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Abstract: This paper presents a goal programming approach for solving 
multiobjective fractional programming problems in which coefficients of the 
objectives as well as the system constraints are considered as interval- valued. 
In the model formulation of the problem, first the interval-valued system 
constraints are converted into the equivalent crisp system by using interval 
programming approach. Then, the target intervals for goal achievement of the 
respective objectives are determined by considering the individual best and worst 
objective values in the decision making environment. The fractional objective 
goals are transformed into linear goals by employing the iterative parametric 
method which is an extension of Dinkelbach approach. In the solution process, 
the goal achievement function, termed as ‘regret function’, is formulated for 
minimizing the unwanted deviational variables to achieve the goals in their 
specified ranges and thereby arriving at most satisfactory solution in the decision 
making environment. 
To illustrate the proposed approach one numerical example is solved. 
Keywords - Fractional Programming, Goal Programming, Interval Arithmetic, 
Interval Programming, Iterative approach. 

1. INTRODUCTION 
In the real-world decision making situations, decision makers (DMs) are frequently 
faced with the three types of uncertainties in the area of inexact programming, 
which are stochastic programming (SP), fuzzy programming (FP) and interval 
programming (IP).  

The SP based on the probability theory, initially introduced by Charnes and 
Cooper [5], has been studied [14, 16] extensively in the past and applied to the 
various real-life problems [12, 13] by Keown et al. (1978, 1980) and others. 

On the other hand, FP based on the theory of fuzzy sets, initially 
introduced by Zadeh [26] in 1965, has been studied [1,7, 8, 27] deeply 
during the last 45 years from the viewpoint of the potential use to daily life 
problems [2] with imprecise data. 

Now, in a certain decision situation, it has been realized that parameter 
values are found to be neither probabilistic nor fuzzy, but they are rather in 
the form of intervals with certain lower- and upper- bounds.  
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To overcome such a situation, IP approach [4, 10, 11, 14], based on 
interval arithmetic [10,17], has appeared as a prominent tool for solving 
decision problems with interval-valued parameter sets.  

IP approaches to decision problems in inexact environment have been 
deeply studied by Birtran [3] and Steuer [24] in the past. Mainly, two types 
of methodological aspects are used to solve the IVP problems. The first one 
is based on the satisfying philosophy of GP and the second one is a 
traditional method of optimization. GP approaches [9, 20, 21] to IP problem 
have been introduced by Inuguichi and Kume [10] in 1991. The potential 
use of IP approach to mobile robot path planning [7] and portfolio selection 
[8] has been studied in the past. The methodological development made in 
the past has been surveyed by Oliveira and Antunes [18] in 2007. However, 
the IP approach to multiobjective fractional programming problems 
(MOFPPs) is yet to be circulated in the literature. 

In this article, a GP solution approach to MOFPPs with interval valued 
objectives together with interval valued system constraints is presented. In 
the model formulation of the problem, the interval valued system 
constraints are transformed into equivalent crisp system constraints by 
using the interval inequality relation which was first introduced by Tong 
Shaocheng [25] in 1994 and further developed by Sengupta et al. [23] in 
2001. Then, the target intervals for goal achievement in the interval goal 
programming approach are determined by considering the individual best 
and worst objective values of each objective in the decision making horizon. 
The interval-valued objectives with target intervals are transformed into 
standard goals in the conventional GP formulation by using interval 
arithmetic operation rule [10, 17] and then introducing under- and over 
deviational variables to each of them. To avoid the computational 
complexity of using the conventional fractional programming approach [15] 
to MOFPP,  an iterative parametric approach [19] which is an extension of 
Dinkelbach approach [6] is used to convert the fractional objective goals 
into linear goals to solve the problem by using linear GP methodology. 

In solution process, both the aspects of GP, minsum GP [21] as well as 
minimax GP [9] for minimizing the (unwanted) deviational variables are 
taken into consideration with a view to minimize the overall regret in the 
context of achieving the goal values within the specified ranges of the target 
intervals in the decision making horizon.  

The proposed approach is illustrated by a numerical example. 
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2.  PROBLEM FORMULATION 
The generic form of an interval valued MOFPP with interval valued system 
constraints can be stated as: 

Find ),.....,,( 21 nxxxX  
so as to: 

Maximize
],[],[

],[],[
)(

1

1













 n

j

U
k

L
kj

U
kj

L
kj

n

j

U
k

L
kj

U
kj

L
kj

k

xbb

xaa
Z




X ,    k=1,2,……K    (1)                                       

subject to  njmieexcc
n

j

U
i

L
ij

U
ij

L
ij ,...,2,1;,..,2,1,],[],[

1


        
(2)                 

 

where andRx j  )0( ],,[],,[ U
kj

L
kj

U
kj

L
kj bbaa ],[ U

ij
L
ij cc (k=1,2,…,K; 

i=1,2,…,m; j=1, 2,…,n) represent the vectors of interval, ],[ U
k

L
k   and 

],[ U
k

L
k  are constant intervals, L and U stands for  the lower and upper bounds 

of the respective intervals. 
To avoid infeasibility, it is customary to assume that, 

0],[],[
1




n

j

U
k

L
kj

U
kj

L
kj xbb  , SX  .  

Now, determination of target intervals of goal achievement is presented in the 
Section 2.1. 

 DETERMINATION OF TARGET INTERVALS 
The k-th objective )X(Zk  in (1) can be explicitly expressed as [17]: 
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Using the interval arithmetic rule [16], the objective in (3) can be presented as:  
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        = )](),([ XTXT kUkL , (say),  k =1,2,…,K           (4)           

To determine the target intervals, the best and the worst solutions of the 
defined interval valued objectives are to be obtained first. For this it is necessary 
to transfer the interval-valued system constraints into crisp system. 

Using the approach introduced by Tong [25] and further studied by Sengupta 
et al. [23] for the inequality constraints involving interval coefficients, the crisp 
equivalent system constraints of the i-th interval constraints in (2) can be written 
as: 
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where jx j  ,0 ; ]1,0[ , and α can be determined according to the needs 

and desires of the DM in the decision making environment.                                                                                
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Now, from the viewpoint of achieving the objective values within the best and 
worst decisions, the target intervals can be considered as ],[ U
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Then, incorporating the target intervals, interval valued objectives in (4) can 

be expressed as [21]: 
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2.2.    GOAL PROGRAMMING FORMULATION 
In the GP framework [9], the interval-valued objectives are transformed into crisp 
objective goals by introducing under-and over-deviational variables to each of 
them. In the proposed problem, the objectives goals can be constructed from the 
expression in (6) as: 
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where 0,,, 
kUkUkLkL dddd  represent under-and over-deviational variables 

associated with respective goals and they satisfy the relations, 

0. 
kLkL dd and 0. 

kUkU dd ,         k = 1,2,…..,K. 

It is to be observed that the goals in (7) and (8) are fractional in form. The 
computational complexity arises [21] due to this fractional goals. To overcome this 
complexity different approaches have been studied in the area of fractional 
programming [15]. In this paper, the iterative approach introduced in [18] 
extension of Dinkelbach approach [6] is adopted in the solution process of the 
problem. 

2.3. LINEARIZATION OF THE RATIO GOALS 
The fractional form of TkU (X) in the k-th goal expression in (7) can be presented 
as follows:  
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Now, optimization of the k-th functional goal expression in (9) is equivalent 
to optimize the functional form:  

))().()(( XHXXL kkk  , where k is a real number. 

Then the linear form of (9) is obtained as   
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Now, the fractional form of TkL(X) in the k-th goal expression in (7) can be 
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Proceeding analogous way, the linear parametric form of the goal expression 

in (8) can be presented as: 
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k=K+1,K+2,…,2K.                    (11) 
Now, it is to be followed that in the solution process, the proposed approach is 

iterative in nature in the process of solving the problem. 
A version of the iterative solution procedure in [19] is presented in the 

following steps. 

2.3.1 THE ALGORITHMIC STEPS 
Step 1:   Rename k  by ki  to represent it at the i-th solution stage.  

Step 2:   Set ki = 0 for i = 1 and k = 1, 2,…, K, K+1, K+2,…,2K and   

               solve the GP problems in (10) and (11). 
Step 3:   Let X1 be the solution obtained in the Step 2.  
              Then set i = 2 and determine 2k =Lk(X1)/Hk(X1). 

Step 4:   Solve the problem in (10) and (11) with the defined 2k .  

Step 5:   Determine )(.)()( XHXLD kkikki    

Step 6:   Define   such that   is a sufficiently small positive number.  
Step 7:   If |)(| kiD    go to Step 8, otherwise go to Step 10. 
Step 8:   Set i = i + 1. 
Step 9:   Compute 1, ik = Lk(Xi)/Hk(Xi) and return to the Step 2.  

Step 10:  If |)(| kiD  < , terminate the algorithm, and identify the   solution 
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where X* is the optimal solution and *
iX  is the approximate solution to the 

problem in the notion of satisficing philosophy in the conventional GP approach. 
Note 1: Regarding convergence of the proposed algorithm, it is to be noted 

that the executable IP model involves a number of linear programs in the solution 
process. Since the solution space is bounded and only the linear programs are 
involved there in the solution search process, the algorithm always stops after a 
finite number of iterations. 

3. GP MODEL FORMULATION 
In a decision making situation, the aim of each of the DMs, is to achieve the goal 
values within the specified ranges by means of minimizing the possible regrets in 
terms of the deviational variables involved in the decision situation. 
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In the present decision situation, the goal achievement function is termed as 
the ‘regret function’, since the regret intervals defined for goal achievement within 
the specified target intervals are to be minimized to the extent possible in the 
decision making horizon. 

Now, in the field of IP, both the aspects of GP, minsum GP [21] for minimizing 
the sum of the weighted unwanted deviational variables as well as minmax GP [9] 
for minimizing the maximum of the deviations, are simultaneously taken into 
account as a convex combination of them to reach a satisfactory decision within 
the specified target intervals of the goals. 

The regret function appears as [10]: 
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To demonstrate the feasibility of the approach one numerical example is 
solved. 

4. NUMERICAL EXAMPLE 
The following numerical example is considered to illustrate the proposed 
approach. 

Find   )x,x(X 21  so as to  
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Using (5) and considering α = 0.5 (according to the needs and desires of the 
DM), interval valued system constraints in (14) are converted into crisp form as 
[23]: 
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Then, following the proposed procedure the individual best and worst 
solutions of the first objective in (16) are obtained as: 
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respectively. 
The best and worst solutions of the second objective in (16) are obtained as: 
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b ;,0();( 22 
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Similarly, the best and worst solutions of the third objective are obtained as: 
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respectively.   
Now, the target intervals for the defined individual best and worst decisions of 

the objectives are successively considered as: 
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[0.30, 0.67], [0.65, 3.05] and [0.75, 3.15]. 
Then, interval valued objectives with their specified target intervals can be 

presented as: 

,
xx
x4x,

xx
xx 1 ]67.0,30.0[]

526
22

647
23[

21

2

21

21 






 
 

 ,
xx
x2x 

xx
xx 1 ]05.3,065.0[]

334
811,

375
75[

21

2

21

21 






 
 

.3.15] [0.75,]
5x3x6
4x174x ,

5x5x8
4x15x2[

21

21

21

21 






 
 

Using interval arithmetic technique [10, 11], equivalent objective goals can be 
defined as: 
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Then, following the above procedure and iterative approach, GP formulation 
of the problem can be obtained as: 

Find  )x,x(X 21  so as to 
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where 0,,, 
kUkUkLkL dddd (k=1, 2) with 

0.,0.  
kUkUkLkL dd   and  dd .  

Considering equal weights, i.e. 31321  www  and, the problem is 
solved by using a linear GP methodology. 

In the solution process, following the algorithmic steps as defined in the 
section 2.3.1, and using the Software LINGO (ver 12.0) iteratively, the optimal 
solution is achieved at the fourth iteration (considering α = 0.5). 

The resulting decision is  
),( 21 xx = (0,0.12) with Z1 = [0.33,0.43], Z2 = [1.98,2.77] and Z3 = [1.04, 2.99]. 

The result shows that a satisfactory solution within the specified target 
intervals is reached in the decision making environment. 

Note 2: It is to be noted that, instead of employing the linearization approach, 
if the problem of the achievement of the fractional goals in (17) is directly 
considered and solved by using the conventional interval GP approach, the solution 
is obtained as: 

),( 21 xx = (0, 2.33) with Z1 = [0.30,0.71], Z2 = [0.97,3.37] and  Z3 = [2.33, 2.47]. 
It can easily be followed from the above diagram that the achievement of all 

objective values under the proposed approach lies within the aspired range. Thus 
more acceptable decision is achieved here under the proposed approach than the 
conventional approach with respect to the achieving the goal values within their 
specified target intervals. 

5. CONCLUSION 
The main advantage of the proposed approach is that the computational complexity 
with the fractional goals does not arise here due to the efficient use iterative 
approach. The use of the proposed approach to real-world decision problems is an 
emerging area for study in future. The proposed approach may be extended to solve 
the hierarchical decentralized decision problem with interval parameter sets. 
However, it is hoped that the approach presented in this paper will open up a new 
vistas of research on interval programming for its actual implementation of real-
world problem in inexact environment. 
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