
111Proposed BRKSS Architecture for Performance Enhancement of Data Warehouse Employing...

Abstract : Parallel database systems have three main architectures where either scalability or load sharing is
maintained. Study elucidates that no single architecture itself can provide both the facilities of good scalability
and load sharing. In contrast to the above studies, a hybrid architecture which is mainly based upon shared
nothing clustering that maintains both scalability and also tries to achieve load balancing is presented and
implemented. Here the concept of parallel databases has been implemented as they are the key to high
performance. So the objective is to develop a hybrid system which is cost effective and also performs well
while dealing with large amount of data. Performance enhancement has always been a main issue in case of
large data warehouses, so in the paper it has been ensured to resolve it with the notion of parallel processing by
proposing two algorithms. One is node based algorithm which is mainly based upon Multilevel Feedback
Queue Scheduling (MLFQ) and another is cluster based load balancing algorithm. Both the algorithms are
based upon push migration

Keywords : Parallel Data, Scalability, MLFQ, Push Migration, Load Sharing, Shared Nothing Algorithm,
Cluster, Node Based Algorithm.

1. INTRODUCTION

In this era of internet and cloud computing, increased amount of data has been enforced to make significant
changes in the commercial database field. Parallel database processing has become a new trend which is being
adopted widely due to its technology-driven and application-driven features [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Clouds
and super servers nowadays use parallel database processing with scalable high speed interconnection network,
so that it can perform large amount of inexpensive processing. Typically these systems utilize the capacity of
multiple numbers of locally distributed processing nodes inter-connected by means of high speed network. The
proposed architecture consists of a single switch and multiple hubs (based upon the number of ports in the switch)
along with multiple shared nothing clusters and a dedicated output device that acts as an interface for end users to
achieve high cost effectiveness compared to the mainframe-based configurations.

PrPrPrPrProposed BRKSS oposed BRKSS oposed BRKSS oposed BRKSS oposed BRKSS ArArArArArccccchitecturhitecturhitecturhitecturhitecture fe fe fe fe for Por Por Por Por Perferferferferfororororor-----
mance Enhancement of Data Warehousemance Enhancement of Data Warehousemance Enhancement of Data Warehousemance Enhancement of Data Warehousemance Enhancement of Data Warehouse
Employing Shared Nothing ClusteringEmploying Shared Nothing ClusteringEmploying Shared Nothing ClusteringEmploying Shared Nothing ClusteringEmploying Shared Nothing Clustering
Bikramjit Pal* Rajdeep Chowdhury** Kumar Gaurav Verma*** Saswata Dasgupta**** Subham
Dutta*****

IJCTA, 9(21), 2016, pp. 111-121
© International Science Press

* Research Scholar, Department of Engineering and Technological Studies, University of Kalyani, Kalyani, Nadia – 741235, West
Bengal, India,

** Research Scholar, Department of Engineering and Technological Studies, University of Kalyani, Kalyani, Nadia – 741235, West
Bengal, India Corresponding Author Email – dujon18@yahoo.co.in

*** Student, Department of Computer Science and Engineering, JIS College of Engineering, Kalyani, Nadia – 741235, West Bengal, India,
Student,

**** Department of Computer Science and Engineering, JIS College of Engineering, Kalyani, Nadia – 741235, West Bengal, India, Student,

***** Department of Computer Application, JIS College of Engineering, Kalyani, Nadia – 741235, West Bengal, India

112 Bikramjit Pal, Rajdeep Chowdhury, Kumar Gaurav Verma, Saswata Dasgupta and Subham Dutta

Parallel database systems provide both high throughputs for Online Transaction Processing (OLTP) as well as
short response times for complex ad-hoc queries [18, 19, 20]. Primary aim is to implement the same in the hybrid
model [24]. So, it has been tried to compose multiple cluster computer system comprising of independent computer
nodes connected by a network.

The interconnection is done with some commercial product having higher bandwidth and lower latency. The
main objective behind selecting cluster system is that they have low price-performance ratio compared to the
massive parallel processing computers.

2. LITERATURE SURVEY

Following papers have been studied as part of Literature Review for ease in reference :

Sunguk Lee, “Shared-Nothing vs. Shared-Disk Cloud Database Architecture,” Published at Research Institute
of Industrial Science and Technology, Pohang, Korea [1]

Cloud protocol, architecture, implementation and services specifications are still in its immature stage. The
characteristic, advantages and disadvantages of both shared disk and shared nothing database architectures for
cloud computing has been discussed here.

Janina Popeanga, “Shared-Nothing’ Cloud Data Warehouse Architecture,” Published at Database Systems
Journal, Volume–V, Number–4, 2014 [2]

Three widely used parallel data warehouse architectures have been defined and their clarification has been
given regarding the most suitable architecture to develop a data warehouse in the cloud. In the end the tables are
transposed into “shared-nothing” architecture, for analyzing the query performance.

Thomas Müseler, “A Survey of Shared-Nothing Parallel Database Management Systems” [Comparison
between Teradata, Greenplum and Netezza Implementations], Published at IRCSE 2012, Mälardalen University,
Sweden [3]

The main contribution of the paper is the presentation of the current technology in the shared-nothing database
sector. The concepts of the manufacturers Teradata, Green plum and Netezza has been discussed for data warehouse
requirements. Furthermore it has been discussed that whether shared-nothing architecture can be adapted to other
application fields for future implementation or not.

David J. DeWitt, Jim Gray, “Parallel Database Systems: The Future of Database Processing or a Passing
Fad?” [4]

Parallel database machine architectures have evolved from the use of exotic hardware to a software parallel
dataflow architecture based on conventional shared-nothing hardware. These new designs provide impressive
speedup and scale-up while processing relational database queries. This paper reviews the techniques used by
such systems and surveys current commercial and research systems.

Umar Farooq Minhas, David Lomet, Chandramohan A. Thekkath. “Chimera: Data Sharing Flexibility, Shared
Nothing Simplicity,” Published at IDEAS, Springer Verlag, September, 2011 [6]

The current database market is fairly evenly split between shared nothing and data sharing systems. While
shared nothing systems are easier to build and scale, data sharing systems have advantages in load balancing. The
approach of this paper isolates the data sharing functionality from the rest of the system and relies on well-studied,
robust techniques to provide the data sharing extension. This reduces the difficulty in providing data sharing
functionality, yet provides much of the flexibility of a data sharing system. The design and implementation of Chimera
– a hybrid database system, targeted at load balancing for many workloads and scale-out for read-mostly workloads
is presented here.

113Proposed BRKSS Architecture for Performance Enhancement of Data Warehouse Employing...

3. PROPOSED WORK

A substantial amount of work has been done to enhance the performance of data warehouses in many different
ways. In this paper, an architecture named as ‘BRKSS Architecture’ is proposed, which is based upon shared
nothing clustering that can scale-up to a large number of computers, increase their speed and maintain the work
load. The proposed architecture comprises of a console along with a CPU that also acts as a buffer and stores
information based on the processing of transactions, when a batch enters into the system. This console is connected
to a switch (p-ports) which is again connected to the c-number of clusters through their respective hubs. The
architecture can be used for personal databases and for online databases like cloud through router. As shown in
Figure–1, the BRKSS Architecture comprises of multiple nodes connected by a high speed LAN. Apiece node
has its own Processor (P), Memory (M) and Disk (D).

Fig. 1. BRKSS Architecture

MAXIMUM POSSIBILITY OF CLUSTERS AND NODES

Here, the number of clusters formed and the number of nodes depend upon the number of ports in the switch.
Two ports of the switch will be used for connecting with the console and the router. Suppose that‘d’ is the number
of nodes in each cluster. In Table–1, the table gives an idea about the maximum number of clusters that could be
formed. Here, up to 64 port switch have been shown which could be increased based on how much large is the
data warehouse.

114 Bikramjit Pal, Rajdeep Chowdhury, Kumar Gaurav Verma, Saswata Dasgupta and Subham Dutta

Table 1.

Number of Switch Ports 8 16 32 64

Number of Hubs 6 14 30 62

Number of Clusters 6 14 30 62

Number of Node 6*d 14*d 30*d 62*d

4. PROPOSED ALGORITHM

To overcome the limitations of load balancing in shared nothing clustering Inter-query Parallelism has been
implemented in the proposed algorithm where many diverse queries or transactions are executed in parallel with
one another on many processors. This will not only increase the throughput but will also scale up the system.

The steps of the algorithm are stated below :
Step–1 : Consider the number of transactions entering into the system in a batch mode.

[Suppose ‘m’ numbers of transactions are there in a batch]
Step–2: Check the number of clusters.

[Suppose ‘c’ be the number of clusters]
Step–3: Calculate the maximum value for each cluster (maxc) and node (maxn).

maxc = m/c
maxn = maxc /d

Where, maxc = 0 and maxn = 0 initially and d is the number of nodes in a cluster.
Step–4 : Distribute all the transactions evenly in the cluster based upon the maxc value and in the nodes

based upon maxn value.

Node Based

Step–5 : Now, calculate maxq = maxn /10
Where, maxq is the number of transactions that will enter into the MLFQ apiece time for execution
and also calculate remn = maxn – maxq for apiece node
Where, remn is the remaining number of transactions of a node.

Step–6 : Now for Node based Load Balancing, perform MLFQ Scheduling in apiece node.
Step–6 (a) : Allocate a ready queue to the processor of all the nodes and split the ready queue into ‘q’ number

of queues.
Step–6 (b) : Put highest priority to q0 as q0 is the first queue and lowest priority to qn as qn is the last queue.
Step–6 (c) : Perform Round Robin Scheduling from q0 to qn-1 and FCFS in qn.
Step–6 (d) : Follow the MLFQ rules while performing the scheduling.

Considering two jobs A and B entering into the queue, apply the following rules:
Rule–1 : If Priority (A) > Priority (B), A will run (B doesn’t).
Rule–2 : If Priority (A) = Priority (B), A and B both run in RRS.
Rule–3 : When a job enters the system, it is placed at the highest priority, that is, the topmost

queue.
Rule–4 : Once a job uses up its time allotment at a given level (regardless of how many times it

has given up the CPU), its priority is reduced, that is, it moves down one queue. This is
called the Gaming Tolerance.

Rule–5 : After some time period S, move all the jobs in the system to the topmost queue. This is
also known as Priority Boost.
The above rules are applicable for a transaction or a query as well.

115Proposed BRKSS Architecture for Performance Enhancement of Data Warehouse Employing...

Step–6 (e) : At the end of apiece transaction, take up a new one from remn.
Step–6 (f) : After time interval tz, status regarding the number of executed transactions and the remaining

transactions will be send to the buffer from apiece node of a cluster.
Step–7 : If value of remn does not become 0 within time tz, perform Node Based Load Balancing through

Push Migration approach.
Step–7 (a) : After receiving the status, check in the buffer.

• If remn = maxn / 2 in all the nodes, then situation is stable, continue with the execution and move
to Step–9.

• If remn > maxn / 2 in all the nodes, then give them more time to reach the stable situation and
then move to Step–9.

• If remn = maxn / 2 in half of the nodes and remn > maxn / 2 in other half, then give some time for
execution so that most of the nodes would either reach to remn < maxn / 2 or remn = maxn / 2.
Then move to Step–9.

• If in most of the nodes remn is much less than maxn / 2 and in a few nodes remn = maxn / 2, then
continue with the execution and after that move to Step–9.

• If remn is much less than maxn / 2 in maximum nodes and in some nodes remn > maxn / 2, then
start performing load balancing.

Step–7 (b) : When condition 7 (a) (v) occurs in the node(s), then send a signal to the console through switch.
Step–7 (c) : Console in return will send an instruction to the node(s) to submit the remaining transactions remn.
Step–7 (d) : Redistribute remn into other nodes, depending upon the condition: remn < = maxn / 2

Step–8 : Continue Step–7(a) to Step–7 (d) until maxc gets executed.
Step–9 : With the end of all the transactions, again a new maxc will enter and repeat the above steps.

Cluster Based

If after ty time, the console does not get any information regarding a particular cluster, then it will assume that
a fail over has occurred in the cluster. Then the console will perform cluster based load balancing to shift the load
of the fail over cluster to the rest of the active clusters.

Step–10 : After time interval ‘ty’, console will check the executed transactions maxe and the remaining
transactions remc for apiece cluster and a copy of remc transaction will be send to the buffer.

remc = maxc – maxe

Step–11 : Perform Cluster Based Load Balancing through Push Migration approach when cluster fail over
will take place.

Step–11 (a) : After time ty, check in the buffer.
• If remc = maxc / 2 in all the active clusters, then situation is stable, continue with the execution and

wait for condition 11 (a) (v) to occur.
• If remc > maxc / 2 in all the active clusters, then give them more time to reach the stable situation

and wait for condition 11 (a) (v) to occur.
• If remc = maxc / 2 in half of the active clusters and remc > maxc / 2 in other half, then give some

time for execution so that most of the clusters will either reach to remc < maxc / 2 or remc = maxc
/ 2 and wait for condition 11 (a) (v) to occur.

• If in most of the active clusters remc is much less than maxc / 2 and in a few active cluster remc =
maxc / 2, then continue with the execution and wait for condition 11(a) (v) to occur.

• If remc is much less than maxc / 2 in all the active clusters, then performs load balancing.
Step–11 (b): Redistribute remc of the fail over cluster into the other active clusters that would satisfy the condition

remc < = maxc / 2 in the active clusters.

116 Bikramjit Pal, Rajdeep Chowdhury, Kumar Gaurav Verma, Saswata Dasgupta and Subham Dutta

Step–12 : Continue Step–11 (a) and Step–11 (b) until m gets executed.

Step–13 : At the end of all the transactions, again a new batch will enter and repeat the above steps.

EXAMPLE : Suppose the number of transactions (m) in one batch is 1, 80, 000, number of clusters (c) = 3
and number of nodes in apiece cluster (d) = 4.

Then, maxc = (1,80,000/3) = 60,000

maxn = (60,000/4) = 15,000

The stable condition for apiece node is given by:

maxn /2 = 7500

maxq = maxn /10 = 1500

Node Based Load Balancing

Number of transactions entering into the MLFQ will be either maxq or multiplicand of maxq like :

1500 * 1 = 1500

1500 * 2 = 3000

1500 * 3 = 4500

1500 * 4 = 6000

At apiece tz interval, a status about the nodes will be send to the console. The console will get information
about the remaining transactions of apiece node (remn) and will decide whether continuous execution or load
balancing is required or not.

Initially,

Nodes d1 d2 d3 d4

Executed Transactions (maxq) 0 0 0 0

Remaining Transactions (remn) 15,000 15,000 15,000 15,000

After tz1 Interval,

Nodes d1 d2 d3 d4

Executed Transactions (maxq) 1,500 1,500 1,500 1,500

Remaining Transactions (remn) 13,500 13,500 13,500 13,500

After tz2 Interval,

Nodes d1 d2 d3 d4

Executed Transactions (maxq) 6,000 6,000 3,000 4,500

Remaining Transactions (remn) 7,500 7,500 10,500 9,000

After tz3 Interval,

Nodes d1 d2 d3 d4

Executed Transactions(maxq) 6,000 6,000 1,500 1,500

Remaining Transactions(remn) 1,500 1,500 9,000 7,500

After third Iteration in d1 and d2, remn is much less than their maxn / 2 and in d4, remn is stable, but in d3, remn
> maxn / 2, so, Node Based Load Balancing is performed. Here, 1,500 transactions would be taken away from
d3, making it stable and then putting that load into either d1 or d2.

117Proposed BRKSS Architecture for Performance Enhancement of Data Warehouse Employing...

Load Balancing is given in the table below :

Nodes d1 d2 d3 d4

Executed Transactions (maxq) 6,000 6,000 1,500 1,500

Remaining Transactions (remn) 1,500 1,500 9,000 7,500

New table after Load Balancing:
If remaining transactions are transferred to d1, then final table will be as given below:

Nodes d1 d2 d3 d4

Executed Transactions (maxq) 6,000 6,000 1,500 1,500

Remaining Transactions (remn) 3,000 1,500 7,500 7,500

If remaining transactions are transferred to d2, then the final table will be as given below:

Nodes d1 d2 d3 d4

Executed Transactions (maxq) 6,000 6,000 1,500 1,500

Remaining Transactions (remn) 1,500 3,000 7,500 7,500

While performing the above Iterations, a status about all the nodes and their clusters would go to the console
and it will get updated on a regular basis.

Cluster Based Load Balancing

The console will get information in the time interval ty about the executed number of transactions, that is, maxe
and a copy of all the remaining transactions remc. So, when fail over of any cluster occurs, then the console will
send the unexecuted copy of transactions of the fail over cluster to the other clusters.

Initially,

Clusters c1 c2 c3

Executed Transactions (maxe) 0 0 0

Remaining Transactions (remc) 60,000 60,000 60,000

After ty1 interval,

Clusters c1 c2 c3

Executed Transactions (maxe) 20,000 20,000 30,000

Remaining Transactions (remc) 40,000 40,000 30,000

At the end of ty1 interval, console will have the status of maxe and a copy of remc within it, till ty2 execution ends
successfully. After that it will hold a copy of remc and status of maxe till ty3 execution ends successfully.
After ty2 interval,

Clusters c1 c2 c3

Executed Transactions (maxe) FAIL OVER 10,000 10,000

Remaining Transactions(remc) 40,000 30,000 20,000

118 Bikramjit Pal, Rajdeep Chowdhury, Kumar Gaurav Verma, Saswata Dasgupta and Subham Dutta

In ty2, a fail over occurs and the console that is holding the value of remc from ty1 interval will distribute it to the
other active clusters until they themselves come to a value much less than maxc / 2.
After ty3 interval,

Clusters c1 c2 c3

Executed Transactions (maxe) FAIL OVER 15,000 15,000

Remaining Transactions (remc) 40,000 15,000 5,000

Load Balancing :

Clusters c1 c2 c3

Executed Transactions (maxe) FAIL OVER 15,000 15,000

Remaining Transactions (remc) 0 30,000 30,000

5. PARAMETER ANALYSIS

SPEED UP

Speed Up is the extent to which more hardware can perform the same task in less time than the original
system. With added hardware, speed up holds the task constant and measures time savings. In this case, speed up
will be linear as shown in Figure–2, as the number of transactions is increasing with the increase in number of CPU.

Fig. 2. Linear Speed Up.

Sub Linear Speed Up can occur when the rate of execution of apiece CPU is diverse, that is, either high or
low, but their overall execution is high. In Figure–2, execution of apiece CPU is 50, so with the increase in number
of CPU, overall execution is also increasing (in multiple of 50). But in Figure–3, four CPUs are performing 50
transactions each, whereas eight CPUs are performing approximately 37 transactions each and twelve CPUs are
performing approximately 58 transactions each, but their overall execution is high. In this case the Speed Up will be
sub linear.

119Proposed BRKSS Architecture for Performance Enhancement of Data Warehouse Employing...

Linear Speed Up

Sub Linear Speed Up

700/sec

300/sec

200/sec

Number of CPU

4 8 12

N
u

m
b

e
r

o
f

tr
a

n
sa

ct
io

n
s/

se
c

Fig. 3. Sub Linear Speed Up

SCALE-UP

Scale-up is the ability to keep the same performance level (Response Time) when both workload (Transaction)
and resources (CPU, Memory) increase proportionally. In Figure–4, number of transactions per second is increasing
proportionately with the increase in number of CPU. So, the Scale-up is linear in this case.

Fig. 4. Scale Up

Just like Sub Linear Speed Up, Scale Up can be also sub linear. If the rate of the transaction decreases per
node, then sub linear scale-up will occur. In this case, the overall execution of transaction will always be high as
shown in Figure–5.

120 Bikramjit Pal, Rajdeep Chowdhury, Kumar Gaurav Verma, Saswata Dasgupta and Subham Dutta

Fig. 5. Sub Linear Scale Up.

6. CONCLUSION

The problems of shared nothing architecture where scalability and speed up is high but load balancing is an
issue have been instantiated and studied. From the extensive study, it has transpired that the problem could be
solved by introducing the completely new and novel BRKSS Architecture that supports shared nothing clustering.
The designing of the architecture is done in such a way that it can be implemented easily in large systems for
performing huge amount of task and load can be balanced based upon the proposed algorithm that would work in
the console. The load balancing strategy follows two ways, that is, with respect to the nodes and with respect to the
fail over of any cluster. Thus, the performance does not get affected too much.

7. REFERENCES

1. Lee, S., “Shared-Nothing vs. Shared-Disk Cloud Database Architecture”, International Journal of Energy, Information
and Communications, 2 (4), November, 2011

2. Popeanga, J., “Shared-Nothing’ Cloud Data Warehouse Architecture”, Database Systems Journal, V (4), 2014

3. Müseler, T., “A survey of Shared-Nothing Parallel Database Management Systems” [Comparison between Teradata,
Greenplum and Netezza Implementation], IRCSE 2012, Mälardalen University, Sweden

4. DeWitt, D., J., Gray, J., “Parallel Database Systems: The Future of Database Processing or a Passing Fad?”, The
Research was partially supported by the Defence Advanced Research Projects Agency under contract N00039-86-C-
0578 by the National Science Foundation under grant DCR-8512862 and by Research Grants from Intel Scientific
Computers, Tandem Computers and Digital Equipment Corporation

5. Furtado, P., “A Survey on Parallel and Distributed Data Warehouses”, IGI Publishing, 5 (2), April–June, 2009

6. Minhas, U., F., Lomet, D., Thekkath, C., A., “Chimera: Data Sharing Flexibility, Shared Nothing Simplicity”, IDEAS,
Springer Verlag, September, 2011

7. Datta, A., Moon, B., Thomas, H., “A Case for Parallelism in Data Warehousing and OLAP”, Proceedings of the 9th
International Conference on Database and Expert Systems Applications (DEXA’98), September, 1998

8. DeWitt, D., J., Gray, J., “Parallel Database Systems: The Future of High Performance Database Systems”, Communication
of the ACM, 35 (6), June, 1992, pp.85–98

121Proposed BRKSS Architecture for Performance Enhancement of Data Warehouse Employing...

9. Ezeife, C., I., Barker, K., “A Comprehensive Approach to Horizontal Class Fragmentation in a Distributed Object Based
System”, Distributed and Parallel Databases, 1: 247–272, 1995

10. Ezeife, C., I., “A Partition-Selection Scheme for Warehouse Aggregate Views”, International Conference of Computing
and Information, Manitoba, Canada, June, 1998

11. “HP Intelligent Warehouse”, Hewlett Packard White Paper, 1997

12. Jurgens, M., Lenz, H–J., “Tree Based Indexes vs. Bitmap Indexes: A Performance Study”, International Workshop,
DMDW’ 99, Heidelberg, Germany, 1999

13. The Data Warehouse Toolkit, Kimball, R., Ed. J., Wiley and Sons, Inc., 1996

14. Patel, A., Patel, J., M., “Data Modeling Techniques for Data Warehouse”, International Journal of Multidisciplinary
Research, 2 (2), 2012, pp. 240–246

15. Farhan, M., S., Marie, M., E., El-Fangary, L., M., Helmy, Y., K., “An Integrated Conceptual Model for Temporal Data
Warehouse Security”, Computer and Information Science, 4 (4), 2011, pp. 46–57

16. Eder, J., Koncilia, C., “Changes of Dimension Data in Temporal Data Warehouses”, Proceedings of Third International
Conference on Data Warehousing and Knowledge Discovery, DaWaK’ 01, Munich, Germany, LNCS, Springer, 2001, pp.
284–293

17. Golfarelli, M., Maio, D., Rizzi, S., “The Dimensional Fact Model: A Conceptual Model for Data Warehouses”, International
Journal of Cooperative Information Systems, 7 (2-3), (1998), pp. 215–247

18. Golfarelli, M., Rizzi, S., “A Methodological Framework for Data Warehouse Design”, Proceedings of ACM First
International Workshop on Data Warehousing and OLAP, DOLAP, Washington, 1998, pp. 3–9

19. Bernardino, J., Madeira, H., “Data Warehousing and OLAP: Improving Query Performance Using Distributed Computing”

20. Albrecht, J., Gunzel, H., Lehner, W., “An Architecture for Distributed OLAP”, International Conference on Parallel and
Distributed Processing Techniques and Applications, PDPTA’ 98, 1998

21. Comer, D., “The Ubiquitous B-tree”, ACM Computing Surveys, 11(2): 121–137, 1979

22. Chowdhury, R., Datta, S., Dasgupta, S., De, M., “Implementation of Central Dogma Based Cryptographic Algorithm in
Data Warehouse for Performance Enhancement”, International Journal of Advanced Computer Science and Applications,
6 (11), November, 2015, pp. 29–34.

23. Chowdhury, R., Pal, B., Ghosh, A., De, M., “A Data Warehouse Architectural Design Using Proposed Pseudo Mesh
Schema”, Proceedings of First International Conference on Intelligent Infrastructure: 47th Annual National Convention
of Computer Society of India, Science City Auditorium, Kolkata, December, 2012, pp. 138–141, ISBN (13)–978-1-25-
906170-7 & ISBN (10)–978-1-25-906170-1

24. Chowdhury, R., Pal, B., “Proposed Hybrid Data Warehouse Architecture Based on Data Model”, International Journal
of Computer Science and Communication, 1 (2), July–December. 2010, pp. 211–213

