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A NONLOCAL APPROACH TO THE QUANTUM
KOLMOGOROV BACKWARD EQUATION AND
LINKS TO NONCOMMUTATIVE GEOMETRY

WILL HICKS*

ABSTRACT. The Accardi-Boukas quantum Black-Scholes equation ([1]) can
be used as an alternative to the classical approach to finance, and has been
found to have a number of useful benefits. The quantum Kolmogorov back-
ward equations, and associated quantum Fokker-Planck equations, that arise
from this general framework, are derived using the Hudson-Parthasarathy
quantum stochastic calculus ([13]). In this paper we show how these equa-
tions can be derived using a nonlocal approach to quantum mechanics. We
show how nonlocal diffusions, and quantum stochastic processes can be linked,
and discuss how moment matching can be used for deriving solutions.

1. Introduction

Stochastic calculus is used to model random processes for many applications
(for example, see [18]). Kolmogorov backward equations, and the Fokker-Planck
equation, arise in the study of stochastic processes, as the partial differential equa-
tions whose solutions represent the expectation values for functions of the under-
lying random variable, and the probability density for the process respectively.
For example, in the study of Mathematical Finance, Kolmogorov backward equa-
tions can be solved to find the risk neutral price of a derivative security, and the
Black-Scholes equation is one specific example of such an equation (eg see [4]).

The majority of practioners in the finance industry, use models based on the
application of Brownian motion, and Ito calculus. However, the application of
quantum formalism to Mathematical Finance has been investigated by a number
of sources. For example, see [8], [9], [15],[16], and [19]. Further, Accardi & Boukas
apply quantum stochastic calculus to the problem of derivative pricing ([1], [13]),
and show how this leads to a ‘Quantum Black-Scholes’ equation. Further analysis
& development of this method is presented in [11], and [12]. In particular, in
[12], the author builds on techniques applied in [2], [3], and [14], by deriving
kernel functions from quantum Kolmogorov backward equations, based on the
path integral approach to quantum mechanics. The analysis shows that this can be
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achieved using a Hamiltonian function that is no longer a quadratic function of the
momentum variable. Unfortunately, this fact leads to a number of complications.

In section 2, we start by giving some background on quantum stochastic pro-
cesses, and the quantum Black-Scholes equation. For more detail, readers can refer
to [1], and [12]. Then in section 3, we show using the example of the link between
gauge transformations and changes of measure, how the nonquadratic Hamiltonian
function, whilst useful in many circumstances, can lead to difficulty.

With this in mind, in section 4 we outline the basis for a nonlocal approach. We
proceed by borrowing some of the ideas & techniques from noncommutative ge-
ometry. Noncommutative geometry was originally developed by Connes to extend
the methods of algebraic geometry to the noncommutative setting (see [5]). Sinha
& Goswami have also investigated links between quantum stochastic calculus, and
noncommutative geometry in [20]. Noncommutative geometry is generally based
on algebras of bounded operators, and results are often applied to compact mani-
folds. In the real world, one is generally concerned with unbounded operators on
noncompact manifolds (eg R). In this case, there are considerable difficulties in
even showing that unbounded operators form an algebra. However, useful results
can be obtained by proceeding on a formal basis, using techniques inspired by
noncommutative geometry. In addition to resolving complications associated with
nonquadratic Hamiltonian functions, the nonlocal approach provides an alterna-
tive interpretation of solutions to the quantum Kolmogorov backward equation.

The key financial interpretation behind the nonlocal approach rests with im-
posing a fundamental limit on the precision with which one can forecast a traded
price in advance. For example, even if the financial market exists in a Dirac state:
d(zo — ), we still do not know with certainty that we can fulfil a trading order at
exactly this price. In section 5 we show how, by following this logic, the standard
Fokker-Planck equation is transformed into the quantum Fokker-Planck equation
discussed in [11], and [12]. We go on, in section 5.3, to show how the moments of
a Gaussian kernel function are impacted.

The link between nonlocal diffusions and quantum stochastic processes was first
discussed in [11], where it is shown that given a quantum stochastic process, one
can write the solution as a nonlocal diffusion. In [12], it is shown that, given a
nonlocal diffusion, defined by a “blurring” function or “nonlocalility” function with
defined moments, one can tailor a Riemannian metric such that the solution can
be written as a quantum stochastic process. This article builds on this by showing
how one can derive the quantum Kolmogorov backward equation directly from
the nonlocal approach to quantum mechanics. The restriction to those nonlocality
functions with defined moments, can be explained using physical principals.

In addition to providing theoretical insights into the understanding of quantum
stochastic processes, it is hoped studying problems using the nonlocal approach,
and methods from noncommutative geometry, will provide new avenues for de-
veloping practical tools. For example, future development of calibration methods
based on the associated heat kernel expansions.
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2. The Quantum Kolmogorov Backward Equation

In this section, we illustrate how quantum stochastic calculus can be applied
to the simulation of the financial market, and derive the quantum Kolmogorov
backward equation, and associated quantum Fokker-Planck equation. Then in
subsequent sections, we illustrate how the same equations can be derived through
using a nonlocal approach, and suggest how this can be embedded in the framework
of noncommutative geometry.

The market is modelled as a state function sitting in the tensor product of the
initial space H and the Boson Fock space: I'(L*(R*,H)).

The initial space: H, is a Hilbert space that carries the current price informa-
tion. If we want to know the price of the FTSE index, then this is represented by
the operator X, where X acts on the state function ¢(z) by pointwise multipli-
cation: (X¢)(x) = z¢p(x). To find out the expected price one can trade at right
now, we carry out the following calculation:

E[X] = (¢, X0) = /Rx|q§(x)|2dx,for peHt. (2.1)

If I know with certainty, that the FTSE is at 7000, then the initial state function
would be a Dirac state: |¢(x)|>= §(7000 — z).

To define a quantum stochastic process we incrementally amend the initial quan-
tum state as time progresses, using a Boson Fock space. We start with functions
from the time axis, with values in the Hilbert space that carries the initial pricing
information (#H). This space is written: K = L2(R*, H).

Next we take the exponential vectors, ¢(f). For f € K we have: ¢(f) =

®n

(1,f,f%%c,....,%,...), so that: (1(f),¥(g)) = 19 for f,g € K. The Boson
Fock space is defined as the Hilbert space completion of these exponential vectors.

The final market state space is the tensor product space: HQT'(K). At t =0, the
operator X that returns the expected FTSE price, right now, becomes X ®1I, where
I represents the identity operator on the Boson Fock space, and the calculation of

the FTSE index price right now, is unchanged.

2.1. Quantum stochastic processes. A particle, with initial wave function:
o) = [ e dp (22)
R

in a system controlled by the Hamiltonian function H(x,p), where p represents
the momentum, has a unitary time development operator: U; = ¢*t. Thus if the
operator Xy returned the position at time 0, then we have at time ¢ (we assume
Planck’s constant h = 1):

Xt = Jt(XO) = Ut*XOUt (23)

The Hamiltonian function H(x,p) is the infinitesimal generator for the time de-
velopment operator: Uy, and we can write the following quantum stochastic dif-
ferential equation (SDE):

AU, = (—iHdt)U, (2.4)
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We now add operators that allow the market state function to evolve stochastically.
This is described by Hudson and Parthasarathy in [13]. The operators we require
act on the exponential vectors in the Boson Fock space as follows:

An(g) = (/Ot Q(S)dS)w(g)

d
Au(g) = | dlg+exon) (25)
e=0
d
Ap(g) = | d(eXCng)
e=0

Further we can define the stochastic differentials as:
dA; = (Apyar — Ar),dA] = (Al — AD),dAy = (Aprar — A) - (2.6)

It follows from [13], section 7, that for U; to be unitary, it must have the following
functional form:

1
U, = — <<1H + 2L*L> dt + L*SdA, — LdA] + (1 - S) dAt> U, (2.7)

where H, L and S are bounded linear operators on H, with H self-adjoint, and
S unitary. With L = 0, and S = 1, this reduces to the quantum SDE given in
Equation (2.4).

These quantum stochastic differentials can be combined using the following
multiplication table (see [1] Lemma 1, and [13] Theorem 4.5):

- | dA]  dA,  dA, dt

Al o 0 0 0
d\e | dA]  dA, 0 0 (2.8)
dA, | dt dA, 0 0
dt 0 0 0 0
We can see from the table above that:
t t
E[(/ dAs + dAT)?] = E[/ dAsdAs + dATAT + dA AT + dATdA,)]
0 0
(2.9)

= /tds—t—IE[W(t)z].
0

where W (t) represents a classical Wiener process. In fact, with S = 1 in Equation
(2.7), the terms in dA; disappear. The resulting operator is commutative, and the
resulting PDE is the same as the classical Black-Scholes PDE ([1] Proposition 2).
For S # 1, we have a non-commutative system, and the Black-Scholes equations
have more complicated dynamics. The key result, regarding the time development
of X* can be obtained by application of the above multiplication rules, and is
given by [1] Lemma 1:

djp(X*) = ji (N Tah)dA] + G (a1 YdA, + 5 (AF)dA, + jo(aX"2al)dt

(2.10)
a=[L*X]S ol = S*[X,L],\=S5"XS - X
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2.2. Quantum Kolmogorov backward equation & the quantum Fokker-
Planck equation. First, expanding a function: wu(¢, j:(X)), as a power series, we
get:

otk

ult, z) = Oz
0

n? -

(t —to)"(z — x0)" (2.11)

t=to,r=x9

To calculate the expected value of u(t, X;) we can apply the Quantum version of
the Ito lemma from above, and collect together the terms in dt.

If we assume S, from equation (2.7), represents a Lebesgue invariant translation,
T., we have(for f(z) € L*(R)):

(@) = T_XT.f(x) = X f(x) = T_caf(a — ) —af(x) = f(x)  (2.12)

So we have in this case A = ¢, and the drift free Brownian motion:

dX, = odA; + odAl (2.13)
becomes instead:
dX, = 0dA, + odA] + edA, (2.14)
Applying (2.10) to the expansion for du:
Ju oFu
X;) = —dt ——dX[ 2.1
dul(t, X;) = —-dt + ; A (2.15)

and collecting together terms in dt, we get the quantum Kolmogorov backward
equation by taking expectations. In this case:
ou Z a2ek=2 gy

We can derive the equivalent quantum Fokker-Planck equation, as shown in [11]
proposition 3.1, by successive integration by parts:

ap B Z 02(_5)%3—2 akp

T W ouk (2.17)

k>2

3. Gauge Transformations and Change of Measure:

Here we extend the analysis, originally carried out in [10], to the Accardi-
Boukas Quantum Black-Scholes world (see [1], [11], [12]). In [10] chapter4, Henry-
Labordere develops the classical approach to finance using the Heat Kernel on a
Riemannian manifold. In section 4.5, he shows how a gauge transformation can
easily be shown to be equivalent to a change of measure.

In this section we show how to apply this to the Quantum Black-Scholes equa-
tion, and how the non-quadratic Hamiltonian functions that arise from general
quantum stochastic processes, lead to complications. In addition to providing in-
sights into the physics of these Hamiltonians, it provides incentive for investigating
whether quantum stochastic processes can be modelled using standard quadratic
Hamiltonians. This is the subject of sections 4 & 5.
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Start from the following quantum Kolmogorov backward equation.
(k=2)

dru(r,z) + 0%y ° ——Ofu(r,x) =0 (3.1)

k>2

This equation can be derived from the following Hamiltonian (see [12]):
2= Z

By using the transformation: (r,x) = (it, —iy), and the relation: P = 10y = Oy,
we get:

k 2Pk 0.2

(exp(sP) —eP— 1) (3.2)

. ck—2
H=0)" 5 o (3.3)
k>2
We now apply a gauge transformation: u/(7,z) = e*®u(r, ). We get:
A (1,2) = 2@ u(r, ) + 9 Az)u(r, z) (3.4)
If we set P’ = 10y — 10yA(iy), then we get:
P/ = Pu (3.5)
P =P +u(z) (3.6)

So, at a classical level, we find that applying the gauge transformation is equivalent
to adding a function of x to the momentum variable:p’ = p + v(x). The classical
Hamiltonian is given by:
o2
Hp)= = (exp(sp) —ep— 1) (3.7)

Inserting: p = p’ — v(x), we get:
/ / o? / /
H(p) = H\2) = 5 (eap(—ev(@)eap(ep) — ep' +ev(@) =1)  (38)

We now carry out the Legendre transformation in order to derive a formula for the
velocity, in terms of the momentum. Differentiating: p’z— H (p’, ), with respect to
p’, and setting to zero, we get the classical velocity in the new coordinate system:
2
o

i = - (exp(fsv(x))exp(ep’) - 1) (3.9)

So, the canonical momentum is given by:

py(&,x) = %ln(i—i + 1) +v(z) (3.10)

We find that, the translated canonical momentum: p{(z, z) is given by translating
the original canonlcal momentum: pg(&) as before. However, note the following:
e The velocity: &, has a nonlinear relationship with pg, and so the gauge
transformation does not lead to a simple translation of the velocity.
e The Lagrangian is no longer a quadratic function of z.
We will see, that in the Quantum case, ¢ # 0, this leads to difficulty in terms of
showing that the gauge transformation leads to a simple drift change.
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3.1. Classical case. In this case we have: ¢ = 0, & = ¢%p and so &’ = o2 (p —
v(z)). The Lagrangian becomes:

(&' + o%v(x))?

L) =

(3.11)

The resulting integral kernel: K%(z)' is given by (where Dz represents the Feyn-
man path integral):

K (z) = /: exp(— /OT Wdt)@x (3.12)

So we still end up with a Gaussian kernel function, but with a drift that depends
on z. Importantly, L'(i’,z) = L(i + o?v(z)). Where A(x) = cx, we end up
with a constant drift. This mirrors the analysis presented in [10] chapter 4.5.
The financial implications are that a change of measure, or a change of risk free
numeraire, can be achieved using the gauge transformation.

3.2. Quantum case. Now, we have:

= 1g2y(z)*

i =i — o%v(zx) + o (3.13)
E>2 ’
Therefore, the new Lagrangian becomes:
(—2)* (& + 0%0(z) — Dy, Eete) 7
L&)=Y — (3.14)

2(k+1
= o2+ (k +1)(k + 2)
Therefore, unlike the classical case, L'(i’,x) # L(i + o?v(x)). It is no longer
immediately clear that the integral kernel function post gauge transformation:
K%(x) is a simple translation of K5.(z).

4. Outline of the Nonlocal Approach

4.1. Spectral triples. The framework of noncommutative geometry enables one
to write the physical laws arising from non-Abelian gauge field theories, using the
language and tools of differential geometry. See for example [22]. Noncommutative
geometry is based on the spectral triple, which is defined by:

e A Hilbert space H.
e A unital C* algebra: A, represented as bounded operators on H.
e A self-adjoint operator D, such that the resolvent (I + D)~ is a compact
operator and [D, a] is bounded for a € A.
For example, the basic example of a spectral triple (see [22], chapter 4.3) is the
canonical triple associated with a compact Riemannian spin manifold, M:
o A= (C(M), the algebra of smooth functions on M.

e 1 = L?(S) of square integrable sections of spinor bundle S — M.
e Dy, the Dirac operator with associated connection.
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Once a suitable spectral triple has been defined, the key mathematical tool for
understanding the behaviour of a system is the heat kernel expansion (see [22],

chapter 7.2):
( —tD* ) Zto‘ca (4.1)

Readers interested in the application of noncommutative geometry to quantum
stochastic calculus should refer to [20], where the authors outline a number of
examples of heat semi-groups on noncommutative spaces, and noncommutative
spectral triples.

In the next section, proceeding in a mainly formal basis, we suggest ways in
which this framework can be used to develop the integral kernels used for the mod-
elling the probability spaces defined by quantum stochastic differential equations.
This in turn provides an alternative way to view quantum diffusion processes as
nonlocal diffusions.

4.2. A nonlocal approach. One of the key steps in derivations of the Feynman
Path Integral (for example see [6], chapter 8), involves the definition of so called
“generalised states”: |zo) = §(xo—), to represent a particle situated at position xg
with probability 1. In reality however, it is rarely possible to know this information
with complete precision. For example, even if I see a price quote for a traded asset
on a Bloomberg screen, it is still reasonably unlikely that I can fulfil my full order
by trading at exactly this price. Usually, for |z¢), we can measure the expected
price as:

E[X] = (o] Xz0) = /M y8(z0 — y)dy = 70 (4.2)

We can incorporate the uncertainty around what price we will actually achieve
when executing the trade, by changing the operator to incorporate a probability
distribution, H (y):

The operator X becomes: (X, H), and rather than X (z) = z¢(x), we have:

(X, H)p fx/z/)xf (y)dy (4.3)

To calculate the expected price we can trade at, given the market is state: (),
we get:

E[X] = /MW / Yy — w)H (u)dudy (4.4)

In effect, even if we know that the current market price is precisely xg, there is still
some uncertainty over the actual price I trade at. This uncertainty is introduced
into the model using the function H(y).

In terms of the spectral triple, one possible approach would be for the canonical
triple over the manifold M, with 1 dimensional spinor bundle: (C*°(M), L?(M),
Oz +A,) to become: (C*°(M), L*(M, H(y)dy), 0 + A,), where A, represents the
connection.

However, the C* algebra: C'°°(M) no longer forms an algebra over the Hilbert
space: L2(M, H(y)dy). To rectify this, we define the spectral triple:

(C=(M) @ T(E), M, (0, H)), (4.5)
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where:

e T'(E) represents a fibre bundle, whereby each section is a continuous func-
tion with values in the space of probability distributions over the manifold
M: Cy(M;S) for a space of probability distributions: S.

e H represents a dense subset of L?(M).

e He S.

o (f(2), H(z)) € C®(M)@ S acts on $(z) by: (f, H)b(x) = £(z) [y ¥l —
y)H (y)dy.

e The Dirac operator: (9,, H) acts on 1(x) by: 9, (wa x—y)H(y )dy>

We explain this in more detail in 4.3.
4.3. A Noncommutative spectral triple.

4.3.1. Action of C**(R) by pointwise multiplication. The first point to consider,
is that spectral triples are defined in relation to C* algebras of bounded operators,
whereas many of the operators we require are unbounded. Alternatively, spec-
tral triples are often defined on a compact manifold M, whereas the majority of
real life examples (for example traded financial underlyings) exist on noncompact
manifolds, such as the real number line: R.

Whilst noting this critical point, the objective in this section is to investigate
how the general framework of noncommutative geometry could apply. Therefore,
for now we sweep this issue aside and carry on the investigation using the “algebra”
of smooth functions: C°°(R), with the aim of generating results that can be used
for real world applications.

Next, if we view the “spectral triple” as: (C*°(R), L3(R, H(y)dy), 0, + A.),
with C*°(R) acting on the Hilbert space by pointwise multiplication, then we find
that:

(a@)b(e) o () = al)ia) [ vla = p)H )y (46)

However:
ata)o (da)v(a)) = ala) [ e =)ol = — ) H ) Hl)dind
# (a(@)b(@)) o v()

So we find that C*°(R) cannot form an algebra under composition of operators.
Since this is a crucial ingredient of the path integral construction, we do not use
this approach.

(4.7)

4.3.2. Action of C*°(R)®T'(E) on a dense subset of L*>(R). First, we denote the
sections of T'(F) as: H(z;x). This function, returns a distribution: H € S for each
position: x on the underlying manifold (in this case the real numbers, R). Define
the action of (a(x), H(z;x)) on a dense subset: H of L?(R) by:

(a(e), H (2 2))p() = alz) / (e — y)H(y; 2)dy (48)

Now, we consider the bilinear map, which we define as follows:
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Detinition 4.1.

(a(x),Ha(z;:E)) (b(a:),Hb(z;x)> - (a(x),Hab(z;x))

(4.9)
Hyp(z2) = /RH,,,(U; x)b(z — u)Hp(z — u;x — u)du

Using definition 4.1, we find that the composition of different operators now works:

((ato) (i) (o). i) ) 0 0

(4.10)
= a(x) /R /R b(x —u)p(x — 2)Hy(u;2)Hy (2 — uy 2 — u)dudz
Set: z =y + y2, and we get:
—afe) [ [ bl )t~ o~ v Haloni o) Halmicr — )y
IR (4.11)

= (ata). Haz12)) o (oa) [ ola =) Hilysa)dy)

We also note that, for C*°(R) ® I'(E) to form a unital algebra, the space S must
include the Dirac delta, since under (4.1) we have:

(1,0)(a, H) = (1,/R6(u)a(x —uw)H(z — u;z — u)du)
= (L,a(z)H(z;2)) = (a, H) (4.12)

(0. 1)(1.6) = (a. | 6(: = wH () = (a. 7)

In order to show that: C*°(R) @ '(E) forms a noncommutative C* algebra we still
need to show:

1) A(BC)ovy = (AB)C o under the bilinear map (4.1), and the action (4.8).

2) We can define a norm ||..||, such that our algebra is complete in the norm
topology.

3) We can define an involution * such that ||A*A|| = ||A][?

Proof of 1):
Using the bilinear map 4.1, we have:

(bla). Hu(e:) (c(o), Ho(ai0)) = (bGe), [ el — ) Holys ) ol i = )y
8 (4.13)
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So inserting this into A(BC), where A = ((a(z), Ha(z; x)), and so on for B,C, we
get:

(a(sc),Ha(z;m)) o <(b(x),Hb(z;x)) (c(x),HC(z;x))) = (a(:ﬂ),

/ / b(x —u)e(r — y1 — y2) Ha(u; 2) Hy(y2; 2 — y1) He(2 — y1 — Y232 — y1 — yo)
R JR

dyzdy1)

(4.14)

Similarly, we have:

(a(ac)7Ha(z;x)> (b(ac),Hb(z;x)) = (a(m),/

b(x —u)H,(u;x)Hy(z — u;x — u)du)
R

(4.15)
So inserting this into: (AB)C', we get:

<(a(x),Ha(z;x)) (b(x),Hb(z;x)>> o (c(x),Hc(z;x)> = (a(m),

/ / b(x —y1)e(w — yo) Ho(y1; ) Ho(y2 — y152 — y1) He(z — yo; 0 — y2dy1dy2)
RJR
(4.16)

Exchanging the order of integration, and replacing v5 = y2 + y1 we see that
equations (4.14) and (4.16) match.

Proof of 2):
We can use the standard operator norm. If A = (a, H), we have:

Definition 4.2. Where: ||¢|| is given by /(|¢)), we have:

[|[Al]| = sup [|AY|| (4.17)
[lyll=1
In our case:
141 = s [ A0GAH )y (4.13)

Assuming we restrict H(Y') to a dense subset of L?(R), as described in the proof
of 1) above, completeness follows from the underlying commutative C* algebra.

Proof of 3):

For the commutative C* algebra of complex valued smooth functions on a Rie-
mannian manifold: C'*°(M), we have that a(x)* is given by the complex conjugate:
a(x). This can be carried over into the noncommutative C* algebra. So (a, H)*
becomes (a(x), H).

4.3.3. Defining H, and S. We have the following basic requirements, in order for
our model to be useful in practice:

Model Requirements 4.3.
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i) For all H € S, and all ¢ € H, the convolution: H * ¢ exists. If this
condition is not met, then we need to restrict the distributions in .S, in
order that we can carry out necessary calculations.

ii) The Hilbert space H is dense in L?(R). If this condition is not met, then
there will be valid market states, that we cannot represent in our Hilbert
space.

It turns out that this can be achieved, by restricting the space of distributions:
S to those probability distributions, where the moments are defined, and this
in turn links these noncommutative “spectral triples” to the quantum stochastic
processes discussed by Hudson & Parthasarathy in [13].
Proposition 4.4. For the “spectral triple”: (C*(R) @ I'(E), M, (0., H)), if H is
dense in L2(R) then the space of distributions meeting requirements 4.3 consists
only of those distributions: H(x) such that the moments:

pi(H) = /Ry’:H(y)dy (4.19)
exist for all i > 0.

Proof. Consider the dense subspace K C L?(R) consisting of those functions, that
can be expanded as a power series: 1(z) = Y, -, anz". Requirement 4.3 i) means
that the integral:

;an/ T —y y;x)dy = ,;an <T;) igzn(l)ixni/ﬂeyiH(yw)dy (4.20)

must exist. Now assume further that N is the lowest integer such that py(H)
doesn’t exist. The existence of (4.20) implies that there must exist a polynomial,
P(z) of degree N, such that:

/RP(y)H(y;:E)dy =Sy < o0 (4.21)

exists. We can write P(x) = Y_,< y biz" for complex b;. Now, we write py 1 () =
Zi<N—1 b;x*. Since all moments less than N exist we have:

/ Py_1(y)H(y;z)dy = Sn—1 < 00 (4.22)
R
Now we have: uy(H) = S]V;ii]v‘l < 00, which is a contradiction. Therefore, if

H = K, those functions in L?(R) that can be expanded as a power-series, then S
must consists only of distributions such that all the moments exist.
Therefore, assume we choose H # K. Now we assume we have: f € H such that:

/ fly x)dy < 0o (4.23)

even though the moments of H(z;z) do not exist. Since K is dense in L?(R),
and H C L*(R), there must exist g(x) € K, such that: ||g(z) — f(z)]| < e, for
arbitrarily small e. By the triangle inequality we have:

’/Rf(y)H(y;x) / g(y)H (y; z)dy| < /If V)| H(y;z)dy < e (4.24)
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However, we have that if all moments for H(z;x) are not defined, then:

/Rg(y)H(y; z)dy (4.25)

is not defined. This is a contradiction, and the proposition is proved. O

5. Nonlocal Diffusions and the Quantum Kolmogorov
Backward Equation

5.1. A nonlocal derivation of the quantum Kolmogorov backward equa-
tion. In this section, and in section 5.2, we follow standard steps, for example
following those described in [7], in deriving a nonlocal formulation of the quantum
Fokker-Planck equation and associated integral kernel function.

As noted above, there are a number of issues in extending rigorous results
on spectral triples, and noncommutative geometry to unbounded operators on
noncompact manifolds. We therefore proceed on a purely formal basis with the
aim of generating useful results. We start with the usual Hamiltonian function for

a free particle of mass m:
2

H(p) = 5~ (5.1)

Now, rather than the usual definition, py) = i0,, we set ptp = (i0,, h), and we have:

Pp(z) = a( [ - y>w<y)dy)

= 0, ( / h(y)i(a — y)dy) (5.2)

= h*i0,¢(x)
Therefore, inserting this into (5.1) we have:
~ —1 0%y
Hyp=hxhx ——
v 0 om ox2
-1 (5.3)
=—— H(x — d ’
s ([ = vt
H=h=xh
Inserting this into the Schrodinger equation, we get:
8¢ 1 02
— H(x — d 4
B = o a2 ( /R (z —y)v(y) y) (5.4)
After carrying out the usual Wick rotation: ¢t = i7 we get our nonlocal Fokker-
Planck equation:
81/) 1 92
H(x — dy | = .
or 2m Ox? (/ . () y> 0 (5:5)

We know from proposition 4.4, that the moments of h must exist. This in turn
implies that the moments of h * h must also exist. Therefore, we can expand (5.5)
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using a Kramers-Moyal expansion:

2 Nk, k a(k+2)
L (e o
k>0

ar | 2m 922 k' Ox(k+2)
(5.6)
u’B=/ka(y)dy
R
Following, [12 ite s = [ —2_ to get:
ollowing, [12], we can write s fxo To@) o ge
dy
= [ v H @) (57)
R 9(y)

Finally, with infinite degrees of freedom in the metric function: ¢(y), we can use
a moment matching algorithm to solve:

ko 2¢k
P = e )k + 2)

Inserting this into equation (5.6), we get back to the quantum Fokker-Planck
equation: (2.17). Thus, on a formal level, combining proposition 1 from [12],
we have shown that given a nonlocal diffusion, we can find a quantum stochastic
process, and that these 2 processes are intrinsically linked.

(5.8)

5.2. The fundamental solution. In this section, we follow a standard method
in deriving the fundamental solution to the Schodinger equation, that can be used
as an integral kernel function (for example see [7], [12]), but based on the the non-
local Hamiltonian function: (5.3). For a given Hamiltonian: H, the Schrodinger
equation is:

oy
— = H 5.9
2 (5.9
Following, [7] chapter 4, we start by assuming ¢ (z,t) has the form:
¥(x,t) = exp(i(pr — w(p)t)) (5.10)
Using Hamiltonian: (5.3), and inserting (5.10) we get:

w(p)y = —%;;(/H{H(y)exp(i(p(w —-y) - W(p)t)dy)

1 o i(px—w(p)t) —ipy
L 9% i(po-w) 57
“om 922 (6 H(p))
So finally, we end up with:
» =
wp)y = 5~ H(p)y (5.12)

We can now use this function to calculate the required non-Gaussian kernel func-
tion.
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Proposition 5.1. Let the Hamiltonian be given by: (5.3). Then the fundamental
solution to the Schradinger equation is given by:

1 —ip>H (p)t
KH(z,t) = —F 1(em (7) 5.13
For initial conditions: o(x) € L*(R) N LY(R), the solution to the Schrédinger
equation is given by:

L
ous

Proof. The proof follows the same steps outlined in [7], Theorem 4.5. First note,
that: fR KHdp, solves the Schodinger equation. Also, we have that

Y(x,t) = o * K{! (5.14)

F(KH1 0 % 100) = V210 F (K 11—y ) Fbo.

Moreover, F(KH 1[—p,n)) is bounded, and converges pointwise to:

1 ( —ip?H (p)t)
exp .
2 2m
This is enough to guarantee that KtHl[_nm] % 1o must converge in L%(R).
We have shown above that K[! solves the Schrodinger equation, and it is easy
to see that: K11y = 1pg. Therefore ¢(x,t) = %1/}0 * K[! is the solution required.
O

Given initial conditions: (), the solution to equation (5.9) can be written:
exp(—itH )o(z). If we switch now to imaginary time, equation (5.9) becomes the
Kolomogorov backward equation. Writing u(x,7) rather than ¥(z,7), 02 = %,

and 7 = it, we have:

ou o2 9?
3 + 3 92 (/}RH(J: — y)u(y,T)dy) =0 (5.15)

We get for a small time step 07, u(z,07) = exp(—67H)u(x,0), and so using
proposition 5.1:

u(xz,d7) = %/RKg(x — xo)u(xo, 0)dzo (5.16)

5.3. A moment hatching algorithm. In practice, for a particular choice of the
volatility parameter: o, and the nonlocality function H(x), there are 3 existing
potential methods for the calculation of solutions to the quantum Fokker-Planck
equation, or the associated quantum Kolmogorov Backward equation:

i) One can use the particle Monte-Carlo method, as described in [11] section
4.
ii) One can calculate the value for an integral kernel using the results de-
scribed in [12], proposition 4.
iii) Ome could use a numerical calculation of the inverse Fourier transform to
evaluate the kernel function from 5.1.
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Unfortunately, each of these methods have drawbacks. Method i) is generally
even slower than conventional Monte-Carlo methods, owing to the additional steps
required to calculate the impact of the nonlocality function H(x). Furthermore,
the method must retain memory of the ongoing position of each Monte-Carlo
path throughout the simulation. This is in contrast to conventional Monte-Carlo
simulations, where each path can be simulated in isolation to the other paths.

The principal drawback with using the Kernel functions defined in [12] propo-
sition 4, and in proposition 5.1 above, relate to the instability of the integrals
involved, and the resulting difficulty in their numerical approximation. Therefore,
in this section we outline a moment matching algorithm, that provides the pos-
sibility for fast & robust approximation of the kernel functions. This method is
based on the following proposition.

Proposition 5.2. Let the moments for the nonlocalility function H(x), be given
by: an. Then the moments for the Kernel function described in proposition 5.1
are given by:

=0

n > 27,“/71 = Z L H (0'27')04‘,27 (517)

7|
7 2@

where: PJ represent the partitions of n without using the number 1, and #PJ
represents the number of elements in the partition.

Proof. We have that H (p) represents the characteristic function for the distribu-
tion H(x):

H(p) = / e H (x)dx (5.18)
R
Therefore, given the moments: a,,, we can write:
~ (i)
i) =3 G2’ (5.19)
PR

Furthermore, from proposition 5.1, the Fourier transform of the kernel we are after
is given (up to normalising constant) by:

.F(KtH(x, t)) = exp(W) (5.20)
Inserting (5.19) into (5.20) we get:
.7-"(KtH(aﬂ7 t)) = exp(_ip% Z % (ip)j> (5.21)
Jj=0

2m g!

Performing the Wick rotation 7 = it, and using the notation 02 = 1/m, gives:

]-'(Kf(x,r)) = ea:p( — 0212)27- Z:O 4 (;‘p)j) (5.22)
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Therefore the moment generating function for K is given by:

Mg (p) = exp(pQUQT Y= (p)j) (5.23)

|
2 =

Expanding out the powers of p gives:

My (p _1+Z<Z 2P H(a%)a”)pk (5.24)

k>2 N icpi

The result then follows from the definition of the moment generating function. [J

Once the moments of a probability distribution are known, there are numerous
numerical methods that can be applied to finding the final probability density
function. For example see [17], and [21]. We defer further investigation of these
methods to a future study.

5.3.1. [llustrative Example. In this subsection, we briefly illustrate some results
where H(z) is a normal distribution with variance given by 2. In this case we
have ag,—1 = 0, az, = €2"(2n — 1)!!, where (2n — 1)!! = (2n — 1)(2n — 3)...1.

Plugging this into proposition 5.2, we get:

e Since by assumption, the partitions do not include 1, sz consists only of
the set: {2}, so pe = o271

e u3 =10

o P} consists of: {4}, and {2,2} so py = 3(0?7)? + 12(027)e?

So finally we see that applying a Gaussian nonlocality function H (x) with zero
mean, and variance €2 << o27, increases the Kurtosis of the resulting kernel
function by an amount: 12(c27)e2. The standard deviation is not impacted. In
effect, H(x) has given the kernel function “fat tails”.

We also note the crucial role of the ratio (€2/027). The smaller this ratio, the
smaller the impact from the nonlocality on the kurtosis of the kernel function. As
7 — 0, we find that the increase in kurtosis becomes more and more pronounced.
s decreases with O(7) rather than O(72) as would be the case for a standard
Gaussian kernel function. This mirrors the numerical results shown in [12], sec-
tion 5, where it was found that the non-Gaussian kernel functions tended to the
standard Gaussian for longer time to maturities.

6. Conclusion

In this article we have shown how to derive the quantum Kolmogorov backward
equation through a nonlocal formulation of quantum mechanics. This builds on
results obtained in [11], and [12] to show that there are deep links between nonlocal
diffusions, and quantum stochastic processes.

We have suggested how to amend the canonical spectral triple that is used in
the formulation of conventional quantum mechanics using the framework of non-
commutative geometry. Although there are significant obstacles in extending the
framework to unbounded operators, the approach leads to useful ways of interpret-
ing equations, and potential new avenues for developing analytic and numerical
methods for real world applications.
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