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Abstract  

In the present paper, we introduce and study the ��� -continuous and ���
-irresolute functions. The class of ��� -continuous functions properly 
placed between the classes of � -continuous and g� -continuous functions in 

topological spaces. Moreover, we have introduced and obtained the 
characterizations of the��� -closed,��� -open functions and ��� -
homeomorhisms. Also we observed the relation of these functions with the 
existing functions between topological spaces. 
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1. INTRODUCTION 

The concept of continuity is very important in general topology. Fomin [7] 
introduced the notions of � -continuous functions in 1943. These functions acts as 
natural tools for studying the almost compact spaces of Alexandroff and Urysohn. 
Later, these functions were investigated by Iliadis [8], Iliadis and Fomin [9] and 
Arockiarani et.al. [1]. 

The main aim of this paper is to introduce and study the properties of new 
spaces such as ���T -spaces, T��� -spaces, g� T ��� -spaces and g T ��� -spaces, the 
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generalisation of � -continuous functions called ��� -continuous functions in 
topological spaces. Further, the concepts of ��� -irresolute, ��� -closed, ���
-open functions and ��� -homeomorphisms are studied and also obtained some 
of their characterizations. 

2. PRELIMINARY 

Throughout this paper the spaces (X, � ), (Y, � ) and (Z, � ) (or simply X, Y and 
Z) always represents the topological space on which no separation axioms are 
assumed unless otherwise mentioned. A set A�X is said to be ��� -closed [12] 

if )(ACl� �U whenever A�U and U is �� -open in X. 

Definition 2.1: A function f : X�Y is called a (i) g� -continuous [6] 

(respectively � -continuous [1], g -continuous [2], � -continuous [11], �� -

continuous [4]) if 1�f (V) is g� -closed (respectively � -closed, g -closed, � -
closed, �� -closed) in X for every closed set V in Y. 

Remark 2.2: 1. [3] Every open set is �� -open. 

2. [6] Every � -closed set is closed. 

3. ��� -SPACES IN TOPOLOGICAL SPACES 

Definition 3.1: A topological space X is said to be a ���T -space (respectively 

T��� -space) if every ��� -closed set is closed (respectively �� -closed)in X. 

Example 3.2: Let X ={a, b, c} with � ={� , {a}, {a, b}, X}. Then the space 

(X, � ) is ���T -space and T��� -space. 

Definition 3.3: If every g� -closed set (respectively g-closed) is ��� -closed 

(respectively �� -closed) in a topological space X, then X is called ���� Tg -space 

(respectively ���Tg -space). 

Example 3.4: Let X ={a, b, c} and � ={� , {a, b}, X}. Then the space (X, � ) 

is ���� Tg -space and ���Tg -space. 

Remark 3.5: From Definitions 3.1 and 3.3, we observed that 

 2
1T -space �  ���T -space �  T��� -space. 

Reverse implications are need not be true which can be seen in the following 
examples. 
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Example 3.6: A topological space X = {a, b, c} with � ={� , {a}, X} is ���T -

space but not 
2
1T -space. 

Example 3.7: Let X ={a, b, c} with � ={� , {a, b}, X} is T��� -space but not 

���T -space. 

Example 3.8: A topological space X ={a, b, c} with � = {� , {a}, {a, b}, {a, c}, 

X} is ���� Tg -space but not ���Tg -space. 

Remark 3.9: ���T -spaces are independent from ���Tg -Spaces and ���� Tg -

Spaces. We can see in the following examples. 

Example 3.10: A topological space X ={a, b, c} with � ={� , {a}, X} is ���T

-space but not ���Tg -space and ���� Tg -space. 

Example 3.11: A topological space X ={a, b, c} with � ={� , {a, b}, X} is 

���Tg -space and ���� Tg -spaces but not ���T -space. 

Remark 3.12 T��� -spaces are independent from ���Tg -Spaces and ���� Tg -

Spaces. We can see in the following examples. 

Example 3.13: A topological space X ={a, b, c} with � ={� , {a}, {a, b}, X} 

is ���T -space but not ���Tg -space and ���� Tg -space. 

Example 3.14: A topological space X ={a, b, c} with � ={� , {a},{b, c}, X} 

is ���Tg -space and ���� Tg -spaces but not T��� -space . 

Theorem 3.15: Let (X, � ) be a topological space then the following properties 
are equivalent: 

(i) X is a T -space 

(ii) Every singleton set of X is either open or �� -closed [3]. 

Proof : (i)� (ii) : Let y �  X. Suppose {y} is not a �� -closed then X-{y} is not 

an �� -open in X. But X is only an �� -open set containing X-{y}. Therefore 

�Cl (X-{y})�X. Thus X -{y} is ��� -closed. By hypothesis X is ���T -space 

then X-{y} is closed it implies that {y} is open in X. 

(ii) �  (i) : Let A be a ��� -closed set in X and x� �Cl (A) then we have 

following two cases: 
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Case (a) : Let {x} be an open set in X. Since x� �Cl (A) then {x}�A� �  

which implies that x �  A. 

Case (b) : Let {x} be �� -closed. Suppose x�A then we have x� �Cl (A)-

A which is not possible according to Theorem 3.20 [12].Therefore x�A. Therefore 
in both cases we have �Cl (A)�A. But A� �Cl (A) is always true. Therefore A

= �Cl (A) which implies that A is closed. Hence X is ���T -space. 

4. ��� -CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES 

Definition 4.1: A function YXf �:  is called ��� -continuous function if for 

each closed set V of Y, 1�f (V) is ��� -closed in X. 

Theorem 4.2: Every � -continuous function is ��� -continuous but not 
conversely. 

Proof : Let YXf �:  be a � -continuous function and A be a closed set in Y 

then )(1 Af �  is � -closed in X. From Theorem 2.2 [12], )(1 Af �  is ��� -closed. 

Hence f  is a ��� -continuous function. 

Example 4.3: Let X = Y ={a, b, c} with � ={� , {a}, {b}, {a, b}, X} and �
={� , {a, b}, Y}.Then the identity function f : (X, � )�(Y, � ) is ��� -

continuous but not � -continuous, since for a closed set {c} in Y, 1�f ({c}) = 

{c}�� C(X, � ). 

Theorem 4.4: Every ��� -continuous is g� -continuous function and hence g -
continuous but not conversly. 

Proof: Let A be closed in Y and YXf �:  be a ��� -continuous then )(1 Af �  

is ��� -closed in X. From Theorem 2.4 and 2.6 [12] implies that )(1 Af �  is g�
-closed and g -closed. Therefore f  is g� -continuous and g -continuous. 

Example 4.5: Let X = Y ={a, b, c} with � ={� , {a}, {a, b}, X} and 

�  ={� ,{a}, Y}. Let f : (X, � ) �  (Y, � ) be a function defined by baf =)( , 

abf =)(  and ccf =)( . Clearly, 1�f ({b, c}) ={a, c}� C��� (X, � ). Hence 

f  is both g� -continuous and g -continuous but not ��� -continuous. 

Remark 4.6: Converse of the Theorem 4.4 holds if (X, � ) is ���� Tg -space. 
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Theorem 4.7: Every ��� -continuous function is ��g -continuous function but 
not conversly. 

Proof : The proof follows from the Definition 4.1 and the Remark 2.9 [12]. 

Example 4.8: Let X = Y ={a, b, c} with � ={� , {a}, {a, b}, {a, c}, X}, 

� ={� ,{a, b},Y}. Let f : (X, � )�  (Y, � ) be a function defined by aaf =)(

, cbf =)(  and bcf =)( . Clearly, f  is ��g -continuous but 1�f ({c}) = {b}
���� C(X). Hence f  is not ��� -continuous. 

Theorem 4.9: A function YXf �:  is ��� -continuous if and only if for every 

open set U of Y, )(1 Uf �  is ��� -open in X. 

Proof : The proof is obvious. 

Theorem 4.10: :f X Y and :g Y Z are -continuous functions then their 

composition need not be a ��� -continuous as seen from the following example. 

Example 4.11: Let X = Y = Z = {a, b, c} with � = {� , {a}, {b}, {a, b}, {a, c}, 

X}, �  = {� , {a, b}, Y} and �  = {� , {a, b}, Z}. Define a function f : (X, � ) 

�  (Y, � ) by baf =)( , cbf =)(  and acf =)(  and g : (Y, � ) �  (Z, � ) is 

an identity function. But )(gof : (X, � ) �  (Z, � ) is not ��� -continuous, 

since for the closed set {b, c} in Z, 1)( �gof ({b, c}) = 1�f ( 1�g ({b, c})) 

= 1�f ({b, c}) = {a, b} is not ��� -closed in X. 

Remark 4.12: Let YXf �:  and ZYg �:  be ��� -continuous functions 

then gof : X �  Z is ��� -continuous if Y is ���T -space. 

Theorem 4.13: Composition of ��� -continuous and� -continuous function is a 
��� -continuous function. 

Proof : Let YXf �:  be ��� -continuous and ZYg �:  be � -continuous. 

Let A�Z be closed, then 1�g (A) is � -closed in Y as g  is � -continuous function. 

But from Remark (ii) in 2.2, 1�g (A) is closed in Y. Since f  is ��� -continuous, 
1�f ( 1�g (A)) = 1)( �gof (A) is ��� -closed in X. Then gof  is ��� -continuous. 

Theorem 4.14: Let f : X�Y be a function then the following statements are 
equivalent: 

(i) f  is ��� -continuous 

(ii) for each point x�X and each open set V in Y containing )(xf , there exists 

an ���  - open set U in X such that x �  U, )(Uf �V. 
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Proof : (i) �  (ii) : Let V be an open set in Y containing )(xf . Since f  is ���
-continuous, x �  1�f (V) is ��� -open in X. Put U = 1�f (V) then x �  U )(Uf
�V. 

(ii) �  (i) : Let V be an open set in Y and x� )(1 Vf �  then )(xf �V, there exists 

an ��� -open set xU  in X such that xUf ( )�V. Then x �  xU � 1�f (V) 

and 1�f (V) =� xU . Therefore 1�f (V)is ��� -open set in X. Which 

implies that f  is ��� -continuous. 

Theorem 4.15: Let X be a ���T -space and f : X�Y be a function then following 

statements are equivalent: 

(i) f  is ��� -continuous 

(ii) ( ( ))f Cl A � ( ( ))Cl f A , for every subset A of X 

(iii) ��� - 1(Cl f (B))� 1( ( ))f Cl B , for every subset B of Y 

(iv) 1f (int(B))� ��� -int( 1f (B)). 

Proof : (i) �  (ii) : Let A be any subset of X. Since A� ))((1 Aff � �
)))(((1 AfClf � . Now ))(( AfCl  is closed in Y and f  is ��� -continuous 

which implies that )))(((1 AfClf �  is a ��� -closed in X containing A. 

Consequently )(ACl���� � )))(((1 AfClf � . Therefore ))(( AClf ���� �
))))(((( 1 AfClff � � ))(( AfCl . Hence ))(( AClf ���� � ))(( AfCl . 

(ii) �  (iii) : Let B be any subset of Y then 1f (B) is subset of X. From (ii) 

(f -Cl( 1f (B))) � 1( ( ( )))Cl f f B � ( )Cl B . Therefore ��� -
1( ( ))Cl f B � 1( ( ))f Cl B . 

(iii) �  (iv) : Let B �  Y then ( )Y B �Y. Since X is ���T -space and by 

hypothesis, ��� ( 1f (Y - B))� 1( ( ))f Cl Y B . This implies X-(��� -int 

( 1f (B)))�X-( 1f (int(B))). Therefore 1f (int(B))� ��� -int( 1f (B)). 

(iv) �  (i) : Let F be a closed set in Y then (Y - F) is an open set in Y. Therefore 
1f (Y – F) = 1f (int(Y – F))� ��� -int( 1f (Y – F)) = X -��� -
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1( ( ))Cl f F . This implies 1( )f F  is ��� -closed set. Therefore f is ��� -

continuous function. 

Theorem 4.16: The following examples shows that the class of ��� -continuous 
functions are independent with the class of continuous and � -continuous 
functions. 

Example 4.17: Let X = Y ={a, b, c} with � ={� , {a, b}, X}, � ={� , {a}, 

{a, b}, Y}. Let f : (X, � )�(Y, � ) be an identity function, then f  is ��� -

continuous but not continuous and � -continuous function, since for the closed set 

A ={b, c} in Y, 1�f ({b, c}) = ({b, c}) is closed and � -closed in X. 

Example 4.18: Let X = Y ={a, b, c} with � ={� , {a}, {a, b}, {a, c}, X}, �
={� ,{a, b}, Y }. Let f : (X, � )�(Y, � ) be the identity function, then f  is 

continuous and � -continuous but not ��� -continuous function, since for the 

closed set A ={c} in Y, 1�f ({c}) = ({c}) is not ��� -closed in X. 

Theorem 4.19: Following examples shows the concept of ��� -continuous 
function is independent with �� -continuous. 

Example 4.20: Let X = Y ={a, b, c} with � ={� , {a}, {a, b}, {a, c}, X}, 

� ={� , {a, b}, Y}. A function f : (X, � )�(Y, � ) defined by aaf =)( , 

cbf =)(  and bcf =)( . For the closed set A = {c}, 1�f ({c}) ={b} is not a 

��� -closed in X. Therefore f  is not ��� -continuous but it is a �� -

continuous function. 

Example 4.21: Let X = Y ={a, b, c} with � ={� , {a}, {b, c}, X}, � = {� , {

a}, Y}. Let f : (X, � )�(Y, � ) be the function defined by baf =)( , abf =)(  

and ccf =)( . Then f  is ��� -continuous but not �� -continuous, since for the 

closed set A ={b, c} in Y, 1�f ({b, c}) = ({a, c}) is not �� -closed in X. 

Remark 4.22: Converse of the Theorems 4.16 and 4.19 holds if X is ���T - 

Space. 

Remark 4.23: From the above results, it follows that the ��� -continuous 

functions are properly placed between � -continuous and � g-continuous 
functions.we can see in the below Figure 1. 
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Figure 1 

5. ��� -IRRESOLUTE FUNCTIONS IN TOPOLOGICAL SPACES 

Definition 5.1: A function f : X�Y is called ��� -irresolute if 1�f (V) is 

��� -closed in X, for every ��� -closed in Y. 

Theorem 5.2: A function f : X�Y is ��� -irresolute if and only if for every 

��� -open set A in Y, 1�f (A) is ��� -open in X. 

Proof : The proof is obvious. 

Theorem 5.3: If f : X�Y is ��� -continuous and Y is ���T -space, then f  is 

��� -irresolute. 

Proof: Let Y be ���T -space and F be ��� -closed in Y then F is closed in Y. Since 

f is ��� -continuous, 1�f (F) is��� -closed in X. Therefore f is ��� -irresolute. 

Theorem 5.4: Let a function f : X�Y be ��� -irresolute, closed and onto. If 

X is ���T -space then Y is ���T -space. 

Proof : Let F be a ��� -closed set in Y. Since f is ��� -irresolute then 1�f (F) 

is ��� -closed in X. But X is ���T -space, 1�f (F) is closed in X. By hypothesis, 

f closed and onto then F = 1( �ff (F)) is closed in Y. Therefore Y is ���T -space. 

Remark 5.5: From below examples we have observed that the concept of ��� -
continuous function is independent of ��� -irresolute. 

Example 5.6: Let X = Y ={a, b, c}, � ={� , {a}, {b}, {a, b}, {a, c}, X} 

with � ={� , {a}, {b, c}, Y}. Define a function f : (X, � )�(Y, � ) by 

baf =)( , abf =)(  and ccf =)( . Clearly, f is ��� -continuous but not ���
-irresolute, since for the subset {b} in Y, 1�f ({b}) = ({a})���� C(X, � ). 
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Example 5.7: Let X = Y ={a, b, c}, � ={� , {a, b}, X} with � ={� , {a}, 

{a, b}, {a, c}, Y }. Let f : (X, � )�(Y, � ) be an identity function then f  is 

��� -irresolute but not a ��� -continuous, since for the subset {b} in Y, 
1�f ({b}) = ({b})���� C(X, � ). 

Theorem 5.8: Let X, Y and Z be topological spaces. Let f : X�Y and g : Y�
Z be two functions then the following results are holds: 

(i) If f is -irresolute and g  is -continuous then )(gof : X Z is 

-continuous. 

(ii) If f  and g  are -irresolute functions then )(gof  is -irresolute. 

(iii) )(gof  is -irresolute, if f  is -continuous, g  is -irresolute 

and Y is ���T -space. 

Proof: (i) Let U be an open set in Z then 1�g (U) is ��� -open in Y as g  is ���
-continuous. Since f  is ��� -irresolute then, 1�f ( 1�g (U) is ��� -open in X. 

But 1�f ( 1�g (U)) = 1)( �gof (U). Therefore 1)( �gof (U) is ��� -open in X. 

Hence )(gof  is ��� -continuous. 

(ii) Let V �  Z be an ��� -open then 1g (V) and 1f ( 1g )(V) are ��� -open, 

since g  and f  are ��� -irresolute functions. But 1f ( 1g )(V) = 1( )gof

(V) is ��� -open in X. Therefore ( )gof  is ��� -irresolute. 

(iii) Let F be a ��� -closed in Z. Since g is ��� -irresolute and Y is ���T -space, 

( 1g (F)) is closed in Y. But f  is ��� -continuous then 1f ( 1g )(F) is 

��� -closed in X. We have 1f ( 1g )(F) = 1( )gof (F). Therefore 1( )gof

(F) is ��� -closed in X. Hence ( )gof  is ��� -irresolute. 

6. ��� -CLOSED AND ��� -OPEN FUNCTIONS IN TOPOLOGICAL 
SPACES 

Definition 6.1: A function YXf �:  is called ��� -closed if for each closed 

set A in X, )(Af  is ��� -closed in Y. 

Theorem 6.2: A function YXf �:  is ��� -closed if and only if for each 

subset A of Y and for each open set U containing )(1 Af �  then there exists an 

��� -open set V of Y such that A�V and )(1 Vf � �U. 
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Proof : Let A�Y and U�X is an open set such that )(1 Af � �U. Then V = Y -

f ( cU ) is an ��� -open in Y. So )(1 Vf �  = X – ( cU ) = (( cU ) c ) = U such that 

)(1 Vf � �U. 

Conversely, let S be a closed set in X then 1�f cSf ))((( )� cS  where cS  is 

open in X. By hyp, there exists ��� -open set V of Y such that cSf ))(( �V and 

)(1 Vf � � cS . So S� ( 1�f (V)) c . Therefore cV � )(Sf � 1�f ))((( Sf c )�
cV  then )(Sf = cV . Since cV  is ��� -closed, )(Sf  is ��� -closed. Hence 

f  is ��� -closed. 

Theorem 6.3: If f : X �  Y is continuous, surjective function and composition 

of any function g : Y �  Z with f  is ��� -closed then g  is ��� -closed. 

Proof : (i) Let A�Y be closed set then 1�f (A) is closed in X. Since )(gof  is 

��� -closed function, ))()(( 1 Afgof �  is ��� -closed in Z. Now 

))()(( 1 Afgof �  = )))((( 1 Affg �  = )(Ag  is ��� -closed in Z. Therefore g  is 

��� -closed function. 

Theorem 6.4: If the composition of two functions f : X�Y and g : Y�Z is a 

��� -closed and g  is ��� -irresolute and injective then f  is ��� -closed. 

Proof : Let A be a closed set in X. Since )(gof  is ��� -closed, ))(( Agof  is 

��� -closed in Z. ))((1 Agofg �  is ��� -closed in Y as g is ��� -irresolute. 

Hence )(Af  is ��� -closed in Y. Therefore f is ��� -closed function. 

Theorem 6.5: Composition of two ��� -closed functions need not be ��� -
closed which can be observed from the below example. 

Example 6.6: Let X = Y = Z ={a, b, c}, � ={� , {a}, X} and � ={� , {b}, 

Y} and � ={� , {a}, {a, b}, {a, c}, Z}. Define f : (X, � )�(Y, � ) as 

aaf =)( , cbf =)(  and bcf =)(  and g : (Y, � )�(Z, � ) as bag =)( , 

abg =)(  and ccg =)( . Clearly, f  and g  are ��� -closed functions but their 

composition )(gof : (X, � )�(Z, � ) is not a ��� -closed, since for a closed set 

{b, c}�X, )(gof ({b, c}) = {a, c}���� C(Z, � ). 

Remark 6.7: Composition of continuous function f : X�Y and ��� -closed 

function g : Y�  Z is a ��� -closed. 
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Definition 6.8: A function f : X�Y is called a ��� -open if the image )(Af  

is ��� -open in Y for each open set A in X. 

Theorem 6.9: Let f : X�Y be any bijective function then the following 
statements are equivallent: 

(i) 1�f : Y�X is ��� -continuous 

(ii) f  is a ��� -open function 

(iii) f  is a ��� -closed function. 

Proof : (i) �  (ii) : Let U�X be an open set. By hypothesis, ( 1�f ) 1� (U) = )(Uf  

is ��� -open in Y. Therefore f  is ��� -open function. 

(ii) �  (iii) : Let K�X be a closed set then cK  is open in X. By hypothesis, 
cKf ( ) is ��� -open in Y. We have cKf ( ) = cKf ))((  is ��� -open in 

Y. So )(Kf  is ��� -closed in Y. Hence f  is ��� -closed function. 

(iii) �  (i) : Let K be a closed in X then )(Kf  is ��� -closed in Y. But )(Kf  

= ( 1�f ) 1� (K), which implies that ( 1�f ) 1� (K) is ��� -closed in Y. 

Therefore 1�f  is ��� -continuous function. 

Theorem 6.10: A function f : X�Y is ��� -open if and only if for any subset 

A of Y and any closed set K containing 1�f (A) then ther exists an ��� -closed 

set B�Y containing A such that 1�f (B)�K. 

Proof : The proof is obvious. 

Theorem 6.11: A function f : X�Y is ��� -open if and only if 1�f (��� -

Cl(A))�Cl( 1�f (A)) for every subset A of Y. 

Proof : Let A�Y then 1�f (A)�Cl( 1�f  (A)). By Theorem 6.10, there exists a 

��� -closed set B �  Y such that A�B and 1�f (B)�Cl( 1�f  (A)). 

Conversely, let A�Y and K be any closed set containing 1�f (A) in X. Now 

put M = ��� -Cl(A). Then M is ��� -closed and A�M. By hyp, 1�f (M) = 1�f

(��� -Cl(A))�Cl( 1�f (A)�K. By Theorem 6.10, f  is ��� -open function. 

Definition 6.12: A function f : X�Y is said to be ��� * -closed if for every 

��� -closed set K in X, )(Kf  is ��� -closed in Y. 
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Example 6.13: Let X = Y ={a, b, c}, � ={� , {a}, {a, b}, X} and � ={� , 

{a}, {b}, {a, b}, Y}. Define a function f : (X, � )�(Y, � ) by baf =)( , 

abf =)(  and ccf =)( . Clearly, f  is ��� * -closed function. 

Remark 6.14: A ��� * -closed function f : X�Y is a ��� -closed function if 

X is a ���T -space. 

Theorem 6.15: The following statements are equivalent for any bijective function 

f : X �  Y, 

(i) 1�f : Y �  X is ��� -irresolute 

(ii) f  is a ��� * -open function 

(iii) f  is a ��� * -closed function. 

Proof: (i) �  (ii) : Let V  X is -open. Since 1f  is -irresolute, 

( 1f ) 1
 (V) = ( )f V  is -open in Y. Therefore f  is * -open function. 

(ii) �  (iii) : Let F be a ��� -closed in X. Since f  is ��� * -open, ( cf F ) is 

��� -open in Y. But f ( cF ) = ( ( ))cf F , ( ( ))cf F  is ��� -open in Y. 

Which implies that ( )f F  is ��� -closed in Y. Hence f  is ��� * -closed. 

(iii) �  (i) : Let F�X be a ��� -closed set. ( )f F  is ��� -closed in Y as f  

is ��� * -closed map. But ( )f F  = ( 1f ) 1� )(F) is ��� -closed in Y. 

Therefore 1f  is ��� -irresolute function. 

Theorem 6.16: If f : X �  Y is ��� -closed and �� -irresolute then )(Af  is 

��� -closed in Y for every ��� -closed set A of X. 

Proof: Let A any��� -closed in X and U�Y be�� -open set containing )(Af , 

then A� 1�f (U). Since f  is �� -irresolute, 1�f (U) is �� -open in X. We have, 

A is ��� -closed, Cl (A) �  1�f (U). Now (Cl ( ))f A � ))(( 1 Uff � = U. 

Since f is ��� -closed, Cl ( (Cl ( )))f A �U which implies )(Afcl� �U. 

Therefore )(Af  is ��� -closed in Y. 
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7. ��� -HOMEOMORPHISM IN TOPOLOGICAL SPACES 

Definition 7.1: A function f : X �Y is called ��� -homeomorphism if both f  

and 1�f  are ��� -continuous and f  is bijective. 

Theorem 7.2: The below statements are equivalent for any bijective function f : 
X �  Y : 

(i) f  is ��� -homeomophism 

(ii) f  is ��� -continuous and ��� -open 

(iii) f  is ��� -continuous and ��� -closed. 

Proof : The proof follows from Definition 7.1 and Theorem 6.8. 

Definition 7.3: A function f : X�Y is said to be ��� * -homeomorphism if it 
satisfies following two conditions, 

(i) f  is bijective and 

(ii) f  and 1�f  both are ��� -irresolute. 

Theorem 7.4: The ��� -homeomorphism is independent of ��� * -
homeomorphism. 

Proof : It clears from Remark 5.5. 

Theorem 7.5: The composition )(gof : X�Z is ��� * -homeomorphism if both 

functions f : X �Y and g : Y�Z are ��� * -homeomorphism. 

Proof : Let V be a ��� -open in Z. Now 1)( �gof (V) = 1�f ( 1�g (V)) = 1�f (U) 

where 1�g (V) = U. By hyp, U is ��� -open in Y and 1�f (U) ��� -open in X. 

Therefore )(gof  is ��� -irresolute. Also for a ��� -open set W in X, We have 

))(( Wgof = )(=))(( AgWfg  where )(= WfA . Again by hyp, )(Wf  and 

)(Wg  are ��� -open in Y and Z respectively. Therefore 1)( �gof  is ��� -

irresolute. Hence )(gof  ��� * -homeomorphism. 

Theorem 7.6: If a function f : X �Y is ��� -homeomorphism where X and Y 

are ���T -spaces then f  is ��� * -homeomorphism. 

Proof : Let V be a ��� -closed in Y then V is closed. By hyp and from Theorem 
7.2 implies that f  is bijectve, ��� -continuous and ��� -open. Therefore 
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1�f (V) is ��� -closed in X. Hence f is a ��� -irresolute function. Let V�X be 

a ��� -open then V is open in X and f (V)�Y is ��� -open. By hyp, ( 1�f ) 1�

(V) is ��� -open in Y. Therefore 1�f  is ��� -irresolute function. 

Theorem 7.7: If f : X�Y is ��� * -homeomorphism then the following 
properties are true: 

(i) for every subset A of Y, ��� – Cl( 1�f (A)) = 1�f (��� – Cl(A)) 

(ii) for every subset B of X , Cl( ( ))f B  = ( Cl( ))f B . 

Proof : Let A �  Y. By Theorem 3.4 (i) [12], Cl( ( ))f A  is ��� -closed 

in Y. Since f  is ��� * -homeomorphism, f is ��� -irresolute and 
1�f ( Cl( ( )))f A  is ��� -closed in X. We have 1�f (A) �  1�f (��� -

cl(A)). So ��� -Cl( 1�f (A))� 1�f (��� -cl(A)) from Theorem 3.4 [(v) and 
(viii)] [12]. 

Again by hypothesis, 1�f is ��� -irresolute. Since ��� -Cl( 1�f ) is ���
-closed in X, ( 1�f ) 1� (��� -Cl( 1�f (A))) = ���(f -Cl( 1�f (A))) is ��� -

closed in Y. Now A� ( 1�f ) 1� ( 1�f (A))� ( 1�f ) 1� (��� -Cl( 1�f (A))) =

���(f -Cl 

( 1�f )). Therefore ��� -Cl(A) �  ���(f -Cl( 1�f (A))). Hence 1�f (��� -

Cl(A))� 1�f ( ���(f -Cl( 1�f (A))))� ��� -Cl( 1�f (A)). Thus ��� -Cl 

( 1�f (A)) = 1�f (��� -Cl(A)). 

(ii) Let B be a subset of X. Since f is ��� * -homeomorphism, 1�f  is also ���
* - homeomorphism. From the above result, ��� -Cl( 1�f (B)) = ( 1�f ) 1�

 
(��� -Cl(B)), for every subset B of X. Therefore Cl( ( ))f B  

= ���(f -Cl(B)). 
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