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Abstract: In this work, the effect of the risk management process of ûnancial markets by using tools of nonlinear
dynamics is studied. Meanwhile, Various tools of nonlinear theory, such as phase portraits, Lyapunov exponents,
Kaplan Yorke dimension and Poincare map, have been used. The mathematical model of financial risk chaotic
system is accompanied by an electrical circuit implementation, demonstrating chaotic behavior of the strange attractor.
Finally, the results of circuit experimental results and numerical simulation are helpful for better understanding of
nonlinear financial risk chaotic systems.
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1. INTRODUCTION

Chaotic system research is popular problem in the nonlinear science ûeld. Chaos has been widely applied to
many economic and management, such as business cycle [1-2], volatility of security price [3-4], monetary
aggregate [5-6], duopoly game [7-8] and the relationship between R&D spending and production growth [9-10],
foreign direct investment [11-12], foreign capital investments [13], a growth cycle in socialism, capitalism and
economic Growth [14] etc.

In 1967, Goodwin introduced a fluctuations of the economic aggregates come from endogenous factors
[15]. In 1994, Burlando proposed the structure and terms of chaos theory to study ûnancial market risks [16]. In
2009, Pribylová introduced a Van der Pol’s equation applied to economic models [17] and Lin (2011) constructed
a Dufûng–Holmes model to describe of ûnancial chaos [18] and In recent years, chaotic economics has obtained
intensive attention and has been raised to engineering application in understand the complex behavior of the real
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financial market. Such as a emulating complex business cycles by using an electronic analogue [13], nonlinear
financial by using electronic circuit [19] and circuit implementation of a nonlinear fractional incommensurate
order ûnancial system [20].

The aim of this study is to examine the chaotic behaviour of a financial risk chaotic model from an electronics
analogue. An electronic analogue emulating its behaviour is proposed and its rich dynamic behaviour is studied
by means of electronic circuit simulation tools, such as MultiSIM.

Motivated by the above researches, a financial risk chaotic system is proposed in this research, In Section
2, we present a financial risk chaotic system, numerical results in evolving phase portraits, Lyapunov exponent’s
analysis, Kaplan Yorke dimension and Poincaré map analysis. In Section 3, we present an electronic circuit that
implements the a financial risk chaotic system and Finally, Section 4 contains the conclusion remarks.

2. THE FINANCIAL RISK MODEL

In 2013, a third-order dynamical model, describing a risk management process in the financial market, was
reported [21]. This nonlinear financial risk chaotic system is studied by the following set:
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Where xi, yi, zi desribe occurrence value risk, analysis value risk, and control value risk in the current
market, respectively. yi-1zi-1 represents for the value risk preliminarily controlled by the analysis risk, xi-1z i-1

describes the value risk preliminarily controlled by the occurrence risk and xi-1yi-1 represents the value risk
preliminarily analyzed to the occurrence risk. The parameter m denotes the analysis risk efficiency, n denotes the
risk satisfaction rate, d denotes the risk control efficiency, r denote the transmission rate of previous risk and k
denotes for the distortion coefficient of risk control. Three state variables x, y, and z must posistive, because risk
in financial markets always exists as the market occurs.

Let, m = d, n + 1 = d, nd = 1 and k = 1- b. the discrete system (1) can be transformed into the following
continuous form [21]:
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The system (2) is chaotic when the parameter values are taken as d = 10, r = 28 and b = 8/3. We take the
initial conditions of the system (1) as (10, 10, 10). In this study the system’s chaotic behavioris investigated
numerically by employing a fourth order Runge-Kutta algorithm. In the MATLAB 2010, ODE45 solver yielding
a fourth-order Runge-Kutta integration solution has been used. Figure 1 shows the 3-D phase portrait of the
financial risk chaotic system (2). Figures 2, 3 and 4 show the 2-D projection of the financial risk chaotic system
(2) on the (x, y), (x, z) and (x, z) planes, respectively.

The dynamics behavior of the financial risk chaotic system can be characterized with its Lyapunov exponents
which are computed numerically by Wolf algorithm proposed in Ref. [42]. The Lyapunov exponents of the
financial risk chaotic system are obtained as L1 = 1.251, L2 = 0.0020064 and L3 = -14.9197, while the Kaplan-
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Figure 1: 3-D phase portrait of the financial risk chaotic system

Figure 2: 2-D projection of the financial risk chaotic system on the (x, y) plane
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Figure 3: 2-D projection of the financial risk chaotic system on the (x, z) plane

Figure 4: 2-D projection of the financial risk chaotic system on the (y, z) plane
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Figure 5 The dynamics of Lyapunov exponents of financial risk chaotic system for d = 10, r = 28 and b = 8/3, using
MATLAB 2010

Figure 6: Bifurcation diagram of max(X) versus d, for r = 28, b = 8/3
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Figure 7: Poincare map in the plot given the maxima of x(n + 1) against those of x(n) space plane when for
d = 10, r = 28 and b = 8/3, using MATLAB 2010

Yorke dimension of the financial risk chaotic system is obtained as DKY = 3.0839. Figure 5 shows the Lyapunov
exponents of financial risk chaotic system for constant parameter � = 10, r = 28 and b = 8/3. The bifurcation
diagrams of the occurrence value risk x versus the analysis risk efficiency �, see Figure 6. As the value of � < 8.9
the system remains always in periodic state. While for � � 8.9 a complex behavior is chaotic attractor. In addition,
the Poincare map of the system in Figure 7 also reflects properties of chaos.

3. CIRCUIT REALIZATION OF THE FINANCIAL RISK CHAOTIC SYSTEM

In this section, we introduce an electronic analogue modeling of the financial risk chaotic system. The circuit in
Figure 8 has been designed following an approach based on operational amplifiers TL082CD [23-27] where the
state variables x, y, z of the system (2) are associated with the voltages across the capacitors C1, C2 and C3,
respectively. The nonlinear term of system (2) are implemented with multiplier AD633. By applying Kirchhoff’s
circuit laws, the corresponding circuital equations of designed circuit can be written as:
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We choose With R1= R2 = R3 = R6 = R7 =1 K�, R4= 350 �, R8= 3.75 K�, R5= R9 = R10 = R11 = R12 = 10 K�,
C1 = C2 = C3= 10 nF. The circuit has three integrators by using Op-amp TL082CD in a feedback loop and three
multipliers IC AD633. The supplies of all active devices are ±9 Volt. With MultiSIM 10.0, we obtain the
experimental observations of system (2) as shown in Figure 9. As compared with Figure 1 a good qualitative
agreement between the numerical simulation and the MultiSIM 10.0 results of the financial risk chaotic system
is confirmed.
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Figure 8: Schematic of the proposed financial risk chaotic system by using MultiSIM 10.0.

(a)



International Journal of Control Theory and Applications 296

Yusuf Abdullah, Mustafa Mamat, Sundarapandian Vaidyanathan, Aceng Sambas, and Mada Sanjaya WS

(c)

Figure 9: Various projections of the financial risk chaotic system using MultiSIM in x-y plane,
(b) x-z plane and (c) y-z plane

(b)
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4. CONCLUSION

A nonlinear dynamic of financial risk chaotic system based on the risk management process is constructed and
analyzed. The fundamental properties of the system such as Lyapunov exponents and Poincaré map as well as its
phase portraits were described in detail. The model describes the time variation of three state variables: the
occurrence value risk (x), the analysis value risk (y) and the control value risk (z). Interesting features of this
financial risk system, such as a chaotic behavior and periodic behavior were investigated. Moreover, it is
implemented via a designed circuit with MultiSIM and numerical simulation using MATLAB, showing very
good agreement with the simulation result.
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