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Abstract :  In this paper, the authors presented an algorithm for the reduction of high order discrete- time 
Single Input Single Output (SISO) systems. The proposed order reduction algorithm is based on minimization 
of Integral Square Error (ISE) by Particle Swarm Optimization (PSO) technique for obtaining the coeffi cients 
of both numerator and denominator polynomials of the reduced order models. The proposed algorithm 
guarantees the stability of Reduced Order Models (ROM) if the original high-order system is stable. The 
proposed algorithm is having superior features, such as computational simplicity and ease of implementation, 
when compared to many of the available methods of order reduction of high-order discrete-time systems. The 
proposed algorithm has been successfully applied to a typical numerical example available in the literature 
and the results are compared with the results obtained by some of other familiar methods. 
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1. INTRODUCTION

The approximation of linear high-order systems by a reduced-order model has received considerable 
attention due to the advantages of reduced computational complexity, increased understanding of the 
original systems and ease of implementation for controller design. Consequently, a large number of time 
and frequency-domain simplifi cation techniques have been developed to suit different requirements [3,4]. 
Amongst them, a frequency-domain method is Padé approximation in which 2k terms of the power series 
expansion (time moments) of the high-order (nth-order) transfer function are fully retained in reduced-
order (kth-order) model.

In some cases, Padé approximant may turn out to be unstable even though the original system is 
stable. To overcome stability problem, a number of stable reduction methods [5-9] based on retention of 
only k terms have been developed for discrete-time systems. However, matching of only terms may not 
generally be suffi cient to ensure a good overall time response approximation and it is also important to 
note that, for overall time response approximation, both time moments and Markov parameters should be 
considered [10,11]. In [12], a Bilinear Routh Approximation (BRA) method has been

 proposed as an extension of RA method [13] to discrete time systems. But it has been found that 
BRA method may fail to produce good approximants [14] as it again deals with k terms matching. Further 
improvement over [12] is suggested in [15]. However, the method of [15] does not possess any optimal 
properties. In a recent publication [16], a Suboptimal bilinear Routh approximation (SBRA) method is 
presented which is an improvement over BRA method and can be used to improve bilinear Schwarz 
approximation [17-19]. The SBRA method is based on combining Routh technique and minimization of 
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ISE. The last and parameters of BRA method are replaced by new parameters so that the ISE of impulse 
response of the reduced model is locally minimized without destroying time moments fi tting properties 
of BRA method. However, selecting the denominator coeffi cients arbitrarily and fi xing time moments 
may bring a loss of considerable degree of freedom in optimization. It may also be noted that the methods 
[12-19] require bilinear transformation which is not an effi cient operation as it involves extra computation 
and complexity especially for the systems with very high order. Thus, the essential problem is to obtain, 
avoiding bilinear transformation, a model which retains or near retains a few terms in excess of r terms 
while preserving stability.

In recent years, particle swarm optimization (PSO) technique has attracted considerable attention 
among various modern heuristic optimization techniques. Particle swarm optimization (PSO) is a 
population based stochastic optimization technique, developed by Eberhart and Kennedy [1] in 1995. 
Like many of the other biologically inspired algorithms (such as genetic algorithm, neural networks and 
simulated annealing), Particle swarm optimization also have a natural motivation, Two specifi c inspirations 
are that of fi sh schooling and bird fl ocking. The PSO method is a member of the wide category of Swarm 
Intelligence methods [2]. In PSO, a collection of particles (or agents) swarm through an N-dimensional 
space. The rules for how the particles move through the space are based on simple fl ocking rules that cause 
the particles to orbit around the best found solution in the hope of fi nding better one. This algorithm seems 
to be simple but it is effective and can be used in many types of optimization problems.PSO has been 
successfully applied in many areas: function optimization, artifi cial neural network training, fuzzy system 
control, and other areas where GA can be applied. 

In this paper a computationally simple and effective method is proposed for model order reduction 
of discrete-time systems that preserves the stability. In this paper, the authors presented a technique for 
order reduction of high order discrete time systems based on minimization of ISE by PSO technique as an 
extension to the method presented in [11].

PSO ALGORITHM

In PSO each individual is referred to as particle. Each particle fl ies through the search space with an 
adaptable velocity that is dynamically modifi ed according to its own fl ying experience and also fl ying 
experience of other particles. In PSO, each particle strives to improve itself by imitating traits from their 
successful peers. Further, each particle has a memory and hence it is capable of remembering the best 
position in the search space ever visited by it.

BASIC PSO FLOW

 The basic fl ow for the PSO algorithm begin by initiating our population of particles. We provide each 
particle with a random location within the N-dimensional space and a random velocity for each dimension. 
We then evaluate each particle’s fi tness for the given problem. If the fi tness is better than the particle’s 
best fi tness (pbest), we save the location vector for the particle. If the particle’s fi tness is better than the 
global best fi tness (gbest), we save this particle’s location vector as gbest. Finally, we update the particle’s 
velocity and look at the next particle in the population. If our global fi tness meets our exit criteria, we end 
the run and provide the location vector as the solution to the given problem.

PARTICLE MOMENT

Two basic equations govern the motion of particles in the swarm. The moment equation eq 1 provides 
for the actual motion of the particle using their specifi c velocity vector. The velocity update equation eq 2 
provides for velocity vector adjustment given the two competing forces (gbest and pbest)

 Xn = Xn  + Vn (1)
 Vn = Vn + c1 * rand()*(gbest, n – Xn) + C2 * rand() * (pbest,n –  Xn) (2)
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 rand() = random number generator in between 0 and 
  c1, c2 = cognitive and social acceleration, respectively
 Vn = velocity of nth particle 
 Xn = position of nth particle gbest,
 n = global best position
 Pbest, n = best position of nth particle ever visited by it

2. REDUCTION PROCEDURE

Let the transfer function of original high order discrete time system of order ‘n’ be, 
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Let the Reduced Order Model (ROM) of order ‘r’ in w-domain be defi ned as
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The deviation of ROM response from the original system is given by an error index ‘E’ known as 
Integral Square Error (ISE)

 E = 2

0

[ ( ) ( )]ry t y t dt

�

��  (2.2)

where y(t) = step response of Gn(w)

 yr(t) = step response of Gr(w)
 In a d-dimensional search space the particle updates its velocity and position with the fl owing 

equations.
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Where
 W = inertia weight,  
 Wmax = maximum value of inertia weight,  
 Wmin = minimum value of inertia weight,
 gen = current iteration, 
 k = 1, 2, 3,………………swarm size or population size,
 d = 1, 2, 3………………..no. of variables i.e. ‘2r’,
 c1,c2  = Cognitive and Social acceleration respectively,
 rand() = random numbers uniformly distributed in the range (0,1),
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 t

kdv  = velocity of dth variable of kth population in tth iteration, 

 t

kdv  = position of dth variable of kth population in tth iteration,

 Pbestkd = best value of dth variable among all the population,
 Pbestkd = best value of dth variable,
 In the present study PSO algorithm is used to minimize the objective function ‘E’ given in eqn (2.2) 

and the parameters to be determined are the coeffi cients of numerator and denominator polynomials of 
reduced order model Gk(w) as given in eqn  (2.1), subject to following constraints       
 1. To have stable reduced model 
    di  > 0 ; i = 0, 1, 2, ……..(r–1)
 2. To have steady state error to zero in the approximation, the condition proposed is

    d0 = 0
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model in z-domain Gr(z) is obtained as

NUMERICAL EXAMPLE
Consider the discrete time system given by its transfer function [8]
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APPLICATION OF PROPOSED METHOD
It is proposed to apply the method suggested here using particle swarm optimization to obtain second 

order model. Parameters considered for the proposed PSO method of model reduction are
Maxgen = 500;  Swarm Size or Population size = 20;  Limits for variable = [0.001, 100]
By simulating the digital computer algorithm developed for the proposed reduction technique based 

on PSO, the second order reduced model is obtained as
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The integral square error (ISE) between the original system and its reduced order model R2(z) is  ISE 
= 0.123622.The step responses of the original system G(z) and its reduced order model R2(z) 

(proposed ) are compared in Fig.2
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COMPARISON WITH OTHER METHOD

 1. The second order reduced model is obtained using “Suboptimal Bilinear Routh Approximation 
method” [9] as:

    '
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 2. The second order reduced model is obtained using “Bilinear Routh Approximation method” [7] as:
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 3. The second order reduced model is obtained using “Improved Bilinear Routh Approximation 
method” [8] as:
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The step responses of the original system G(z) and its reduced order models R2(z) 
(proposed), R2’(z) , R2’’(z), R2’’’(z) are compared in fi g 2. It can be observed from fi g 2 that the 

proposed method gives better approximation of the original system when compared to BRAM, IBRAM 
and Suboptimal BRAM methods.

Table. 1.

 REDUCTION METHOD Reduced Order Model ISE

 Proposed 
2

2 2

2.439 2.26 0.179
R ( )

1.2977 1.892 0.8103

z z
z

z z

� �
�

� �   0.123622

 Suboptimal BRAM 
2

'

2 2

2.54733 2.36893 1.6465
R ( )

1.27367 1.92181 0.80453

z z
z

z z

� �
�

� �   2.52363

 BRAM 
2

''

2 2

2.69474 4.08421 2.62857
R ( )

1.34737 1.90075 0.75190

z z
z

z z

� �
�

� �
  5.687473

 IBRAM 
2

'''

2 2

2.77569 5.02618 3.16789
R ( )

1.38784 1.88919 0.72297

z z
z

z z

� �
�

� �   9.171604

Fig. 2. Step responses Comparison of G(z) and R2(z).
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Fig. 3. Comparison of step responses of G(z), R2(z), R2’(z), R2’’(z) and  R2’’’(z)

3. CONCLUSIONS

A new method for the reduction of high-order discrete- time systems is proposed to overcome some 
of the drawbacks of existing methods of discrete- time systems reduction. The proposed order reduction 
method is based on Particle Swarm Optimization technique for obtaining the coeffi cients of both numerator 
and denominator of the reduced order models. The proposed method retains the stability of the original 
high-order system in the reduced order models. The new method is observed to be computationally simple 
compared to many of the available methods of order reduction of high-order discrete-time systems. The 
fl exibility and effi cacy of the proposed method is shown through typical numerical examples considered 
from the literature The results are compared with the results obtained by some of the familiar methods and 
successfully verifi ed to show the superiority of the proposed method over other methods.
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