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Abstract 

Translation associated with new Mehler-Fock transform studied by H. J. 
Glaeske and A. Hess [2] is used to define Mehler-Fock wavelet and its 
transform. The boundedness property of the new continuous Mehler-Fock 
wavelet and its wavelet transform are obtained. The new discrete Mehler-Fock 
wavelet and its wavelet transforms are defined and its boundedness property is 
studied. 
AMS Subject Classification: 33A40; 42C10. 
Keywords: Mehler-Fock transform, distributions, generalized translation, 
wavelets. 

1. INTRODUCTION  
The new Mehler-Fock transform (MMFT) of order 0n  is defined by  
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where the kernel )(tP n
  denotes associated Legendre function [2] and it is also 

called cone function of order n  given as 

  )2/)1(;1;2/1,2/1(1
!.2

1:)( 12

2/2
2/1 tnininFt

n
tP n

n
n

i 
   

with the Gaussian hypergeometric function  .).;.;(.,12 F . 

Its applications may be possible from the ref [3] in dual integral equations and a 
few physical problems. Also, its distributional theory may be extended with the 
help of ref [1], [3], [4], [7]. 

Translation and convolution are defined with the help of new Mehler-Fock 
transform in [2] and these associated with generalized new Mehler-Fock 
transform have been introduced by the references [4], [6].  
The new Mehler-Fock wavelet is different from [5] and its transform also.  

THE TESTING FUNCTION SPACE   AND ITS DUAL 
In this section, some definitions and results recall from [2] which will be needed 
in the following investigation.  
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Now, we recall the test function space T from [2] and defined as  

,...2,1,0,)()(sup:)(, 
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where )(IC . The space T  is a linear space with the family {  ,k }, k N0, 
of seminorms of which  ,0  is a norm. The dual of   is denoted by  .  

If   T , then from [2, Prop.2.1, p.122] to get 
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for all k N0.   
We take the following definitions from [2], and it can be written as 

Definition 2.2 For  f  the generalized Mehler-Fock transform is given by 

 

 )(),(:)())(( 2/1 tPtfMfM n
iF  ,            0 .  (2.3) 

This result coincides with equation (1.1) for the regular generalized function.  
Definition 2.3 The subspace  ., reg  of regular generalized functions of   

consists of all )(1 ILf loc  such that  
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in [2, p. 124]. 
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Now, for all    with 

dtttff 
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the classical formula (1.1). 
Next, let us consider the basic function ),,( zyx  from [2] such as 
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where  
22212),,( zyxzyxzyx  . 

Clearly, the basic function ),,( zyx  is symmetric in variables zyx ,, .     

Also, we have,  
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is given in [2] with                                                              
)cos()]1)(1[(),,( 2/122   yxxyyxzz .                (2.7) 

Next, the generalized translation operator x  in [2] is defined by  

dzzzyxyx 
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which is convergent. 
Definition 2.4. For    and Iyx ,  the generalized translation operator x  
on   is defined by  





1

)(),,(.),,,(:)( dzzzyxyxyx  .              (2.9) 

Lemma 2.5. [2] If   , then )()( yCyC yxxy   . 

One estimates for IyxNk  ,;0  via lemma 2.5 and [2, p. 124] to get  
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where z is given in equation (2.7) , from [2, p. 124] we have 
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with real number A . 

The next section contributes wavelets and contains its important properties. 

THE NEW CONTINUOUS MEHLER-FOCK WAVELETS 
Let    be the mother wavelet. For 0b  and 0a  define new Mehler-Fock 
wavelets by 

)]([)(, tDt abab    
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where )()( zazDa   . In view of (2.1), (2.2) and (2.11), to easily seen that 

 )( za  and from the next theorem may be shown  )(, tab . 

Next, the new Mehler-Fock wavelet transform of ., regf  define as 

dtttfttfabfM abab 
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where )(, tab is given in (3.1). 

Theorem 3.1  Let   ; for 2/10  , then  
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 , 

where A  be the positive real number. 

Proof  In view of (3.1) for IzNk  ;0 , we get 
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i.e., 
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using result (2.11), we get 
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gives the desire result for 0k . 

Theorem 3.2 Let  ., regf   and   , then  
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where )(, tab in (3.1) and  
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Proof We consider the equation (3.2) such that 
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Using equation (2.4) and theorem 3.1 we get 

dttftaAb 
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it is required result. 

NEW DISCRETE MEHLER-FOCK WAVELET TRANSFORMS  
 In the equation (3.1), if we take discrete form of the dilation parameter a with 

Zjaa j   ;2 0 , and the translation parameter b is allowed to vary over all of 
[1,∞], then the transform so obtained is called new semi-discrete Mehler-Fock 
wavelet transform. Also, if discretize the translation parameter b by restricting it 

to the discrete set of points 00j
; j,b 

2
k   NkZb  , where  00 b  is a fixed 

constant, then get following new discrete Mehler-Fock wavelet and its transform. 
We shall use the notation  

)bk  2  ,(2   (t) 0
-j-j

, tkj   .                                       (4.1) 
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and discretize version of wavelet transform for ., regf   such as 

dtttfkjfM kj
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Theorem 4.1  Let ., regUf 
 , then  

 kjf ,, , 

where kj , is known as discrete wavelets in (4.1). 

Proof  In view of (4.2) we have    

dt(t)f(t)  ψf kj,kjb 
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with the help of theorem 3.2 we have 

 kjbf ,;0
, . 
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