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Abstract. Lévy’s stochastic area for planar Brownian motion is the dif-
ference of two iterated integrals of second rank against its component one-
dimensional Brownian motions. Such iterated integrals can be multiplied
using the sticky shuffle product determined by the underlying Itô algebra of
stochastic differentials. We use combinatorial enumerations that arise from
the distributive law in the corresponding Hopf algebra structure to evaluate
the moments of Lévy’s area. These Lévy moments are well known to be
given essentially by the Euler numbers. This has recently been confirmed
in a novel combinatorial approach by Levin and Wildon. Our combinatorial
calculations considerably simplify their approach.

1. Introduction

Lévy’s stochastic area is the signed area enclosed by the planar Brownian path
and its chord. It was originally defined rigorously by Lévy [13] and now is in-
tensively applied in several areas of modern mathematics, such as rough path
analysis.

Let B = (X, Y ) be a planar Brownian motion in terms of components X and
Y which are independent one-dimensional Brownian motions.

Definition 1.1. The Lévy area of B over the time interval [a, b) is the stochastic
integral

A[a,b) = 1
2

∫ b

a

(
(X − X(a)) dY − (Y − Y (a)) dX

)
.

In this definition the integral takes the same value whether it is regarded as of
Itô or Stratonovich type, but in the remainder of this paper all stochastic integrals
will be of Itô type, in contrast to [12] where the Stratonovich integral is used.

Lévy studied the characteristic function in [13, 14, 15, 16, 17]. He derived the
following formula:

Theorem 1.2. (Lévy [13])

E
[
exp

(
izA[a,b)

)]
= sech

( 1
2 (b − a) z

)
.
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We can expand the right-hand side of the formula in Theorem 1.2 using the
Taylor series

sech(z) =
∞∑

m=0
(−1)m A2m

(2m)!
z2m , (1.1)

where the even Euler zigzag numbers A2m are related to the Riemann zeta function
ζ by

ζ (2m) = π2m

(2m)!
A2m . (1.2)

This expansion shows that the nonvanishing moments of the Lévy area A[a,b) are
given by

E
[
A[a,b)

]2m =
(

b − a

2

)2m

A2m . (1.3)

In [17], Lévy first showed Theorem 1.2 by using dyadic approximation. His
second proof is based on the skew product representation of planar Brownian mo-
tion and depends on earlier work by Kac, Siegert, Cameron and Martin (see [17]).
In 1980, Yor [21] simplified Lévy’s proof by employing a result on Bessel pro-
cesses and an elementary result used by D.Williams. Shortly afterwards, Helmes
and Schwane [6] revisited the problem by extending the 2-dimensional set-up con-
sidered by Lévy to d ≥ 2 dimensions. They considered the joint characteristic
function of the stochastic process paired by the d-dimensional Brownian motion
W and a certain generalized Lévy area AJ,x

[0,t] given by

AJ,x
[0,t] :=

∫ t

0
[W (s) + x(s)]J(s)dW (s). (1.4)

Here, [W (s) + x(s)] is viewed as a row-vector, a 1 × d matrix. For d = 2, x = 0
and J =

[ 0 1
−1 0

]
the process AJ,x

[0,t]/2 coincides with Lévy stochastic area A[0,t]
in Definition 1.1. Recently Levin and Wildon in [12] used iterated integrals and
combinatorial arguments involving the shuffle product (see [7]) to prove Theorem
1.2. Our method starts from the same iterated integrals. Hence, we use that the
integral in Definition 1.1 can be written as

A[a,b) = 1
2

∫
a <x< y< b

(
dX(x)dY (y) − dY (x)dX(y)

)
. (1.5)

We may thus evaluate the moments as expectations of powers, using the so-called
sticky shuffle [8] Hopf algebra. The multiplication in this algebra can be used to
express the product of two iterated Itô stochastic integrals as a linear combination
of such iterated integrals. Since the expectation of an iterated integral vanishes
unless each of the individual integrators is time, the recovery formula [1, 8] involv-
ing higher order Hopf algebra coproducts reduces the evaluation of the moments
to a combinatorial counting problem.

We are anxious to understand the origin of the remarkable cancelations which
give rise to the Euler numbers A2m in the moments. In this regard, our com-
binatorial calculations are relatively direct. Whereas Levin and Wildon, in their
derivation [12], use Eulerian numbers, a refinement of Euler numbers, we do not
have to use these refinements in our calculations. Although, like in Levin and
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Wildon’s paper, the final result is not new in that everything can be derived from
Lévy’s formula for the characteristic function, our general approach also opens the
door to further generalizations. In a separate paper [11], we shall give a general-
ization which cannot be derived with previous methods. In that paper, the planar
Brownian motion is replaced by a one-parameter family of quantum or noncommu-
tative deformations [3]. The moments of the Lévy areas of these quantum planar
Brownian motions interpolate between the classical case of Levin and Wildon and
the already known Fock case [2], where they are all trivial.

The sticky shuffle Hopf algebra is reviewed in Section 2 and its use for reduc-
ing the evaluation of moments to a counting problem is described in Section 3.
In Section 4, we apply combinatorial tools to show the main result. Finally, in
the appendix, we provide a simple lemmas about Euler numbers needed in our
calculations.

2. The Sticky Shuffle Product Hopf Algebra

Let there be given an associative algebra L over C. The corresponding vector
space T (L) of tensors of all ranks over L is defined as

T (L) =
∞⊕

n=0

n⊗
j=1

L . (2.1)

We denote by (α0, α1, α2, ...) the general element α = α0 ⊕ α1 ⊕ α2 ⊕ · · · of T (L),
where only finitely many of the αm are nonzero. For each αm ∈

⊗m
j=1 L the

corresponding embedded element (0, 0, ..., αm, 0, ...) of T (L) is denoted by {αm} .
In the following, we use the notational convention that, for arbitrary elements α
of T (L) and L of L, α ⊗ L is the element of T (L) for which (α ⊗ L)0 = 0 and
(α ⊗ L)n = αn−1 ⊗ L for n ≥ 1.

The so-called sticky shuffle product Hopf algebra over L is formed by equipping
T (L) with the operations of product, unit, coproduct and counit defined as follows.

• The sticky shuffle product of arbitrary elements of T (L) is defined induc-
tively by bilinear extension of the rules

{1C} {L1 ⊗ L2 ⊗ · · · ⊗ Lm} = {L1 ⊗ L2 ⊗ · · · ⊗ Lm} {1C}
= {L1 ⊗ L2 ⊗ · · · ⊗ Lm} , (2.2)

{L1 ⊗ L2 ⊗ · · · ⊗ Lm} {Lm+1 ⊗ Lm+2 ⊗ · · · ⊗ Lm+n}
= ({L1 ⊗ · · · ⊗ Lm−1} {Lm+1 ⊗ · · · ⊗ Lm+n}) ⊗ Lm

+ ({L1 ⊗ · · · ⊗ Lm} {Lm+1 ⊗ · · · ⊗ Lm+n−1}) ⊗ Lm+n (2.3)
+ ({L1 ⊗ · · · ⊗ Lm−1} {Lm+1 ⊗ · · · ⊗ Lm+n−1}) ⊗ LmLm+n.

• The unit element for this product is 1T (L) = (1C, 0, 0, ...).
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• The coproduct ∆ is the map from T (L) to T (L) ⊗ T (L) defined by linear
extension of the rules that ∆

(
1T (L)

)
= 1T (L) ⊗ 1T (L) = 1T (L)⊗T (L) and

∆ {L1 ⊗ L2 ⊗ · · · ⊗ Lm}
= 1T (L) ⊗ {L1 ⊗ L2 ⊗ · · · ⊗ Lm} (2.4)

+
m∑

j=2
{L1 ⊗ L2 ⊗ · · · ⊗ Lj−1} ⊗ {Lj ⊗ Lj+1 ⊗ · · · ⊗ Lm}

+ {L1 ⊗ L2 ⊗ · · · ⊗ Lm} ⊗ 1T (L).

• The counit ε is the map from T (L) to C defined by linear extension of

ε
(
1T (L)

)
= 1C and ε {L1 ⊗ L2 ⊗ · · · ⊗ Lm} = 0 for m > 0. (2.5)

Remark 2.1. There is a useful alternative equivalent definition of the sticky shuffle
product. We can define the product γ = αβ by

γN =
∑

A∪B={1,2,...,N}

αA
|A|β

B
|B|. (2.6)

Here the sum is now over the 3N not necessarily disjoint ordered pairs (A, B)
whose union is {1, 2, ..., N}, and the notation is as follows; |A| denotes the number
of elements in the set A so that α|A| denotes the homogeneous component of rank
|A| of the tensor α = (α0, α1, α2, ...) , and αA

|A| indicates that this component is
to be regarded as occupying only those |A| copies of L within

⊗N
j=1 L labelled by

elements of the subset A of {1, 2, ..., N}. Thus with βB
|B| defined analogously the

combination αA
|A|β

B
|B| is a well-defined element of

⊗N
j=1 L. Here, if A ∩ B ̸= ∅,

double occupancy of a copy of L within
⊗n

j=1 L is reduced to single occupancy by
using the multiplication in the algebra L as a map from L × L to L. That (2.6) is
equivalent to (2.3) is seen by noting that the three terms on the right-hand side of
(2.3) correspond to the three mutually exclusive and exhaustive possibilities that
N ∈ A ∩ Bc, N ∈ Ac ∩ B and N ∈ A ∩ B in (2.6).

The recovery formula [1] expresses the homogeneous components of an element
α of T (L) in terms of the iterated coproduct ∆(N)α by

αN =
(

∆(N)α
)

(1,1,...,
(N)
1 )

. (2.7)

Here, ∆(N) is defined recursively by

∆(2) = ∆ and ∆(N) =
(
∆ ⊗ Id⊗(N−2)(T (L))

)
◦ ∆(N−1) for N > 2 . (2.8)

Hence, it is a map from T (L) to the Nth tensor power⊗
(N)T (L) =

⊗
(N)

∞⊕
n=0

n⊗
j=1

L =
∞⊕

n1,n2,...,nN =0

N⊗
r=1

nr⊗
jr=1

L (2.9)

so that ∆(N)α has multirank components α(n1,n2,...,nN ) of all orders. The recovery
formula (2.7) also holds when N = 0 and N = 1 if we define ∆(0) and ∆(1) to be
the counit ε and the identity map 1T (L) respectively.
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Note that ∆ is multiplicative, ∆ (αβ) = ∆ (α) ∆ (β), where the product on the
tensor square T (L) ⊗ T (L) is defined by linear extension of the rule

(a ⊗ a′)(b ⊗ b′) = ab ⊗ a′b′ . (2.10)

3. Moments and Sticky Shuffles

We now describe the connection between sticky shuffle products and iterated
stochastic integrals. We begin with the well-known fact that, for the one-dimen-
sional Brownian motion X and for a ≤ b,

(X(b) − X(a))2 = 2
∫

a≤x<b

(X(x) − X(a)) dX(x) +
∫

a≤x<b

dT (x), (3.1)

where T (x) = x is time. We introduce the Itô algebra L =C ⟨dX, dT ⟩ of complex
linear combinations of the basic differentials dX and dT, which are multiplied
according to the table

dX dT
dX
dT

dT 0
0 0

(3.2)

together with the corresponding sticky shuffle Hopf algebra T (L). For each pair of
real numbers a < b, we introduce a map Jb

a from T (L) to complex-valued random
variables on the probability space of the Brownian motion X by linear extension
of the rule that, for arbitrary dL1, dL2, · · · dLm ∈ {dX, dT}

Jb
a {dL1 ⊗ dL2 ⊗ · · · ⊗ dLm}

=
∫

a≤x1<x2<···<xm<b

dL1(x1) dL2(x2) dL3(x3) · · · dLm(xm) (3.3)

=
∫ b

a

· · ·
∫ x4

a

∫ x3

a

∫ x2

a

dL1(x1) dL2(x2) dL3(x3) · · · dLm(xm).

By convention Jb
a maps the unit element of the algebra T (L) to the unit random

variable identically equal to 1.
Then (3.1) can be restated as follows,

Jb
a ({dX}) Jb

a ({dX}) = Jb
a ({dX} {dX}) , (3.4)

using the fact that {dX}2 = 2 {dX ⊗ dX} + {dT} .
The following more general Theorem is probably known to many probabilists.

Theorem 3.1. For arbitrary α and β in T (L),

Jb
a(α)Jb

a(β) = Jb
a(αβ) .

Proof. By bilinearity it is sufficient to consider the case when

α = {dL1 ⊗ dL2 ⊗ · · · ⊗ dLm} , β = {dLm+1 ⊗ dLm+2 ⊗ · · · ⊗ dLm+n} (3.5)

for dL1, dL2, · · · , dLm+n ∈ {dX, dT} . In this case Theorem 3.1 follows, using the
inductive definition (2.3) for the sticky shuffle product, from the product form of
Itô’s formula,

d (ξη) = (dξ) η + ξdη + (dξ) dη (3.6)
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where stochastic differentials of the form dξ = FdX + GdT, with stochastically
integrable processes F and G, are multiplied using the table (3.2). □

For planar Brownian motion B = (X, Y ) the Ito table (3.2) becomes
dX dY dT

dX
dY
dT

dT 0
0 dT

0
0

0 0 0

(3.7)

Corollary 3.2. Theorem 3.1 holds when L is the algebra defined by the multipli-
cation table (3.7).

Basic for our calculations is the next theorem. It follows from the fact that
expectations of stochastic integrals against either dX or dY as integrators are
zero.

Theorem 3.3. For arbitrary n ∈ N, a < b ∈ R and basis elements dL1, dL2, . . . ,
dLn ∈ {dX, dY, dT},

E
[
Jb

a {dL1 ⊗ dL2 ⊗ ... ⊗ dLn}
]

= 0
unless dL1 = dL2 = · · · = dLn = dT.

In view of (1.5)

A[a,b) = 1
2

Jb
a(dX ⊗ dY − dY ⊗ dX) . (3.8)

Now consider the moments sequence of classical Lévy area in terms of the basis
(dX, dY, dT ), i.e., Eqn. (3.8). In view of Theorem 3.1[

A[a,b)
]n = 1

2n

(
Jb

a(dX ⊗ dY − dY ⊗ dX)
)n

= 1
2n

Jb
a ({dX ⊗ dY − dY ⊗ dX}n) . (3.9)

The nth sticky shuffle power {dX ⊗ dY − dY ⊗ dX}n will consist of non-sticky
shuffle products of rank 2n together with terms of lower ranks n, n+1, ..., 2n−1, all
of which except the rank n term will contain one or more copies of dX and dY ,
and will thus not contribute to the expectation in view of Theorem 3.3. The term

of rank n will be a multiple of dT ⊗ dT · · · ⊗
(n)
dT . Thus we can write

{dX ⊗ dY − dY ⊗ dX}n = wn

{
dT ⊗ dT · · · ⊗

(n)
dT
}

+ terms of rank > n. (3.10)
for some coefficient wn. The corresponding moment is given by

E
[
A[a,b)

]n = wn

2n
E

[
Jb

a

(
{dT ⊗ dT · · · ⊗

(n)
dT}

)]

= wn

2n

∫
a≤x1<x2<···<xn<b

dx1 dx2 · · · dxn

= wn (b − a)n

2nn!
. (3.11)
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By the recovery formula (2.7) and the multiplicativity of the nth order coprod-
uct ∆(n),

wndT ⊗ dT · · · ⊗
(n)
dT

= {{dX ⊗ dY − dY ⊗ dX}n}n

=
(

∆(n)({dX ⊗ dY − dY ⊗ dX}n))
(1,1,...,

(n)
1 )

=
((

∆(n)({dX ⊗ dY − dY ⊗ dX}
))n)

(1,1,...,
(n)
1 )

. (3.12)

Now

∆(n)({dX ⊗ dY − dY ⊗ dX}
)

=
∑

1≤j≤n

1T (L) ⊗ · · · ⊗
(j)

{dX ⊗ dY − dY ⊗ dX} ⊗ · · · ⊗ 1T (L)

+
∑

1≤j <k≤n

(
1T (L) ⊗ · · · ⊗

(j)
{dX} ⊗ · · · ⊗

(k)
{dY } ⊗ · · · ⊗

(n)
1T (L)

− 1T (L) ⊗ · · · ⊗
(j)

{dY } ⊗ · · · ⊗
(k)

{dX} ⊗ · · · ⊗
(n)

1T (L)

)
. (3.13)

The first term of this sum, being of rank 2, cannot contribute to the component of

joint rank (1, 1, ...,
(n)
1 ) of the nth power of ∆(n) ({dX ⊗ dY − dY ⊗ dX}), where

product in the nth tensor power
⊗(N)T (L) is defined exactly as in the case n = 2

in (2.10). Thus

wndT ⊗ dT · · · ⊗
(n)
dT

=
((

∆(n)({dX ⊗ dY − dY ⊗ dX}
))n )

(1,1,...,
(n)
1 )

(3.14)

=

 ∑
1≤j <k≤n

(
1T (L) ⊗ · · · ⊗

(j)
{dX} ⊗ · · · ⊗

(k)
{dY } ⊗ · · · ⊗

(n)
1T (L)

− 1T (L) ⊗ · · · ⊗
(j)

{dY } ⊗ · · · ⊗
(k)

{dX} ⊗ · · · ⊗
(n)

1T (L)

))n)
(1,1,...,

(n)
1 )

.

This calculation of wn can be finished using some combinatorics. We do that in
the following section.

4. The Moments of Lévy’s Area

To evaluate the moments E
[
A[a,b)

]n, we need to calculate the number wn, as
explained in (3.11). By (3.14), we have

wn dT ⊗ dT · · · ⊗
(n)
dT =

∑
h ̸=k

sn(h, k)Rh,k

n
(1,1,...,

(n)
1 )

(4.1)
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with

Rh,k := 1 ⊗ · · · ⊗ 1 ⊗
(h)

{dX} ⊗ 1 ⊗ · · · ⊗ 1 ⊗
(k)

{dY } ⊗ 1 ⊗ · · · ⊗ 1 (4.2)

and

sn(h, k) :=

{
+1 if h < k,

−1 if h > k.
(4.3)

The nth power in (4.1) is based on the sticky shuffle product in T (L) and its
extension to the nth tensor power

⊗(n)T (L), as described in (2.10) for n = 2.
If we set e := (h, k), then we may also write Re for Rh,k and sn(e) for sn(h, k).

Using distributivity, this yields

wn dT ⊗ dT · · · ⊗
(n)
dT =

∑ (
n∏

ℓ=1

sn(eℓ)

)(
n∏

ℓ=1

Reℓ

)
(1,1,...,

(n)
1 )

, (4.4)

where the sum runs over all n-tuples (e1, e2, . . . , en) of pairs (h, k) with h ̸= k.
We may imagine each pair eℓ = (hℓ, kℓ) as a directed edge with label ℓ, an arc,
from hℓ to kℓ. Each n-tuples (e1, e2, . . . , en) is then a directed labeled multigraph,
we say a digraph, on the vertex set V := {1, 2, . . . , n}. We have to see what
the individual arcs eℓ of a digraph (e1, e2, . . . , en) contribute to its corresponding
summand ±

∏n
ℓ=1 Reℓ

inside the sum (4.4). For example, in the case n = 4, the
two arcs e1 = (1, 2) and e2 = (3, 2) contribute

sn(e1) sn(e2)
(
Re1Re2

)
(1,1,1,1)

= −
(
({dX} ⊗ {dY } ⊗ 1 ⊗ 1)(1 ⊗ {dY } ⊗ {dX} ⊗ 1)

)
(1,1,1,1)

= −
(
{dX}1

)
(1) ⊗

(
{dY }{dY }

)
(1) ⊗

(
1{dX}

)
(1) ⊗

(
1 · 1

)
(1)

= − dX ⊗ dT ⊗ dX ⊗ 1 ,

(4.5)

where we basically ignored e3 and e4 (and the corresponding Re3 , Re4 , sn(e3) and
sn(e4)) to illustrate how the product operates.

In order to calculate the coefficient wn of dT ⊗dT ⊗· · ·⊗dT in (4.4), we need to
retain only those summands ±

∏n
ℓ=1 Reℓ

that contribute a scalar multiple of dT ⊗
dT ⊗· · ·⊗dT . We may discard other summands. Hence, we do not have to sum over
all digraphs (e1, e2, . . . , en). To see which ones we have to retain, let us assume that
(e1, e2, . . . , en) yields a multiple of dT ⊗dT ⊗· · ·⊗dT in (4.4). Since the n copies of
dX and n copies of dY in the unexpanded product

∏n
ℓ=1 Reℓ

must yield n copies
of dT, one in each possible position, each vertex of the digraph (e1, e2, . . . , en)
must have either exactly two incoming and no outgoing arcs (corresponding to a
(dY )2 ) or exactly two outgoing and no incoming arcs (corresponding to a (dX)2 ).
This shows that, inevitable, (e1, e2, . . . , en) must consist of disjoint alternatingly
oriented cycles that cover V, cycles whose arcs go “forward - backward - forward
- backward - . . . ”. Every such digraph (e1, e2, . . . , en) has necessarily an even
number of vertices, n = 2m, and contributes either +1 or −1 to w2m. Hence,

w2m =
∑ 2m∏

ℓ=1

sn(eℓ) , (4.6)
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where the sum runs over all diagraphs (e1, e2, . . . , e2m) that consist of disjoint
alternatingly oriented cycles. For odd n we do not obtain any term dT ⊗ dT ⊗
· · · ⊗ dT in (4.4), i.e. w2m+1 = 0.

To further simplify the purely combinatorial expression in (4.6), we transform
the alternatingly oriented digraphs (e1, e2, . . . , e2m) into cyclically oriented di-
graphs D, and, eventually, into permutations of a certain kind. Turning around
each second arc in each cycle, we get cyclicly oriented cycles (like cyclic one way
roads). These disjoint cycles still cover V = {1, 2, . . . , 2m} and have even length, as
they arose from alternatingly oriented cycles. By performing that transformation,
we do not change the numbers, as we can always go back to alternatingly oriented
cycles by flipping each second arc1. The change from alternatingly to cyclically
oriented cycles only results in an additional factor of (−1)m in our calculations.
Apart from this, formula (4.6) stays the same if we alter the summation range to
the set of all diagraphs (e1, e2, . . . , e2m) that consist of disjoint cyclically oriented
cycles of even length. Moreover, at this point, our cyclically oriented digraphs do
not contain multiple arcs, so that we may forget the labels 1, 2, . . . , 2m of the arcs
e1, e2, . . . , e2m. In other words, we may replace the 2m-tuples (e1, e2, . . . , e2m) in
the summation range with the corresponding sets {e1, e2, . . . , e2m}. If a digraph
with 2m many unlabeled arcs has no multiple (no indistinguishable) arcs, then it
corresponds to exactly (2m)! many labeled digraphs, yielding a factor of (2m)! in
our sum2. Thus,

w2m = (−1)m(2m)!
∑ 2m∏

ℓ=1

sn(eℓ) , (4.7)

where the sum is now running over all unlabeled diagraphs {e1, e2, . . . , e2m} that
consist of disjoint cyclically oriented cycles of even length.

Eventually, we can now turn towards permutations in the symmetric group
S2m as representatives for diagraphs D = {e1, e2, . . . , e2m}. We may view each
arc (h, k) ∈ D in any cyclically oriented unlabeled digraph D as the assignment
of a function value, h 7→ k =: s(h), and obtain a permutation3 s = sD on V =
{1, 2, . . . , 2m}. In our case, the cycles of s have even length. Denoting with
D2m ⊆ S2m the set of all permutations whose cycles have even length, we see that

w2m = (−1)m(2m)!
∑

s∈D2m

sn(s) , (4.8)

where

sn(s) :=
2m∏
j=1

sn(j, s(j)) . (4.9)

1To be precise, each (labeled) even cycle has two alternating orientations but also two cyclic
orientations. So, if we allow only even cycles, then every system of cycles has as many cyclic as
alternating orientations.

2Very careful readers might be astonished that we could not drop the edge labels earlier in
this way. We invite them to investigate the case m = 1 to see why.

3Every permutation s ∈ S2m is a bijective map from V to V. Since every map is a relation,
this means that s is a subset of V × V. In this sense, sD := D.
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Figure 1. The cyclic permutation s = (4 1 8 2 6 7 5 3) with small-
est transit h = 5.

To determine this sum, we cancel off some summands s with opposite signs
sn(s). We call a point h ∈ V a transit of s if

either s−1(h) < h < s(h) or s−1(h) > h > s(h) . (4.10)

Let D′
2m bet the set of all s ∈ D2m which have at least one transit. We show

that the elements of D′
2m cancel out completely and can be ignored in our sum.

Obviously, every s ∈ D′
2m contains a unique smallest transit h, and we obtain a

permutation s′ of V \{h} by replacing the chain of assignments s−1(h) 7→ h 7→ s(h)
with the shorter chain s−1(h) 7−→ s(h). The new permutation s′ has a unique odd
cycle

j1 7→ j2 7→ · · · 7→ s−1(h) 7−→ s(h) 7→ · · · 7→ j2k−1 7→ j1. (4.11)
If we walk once around this cycle and observe the indices j1, j2, j3, . . . as a kind
of altitude, then we will cross the altitude h as many times upwards, from below
h to above h, as downwards, from above h to below h. Hence, there is an even
number of ways to reinsert h as transit into that odd cycle, see Fig. 4. One half
of the permutations that we obtain will have positive sign, one half negative sign.
Removal and reinsertion of a smallest transit yields an equivalence relation ∼
on D′

2m. We have s ∼ r if and only if s′ = r′. The corresponding equivalence
classes form a partition of D′

2m, and each of them cancels off nicely. For example,
in Fig4, the four permutations, (4 1 8 2 6 7 5 3), (4 1 8 2 5 6 7 3), (4 1 8 5 2 6 7 3) and
(4 1 5 8 2 6 7 3) are the only permutations yielding the odd cycle (4 1 8 2 6 7 3), if the
smallest transit is removed. They form one equivalence class. And, as the reader
may check, its elements actually cancel out, as two of them have positive sign and
two have negative sign. So, indeed, we only have to sum over D2m\D′

2m, that is,
over all permutations s ∈ S2m with

either s−1(j) < j > s(j) or s−1(j) > j < s(j) (4.12)

for all j ∈ V := {1, 2, . . . , 2m}. We call this kind of permutations forth-back permu-
tations. Their number is the so-called Euler zigzag number A2m, i.e. |D2m\D′

2m| =
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A2m, as shown in Lemma 5.1 in the appendix. Since all forth-back permutations
have sign (−1)m, we get

w2m = (2m)! A2m. (4.13)
From this and Equation (3.11), we finally arrive at Lévy’s classical result (1.3):

Theorem 4.1. The nonzero moments of the Lévy area A[a,b) are

E
[
A[a,b)

]2m =
(

b − a

2

)2m

A2m .

5. Appendix About Euler Numbers

In this section, we present a simple lemmas about Euler numbers. It is of
sufficient general nature to be of potential interest elsewhere. Many similar results
and basics can be found in [19] and [20].

A permutation s in the symmetric group Sn is a zigzag permutation (mislead-
ingly also called alternating permutation) if s(1) > s(2) < s(3) > s(4) < · · · . In
other words, s is zigzag if s(1) > s(2) and

either s(j − 1) < s(j) > s(j + 1) or s(j − 1) > s(j) < s(j + 1) (5.1)
for all j ∈ {2, 3 . . . , n − 1}. If we have the initial condition s(1) < s(2), instead of
s(1) > s(2), we may call s zagzig. The number of all zigzag permutations in Sn

is called the Euler zigzag number An. These numbers occur in many places, for
example, as the coefficients of z2n

(2n)! in the Maclaurin series of sec(z) + tan(z). In
this paper, we met them as the number of forth-back permutations, as we called
them. These are the permutations s ∈ Sn with

either s−1(j) < j > s(j) or s−1(j) > j < s(j) (5.2)
for all j ∈ {1, 2, . . . , n}. Since no forth-back permutation can contain a cycle of odd
length, n must be even for there to exist forth-back permutations, say n = 2m > 0.
In that case, we actually have the following lemma:

Lemma 5.1. The number of forth-back permutations in S2m is the Euler zigzag
number A2m.

Proof. A bijection between the forth-back permutations s and the zigzag permu-
tations in S2m is obtained by applying the so-called transformation fundamentale
[5]. To perform this transformation, we write s in cycle notation

s = (s1, s2, . . . , sℓ2−1)(sℓ2 , sℓ2+1, . . . , sℓ3−1)(sℓ3 , sℓ3+1, . . . , sℓ4−1) · · ·
(sℓm , sℓm+1, . . . , s2m) . (5.3)

This representation and the numbers sj are uniquely determined if we require
that the first entry of every cycle is bigger than all other entries in that cycle, and
also that s1 < sℓ2 < sℓ3 < · · · < sℓm . The new permutation s̄ is then obtained by
forgetting brackets and setting s̄(j) := sj . We just have to see that this actually
yields a bijection s 7→ s̄ between forth-back and zigzag permutations. To do this
we proceed as follows.

Assume first that s is forth-back. Then all cycles necessarily have even length
and the permutation s̄ is obviously zigzag, s1 > s2 < s3 > s4 < · · · > s2m.
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Conversely, let us show that every zigzag permutation s̄ has a unique pre-image
s, and that that pre-image is forth-back. To construct a pre-image s of s̄, we only
need to find suitable numbers ℓj , which indicate where we have to insert brackets
into the sequence (s1, s2, . . . , s2m) := (s(1), s(2), . . . , s(2m)) to actually get a pre-
image. However, if we have already found ℓ2, ℓ3, . . . , ℓj , then ℓj+1 is necessarily
the first index x with sx > sℓj . Using this, we can construct a pre-image s of s̄ in
S2m, and it is uniquely determined. Moreover, if s̄ is zigzag then this construction
ensures that s1 and the sℓj are peaks and their neighbors and s2m are valleys.
Since also s1 > sℓ2−1, sℓ2 > sℓ3−1, . . . , sℓm > s2m, insertion of brackets before the
peaks ℓj yields forth-back cycles in s.

With the bijection established, it is now clear that there are as many forth-back
permutations as there are zigzag permutations in S2m. This number is the Euler
zigzag number A2m. □

The number of forth-back permutations with just one cycle is given by the
following lemma, which we present here as we think that it can be helpful in
future research. If Cn denotes the subset of cyclic permutations in Sn, we have the
following:

Lemma 5.2. The number of forth-back permutations in C2m is A2m−1.

Proof. The cycle notation s = (s1, s2, . . . , s2m) of cyclic permutations s ∈ S2m

is not uniquely determined, as one may rotate the entries cyclically. It becomes
uniquely determined if we require that s2m = 2m. In this case, removal of the
last entry yields a sequence (s1, s2, . . . , s2m−1) that is zagzig (with s1 < s2 as
s2m was the biggest entry of s). If we define s̄ ∈ S2m−1 by setting s̄(j) := sj ,
for j = 1, 2, . . . , 2m − 1, we obtain a bijection s 7→ s̄ from the cyclic forth-back
permutations in S2m to the zagzig permutations in S2m−1. Indeed, every zagzig
permutation s̄ in S2m−1 has the cycle s := (s̄(1), s̄(2), . . . , s̄(2m−1), 2m) as unique
pre-image. The existence of this bijection shows that the number of cyclic forth-
back permutations in S2m is equal to the number of zagzig permutations in S2m−1,
which is A2m−1, as for zigzag permutations. □
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