Gwe -closedin Y.
Therefore f~ is Gwe -irresolute function.
Theorem 6.16: If f: X — Y is Bwa -closed and we -irresolutethen f (A) is
Owca -closed in'Y for every B -closed set A of X.
Proof: Let A any Owa -closed in X and U Y bewa -open set containing f (A),
thenAc f ™ (U). Since f is wa -irresolute, ™ (U) is war -openin X. We have,
A is Owa -closed, Cl,(A) < f*(U). Now f(Cl,(A) < f(f*(U))=U.
Since f is Gwa -closed, Cl,( f(Cl,(A))) cU which implies cl,f(A) cU.
Therefore f (A) is Owa -closedin Y.
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7. Owa-HOMEOMORPHISM IN TOPOLOGICAL SPACES
Definition 7.1: A function f : X —Y iscalled fwa -homeomorphismif both f

and f ' are fwa -continuous and f is bijective.

Theorem 7.2: The below statements are equivalent for any bijective function f :
X -=>Y:

(i) T is Owa -homeomophism

(i) T is Owa -continuous and Ower -open

(iii) T is Gwa -continuous and Ower -closed.

Proof : The proof follows from Definition 7.1 and Theorem 6.8.

Definition 7.3: A function f : X =Y issaid to be wa ~ -homeomorphism if it
satisfies following two conditions,

(i) f isbijectiveand

(i) f and f' bothare Gwe -irresolute.

Theorem 7.4: The 6Owa -homeomorphism is independent of Owa -
homeomorphism.

Proof : It clears from Remark 5.5.

Theorem 7.5: Thecomposition (gof ) : X —Z is @wea ~ -homeomorphismif both
functions f : X =Y and g:Y —>Z are wa ~ -homeomorphism.

Proof : Let V bea Owa -openinZ. Now (gof ) (V)= f (g™ (V)= f ()
where g~ (V) = U. By hyp, U is Bwa -openin’Y and f ' (U) Owa -openin X.
Therefore (gof) is Bwa -irresolute. Also for a Owar -open set W in X, We have
(gof )W) =g(f (W))=g(A) where A= f(W). Again by hyp, f(W) and
g(W) are Owa -open in Y and Z respectively. Therefore (gof )™ is Gwa -
irresolute. Hence (gof ) Gwea ™ -homeomorphism.

Theorem 7.6: If afunction f : X —Y is Bwa -homeomorphism where X and Y
are T, -spacesthen f is Gwa ~-homeomorphism.

Proof : Let V bea fwa -closed in'Y then V is closed. By hyp and from Theorem
7.2 implies that f is bijectve, Gwa -continuous and Owcr -open. Therefore
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f (V) is Bwa -closed in X. Hencef isa Owa -irresolute function. Let V < X be
a Owa -openthen Visopenin X and f (V)Y is Gwe -open. By hyp, (f 1) ™
(V) is Bwa -openin Y. Therefore f ' is Bwea -irresolute function.

Theorem 7.7: If f: X—>Y is Gwa -homeomorphism then the following
properties aretrue

(i) for every subset A of Y, Owear —CI( f 7 (A)) = f 7 (Gwa — CI(A))

(i) for every subsat B of X , Bwar Cl( T (B)) = f (Bcwer — Cl(B)) .

Proof : Le¢ A < Y. By Theorem 3.4 (i) [12], 8wor — CI(f (A)) is wa -closed
in Y. Since f is Owa *-homeomorphism, f is OBwa -irresolute and

f 1 (Owa—CI(f (A))) is Owa closed in X. Wehave f*(A) ¢ (oo -
cd(A)). So Owa -CI(f(A) < f 7 (Owa -cl(A)) from Theorem 3.4 [(v) and
(viii)] [12].

Again by hypothesis, f 'is Bwe -irresolute. Since fwe -CI( f ™) is wa
-closed in X, (f ™)™ (Owa -Cl(f1(A) = f(Bwa-CI(f(A))) is Owa -
cosed in Y. Now Ac(fH) ™ (f ANc(f™) (Owa-Cl(f1A)) =

f (Bwa -Cl
(f™)). Therefore fwa -CI(A) < f(Owa -CI( f*(A))). Hence f(bwa -
cl(a) c f(f(bwa-Cl(f*(A) < Owa -CI(f*(A). Thus Owa-Cl
(f(A) = f (Owa -CI(A)).

(i) LetBbeasubset of X. Since f is wa ~-homeomorphism, f * isalso fwa

" - homeomorphism. From the above result, fwe -CI(f (B)) = (f )"
(Bwa -CI(B)), for every subset B of X. Therefore Owo—Cl(f(B))
= f (wa -CI(B)).
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