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Abstract. Following the recent work of Kuznetsov, we propose the Wiener-

Hopf factorization for a new class of Lévy processes. When all the poles of
the Lévy exponent φ have an order equal to two and satisfy some additional

conditions, we are able to locate, in the complex plane, the zeros of q− φ(z),

for q > 0, thereby yielding the factorization. We also provide a detailed
example and a set of conditions under which the factorization holds when the

poles are allowed to have various orders.

1. Introduction

Fluctuations are one of the most interesting facets of Lévy processes (processes
with stationary independent increments). They involve the running supremum
St = sup

0≤s≤t
Xs and running infimum It of the Lévy process (Xt){t≥0}. The most

important result in the theory is the well known Wiener-Hopf factorization which
describes the distribution of S and I at an independent exponential random time.
More precisely, if eq is an independent exponential random variable with parameter
q, then

q

q − ψ(z)
= E[eizSeq ]E[eizIeq ] = ψ+

q (z)ψ−q (z),

where

ψ(z) = log(E[eizX1 ]) = imz − σ2z2

2
+

∫
R∗

(eizx − 1− izxh(x))ν(dx) (1.1)

is the Lévy-Khintchine exponent of X (associated to the cut-off function h) and
ψ+
q , ψ

−
q are referred to as the Wiener-Hopf factors. For more details, see chapter

VI of [3] or chapter 6 of [15].
Even though some old results exist ([4]), it is only recently that there has

emerged a blossoming literature on closed forms of ψ±q : [2], [8], [9], [10],[13], [17].
The recent results rely on the fact that, in many cases, ψ can be extended

to a meromorphic function on the complex plane and thus can be seen as the
ratio of two analytic functions. Writing q(ψ(z) − q)−1 = fq(z)/gq(z), the aim is
then to obtain the Hadamard/Weierstrass factorization of fq and gq, which often
yield formulae that are easily Laplace (or Fourier) inverted into the distributions
of Seq and Ieq . Until very recently, the models in the literature either proposed
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180 GUILLAUME COQUERET

factorizations with finitely many (possibly) complex zeros ([17]), or factorizations
with an infinite number of real zeros ([8],[9],[13]). The present paper, as well as
the recent preprint [14], allows for a factorization with an infinite number of non-
real zeros. The Lévy measure in [14] can have any general form but its support is
bounded from above while our model allows unbounded positive jumps, but for a
specific type of Lévy measure.

Obtaining closed-forms of Wiener-Hopf factorizations is very useful since, given
the method developed in [12], it enables to efficiently simulate the couple (Xt, St)
at fixed times. These results find applications in Quantitative Finance (pricing of
barrier and lookback options) and Mathematical Insurance (ruin probabilities).

The paper is organized as follows: in section 2, we state our main result, that is,
the Wiener-Hopf factorization when the Lévy density is an infinite sum of Γ(2, ·)
densities. Sections 3 and 4 are aimed at proving and discussing this result. Lastly,
in section 5, we provide an example for which it is possible to asymptotically locate
the terms in the factorization.

2. Notation and Main Result

Let (Xt)t≥0 be a real-valued Lévy process starting at 0, with Lévy-Khintchine
representation given by (1.1). The Lévy measure we are interested in is absolutely
continuous and its density is given by

π(x) = 1(x>0)

∞∑
n=1

anρ
2
nxe
−ρnx + 1(x<0)

∞∑
n=1

ânρ̂
2
n(−x)eρ̂nx,

where the (an, ân, ρn, ρ̂n) are positive, real numbers satisfying

∞∑
n=1

an
ρn

<∞,
∞∑
n=1

ân
ρ̂n

<∞, (2.1)

which ensures that π is indeed a Lévy measure. Moreover, the sequences ρn, ρ̂n
are increasing and satisfy

∀n ≥ 1, min(ρn, ρ̂n) ≥ cn1+ε, max

(
ρn+1

ρn
,
ρ̂n+1

ρ̂n

)
≤ C, (2.2)

for some strictly positive constants C, c, ε. It is easy to check that under (2.1), ν

is indeed a Lévy measure since

∫
R∗
|x|π(x)dx < ∞. In this case, the truncation

function is not necessary and we set h := 0, which gives

ψ(z) = imz − σ2z2

2
+
∞∑
n=1

an

(
ρ2
n

(ρn − iz)2
− 1

)
+
∞∑
n=1

ân

(
ρ̂2
n

(ρ̂n + iz)2
− 1

)
.

In fact, it will be more convenient to work with the Laplace exponent:

φ(z) = log(E[ezX1 ])

= mz +
σ2z2

2
+
∞∑
n=1

an
2ρnz − z2

(ρn − z)2
−
∞∑
n=1

ân
2ρ̂nz + z2

(ρ̂n + z)2
. (2.3)
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MEROMORPHIC LÉVY-KHINTCHINE EXPONENTS WITH POLES OF ORDER TWO 181

This Laplace exponent is well defined on an open set containing zero because
c > 0.

Before stating our main result, we introduce the following condition, which is
discussed in the Appendix.

(∗)



∀j ≥ 1, ∀b2 > 0,

σ2

2
+
∞∑
n=1

an
ρ2
j − 4ρjρn + 3ρ2

n + b2

((ρn − ρj)2 + b2)2
+
∞∑
n=1

ân
ρ2
j + 4ρj ρ̂n + 3ρ̂2

n + b2

((ρ̂n + ρj)2 + b2)2
> 0,

σ2

2
+
∞∑
n=1

an
ρ̂2
j − 4ρ̂jρn + 3ρ2

n + b2

((ρn − ρ̂j)2 + b2)2
+
∞∑
n=1

ân
ρ̂2
j + 4ρ̂j ρ̂n + 3ρ̂2

n + b2

((ρ̂n + ρ̂j)2 + b2)2
> 0.

We are now ready to proceed with our main result, which states that the Wiener-
Hopf factorization in this setting has the same form as in [8] and the related
literature. We formulate it in a probabilistic fashion using the Laplace transform
of Seq and Ieq .

Theorem 2.1. For q, z > 0, under (2.1), (2.2) and (∗),

E[e−zSeq ] =
1

1 + z
ζ+0

∞∏
n=1

1 + z
ρn

1 + z
ζ+n

1 + z
ρn

1 + z
ζ−n

, (2.4)

E[ezIeq ] =
1

1− z
ζ−0

∞∏
n=1

1 + z
ρ̂n

1− z
ζ̂+n

1 + z
ρ̂n

1− z
ζ̂−n

, (2.5)

where ζ+
0 , ζ+

n and ζ−n (resp. ζ−0 , ζ̂+
n and ζ̂−n ) are the zeros of φ(z)− q with positive

(resp. negative) real part.

The notation used for the zeros stems from the fact that they go by pairs since,
as we shall see, each pole of order two ρn and ρ̂n will engender two roots for
φ(z) − q. The proof of the theorem relies heavily on the location of the zeros of
φ(z)− q, a topic discussed in the next section.

3. The Location of the Zeros

In [8], Kuznetsov addresses the problem of root localization in two steps: first
he finds obvious locations and then proves that they are sufficient (there are no
other zeros) using an asymptotic result. Here, we proceed differently: we show
that the function has exactly two zeros in an infinite number of well-defined zones,
and none outside these zones.

More specifically, we define

R0 = {z ∈ C , −ρ̂1 < <(z) < ρ1, |=(z)| ≤ max(ρ1, ρ̂1)}

and the two series of rectangles: ∀n ≥ 1,

Rn = {z ∈ C, ρn < <(z) < ρn+1, |=(z)| ≤ ρn+1}

R̂n = {z ∈ C, −ρ̂n > <(z) > −ρ̂n+1, |=(z)| ≤ |ρ̂n+1|}

The main result of the section follows.
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182 GUILLAUME COQUERET

Proposition 3.1. For any q > 0, under (∗), all the zeros of φ(z)− q are located

in R0∪
⋃
n≥1(Rn∪ R̂n). Moreover, for any n ≥ 1, Rn and R̂n both contain exactly

2 zeros or one double zero and so does R0.

The proof of the proposition will require a few intermediate results. We first
introduce two test functions, defined for qn, q̂n > 0,

Φn(z) =
1

(ρn − z)2
+

1

(ρn+1 − z)2
− qn, Φ̂n(z) =

1

(ρ̂n + z)2
+

1

(ρ̂n+1 + z)2
− q̂n

and which have the following properties.

Lemma 3.2. For all n ≥ 1, Φn (resp Φ̂n) has only two zeros in Rn (resp R̂n).

Furthermore, the real part of Φn (resp Φ̂n) is strictly negative on ∂Rn (resp ∂R̂n).

Proof. We will often use the usual complex notation z = a+ ib. We will prove the
lemma for Φn since the transposition to Φ̂n will be straightforward. First notice
that Φn has exactly four zeros:

z1,±
q =

ρn + ρn+1

2
±

√
qn

(
4 + qn(ρn − ρn+1)2 − 4

√
1 + qn(ρn − ρn+1)2

)
2qn

z2,±
q =

ρn + ρn+1

2
±

√
qn

(
4 + qn(ρn − ρn+1)2 + 4

√
1 + qn(ρn − ρn+1)2

)
2qn

The zeros z2,±
q are both real and outside Rn and since |4 + x − 4

√
1 + x| ≤ x for

x ≥ 0, it is obvious that

|4 + qn(ρn − ρn+1)2 − 4
√

1 + qn(ρn − ρn+1)2| ≤ qn(ρn − ρn+1)2,

hence, the z1,±
q belong to Rn and are either both real or both complex with

|=(z1,±
q )| ≤ (ρn+1 − ρn)/2.

Moreover,

<(Φn(a+ ib)) = −qn +
(ρn − a)2 − b2

((ρn − a)2 + b2)2
+

(ρn+1 − a)2 − b2

((ρn+1 − a)2 + b2)2
,

so that for a = ρn and denoting ρ = (ρn − ρn+1)2,

<(Φn(ρn + ib)) = −qn +
−1

b2
+

ρ− b2

(ρ+ b2)2
= −qn +

−ρ2 − b2ρ− 2b4

b2(ρ+ b2)2
< 0, ∀b ∈ R.

The proof is the same for a = ρn+1. Lastly, for b = ±ρn+1,

<(Φn(a± iρn+1)) = −qn +
(ρn − a)2 − ρ2

n+1

((ρn − a)2 + ρ2
n+1)2

+
(ρn+1 − a)2 − ρ2

n+1

((ρn+1 − a)2 + ρ2
n+1)2

and both numerators are strictly negative for a ∈ (ρn, ρn+1). �

The proof of Proposition 3.1 will rely on the following reinforcement, due to
Estermann (see [5] p. 156), of Rouché’s theorem.
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MEROMORPHIC LÉVY-KHINTCHINE EXPONENTS WITH POLES OF ORDER TWO 183

Theorem 3.3 (Estermann-Rouché’s Theorem). Let f and g be two holomorphic
functions inside and on some simple contour ∂K. If |f(z)− g(z)| < |f(z)|+ |g(z)|
on ∂K, then f and g have the same number of zeros (counting multiplicities) inside
K.

Our objective is to apply this theorem to the functions φ and Φn. The technical
assumption (∗) will be required to ensure the strict inequality required by the
theorem. This technique was already used in a similar context in the proof of the
main theorem of [17]. However, we must choose proper contours Kn to proceed. To
this purpose, we introduce two series of disks: given their radiuses εn,q, ε̂n,q > 0,
they are defined for all n ≥ 1 by

Dn,q = {z ∈ C, |z − ρn| ≤ εn,q}, D̂n,q = {z ∈ C, |z − ρ̂n| ≤ ε̂n,q}

We will need the following result related to these disks.

Lemma 3.4. For any n ≥ 1 and q > 0, there exist εn,q, ε̂n,q > 0 such that

i) ∀z ∈ Dn,q, |φ(z)− q − Φn(z)| < |φ(z)− q|+ |Φn(z)|
i’) ∀z ∈ D̂n,q, |φ(z)− q − Φ̂n(z)| < |φ(z)− q|+ |Φ̂n(z)|
ii) there are no zeros of φ(z)− q inside Dn,q

ii’) there are no zeros of φ(z)− q inside D̂n,q

Proof. The proof of both i) and ii) relies on the fact that as εn,q decreases, both
φ and Φn behave like t(z) = (ρn − z)−2 inside Dn,q. Indeed, φ(z) − anρ2

nt(z) is
bounded inside Dn,q and so is Φ(z)− t(z).

We divide Dn,q into eight radial subsets of equal size (and angle), as shown in
Figure 1. The function t has the following properties:

• in areas Im+, =(t) can take arbitrarily large values for εn,q small enough
• in areas Im-, −=(t) can take arbitrarily large values for εn,q small enough
• in areas Re+, <(t) can take arbitrarily large values for εn,q small enough
• in areas Re-, −<(t) can take arbitrarily large values for εn,q small enough

First, this means that for εn,q small enough, |φ(z) − q| > 1, yielding ii). More-
over, for εn,q small enough, there is either =(φ(z))=(Φn(z)) > 0 or <(φ(z) −
q)<(Φn(z)) > 0 for any z ∈ Dn,q. This implies i) since |x − y| = |x| + |y| if and
only if 0 belongs to the segment [x, y] in the complex plane (both imaginary and
real parts must have opposite signs).

We prove i′) and ii′) likewise. �

Lastly, to cover the whole complex plane, we need to show the following lemma.

Lemma 3.5. For q > 0, let z∗ = a + ib be a non-real zero of φ(z) − q. Then

|a| ≥
√

3|b|.

Proof. First, we have the following identities

2ρ(a+ bi)− (a+ bi)2

(ρ− a− bi)2
=
−a4 + 4a3ρ− 5a2ρ2 − 2a2b2 + 2aρ3 − 3b2ρ2 + 4ab2ρ− b4

((ρ− a)2 + b2)2

+ i
2bρ2(ρ− a)

((ρ− a)2 + b2)2
(3.1)

137



184 GUILLAUME COQUERET

ρ
n

−π/8−7π/8

π/8

3π/85π/8

7π/8

−3π/8−5π/8

Re-

Re-

Re+Re+

Im-

Im- Im+

Im+

Figure 1. The subdivisions of Dn,q

2ρ(a+ bi) + (a+ bi)2

(ρ+ a+ bi)2
=
a4 + 4a3ρ+ 5a2ρ2 + 2a2b2 + 2aρ3 + 3b2ρ2 + 4ab2ρ+ b4

((ρ− a)2 + b2)2

+ i
2bρ2(ρ+ a)

((ρ+ a)2 + b2)2
(3.2)

which leads to

<(φ(z∗)−q) = −q +
σ2

2
(a2 − b2) + am (3.3)

+
∞∑
n=1

an
−a4 + 4a3ρn − 5a2ρ2

n − 2a2b2 + 2aρ3
n − 3b2ρ2

n + 4ab2ρn − b4

((ρn − a)2 + b2)2

−
∞∑
n=1

ân
a4 + 4a3ρ̂n + 5a2ρ̂2

n + 2a2b2 + 2aρ̂3
n + 3b2ρ̂2

n + 4ab2ρ̂n + b4

((ρ̂n − a)2 + b2)2

and

=(φ(z∗)) = σ2ab+ bm+
∞∑
n=1

an
2bρ2

n(ρn − a)

((ρn − a)2 + b2)2
−
∞∑
n=1

ân
2bρ̂2

n(ρ̂n + a)

((ρ̂n + a)2 + b2)2

(3.4)

so that as b 6= 0 and =(φ(z∗)) = <((φ(z∗)− q) = 0, after simplifications,

0 =<(φ(z∗)− q)− a

b
=(φ(z∗))

=− q − (a2 + b2)
σ2

2
(3.5)

− (a2 + b2)

( ∞∑
n=1

an
a2 − 4aρn + 3ρ2

n + b2

((ρn − a)2 + b2)2
+
∞∑
n=1

ân
a2 + 4aρ̂n + 3ρ̂2

n + b2

((ρ̂n + a)2 + b2)2

)

138
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If a > 0 and |a| <
√

3|b|, then ∀n ≥ 1,

a2 − 4aρn + 3ρ2
n + b2 >

4

3
(a+ 3ρn/2)2 ≥ 0,

and a2 + 4aρ̂n + 3ρ̂2
n + b2 > 0 so that z∗ cannot be a zero of φ(z) − q. If a < 0

and |a| <
√

3|b|, then the contradiction is the same. Hence, for a 6= 0, the zero

z∗ = a+ ib must satisfy |a| ≥
√

3|b|.
Lastly, for a = 0,

<(φ(z∗)− q) = −q − σ2b2

2
−
∞∑
n=1

an
3b2ρ2

n + b4

(ρ2
n + b2)2

−
∞∑
n=1

ân
3b2ρ̂2

n + b4

(ρ̂2
n + b2)2

,

which is strictly negative for any real b, hence there are no purely imaginary zeros
of φ(z)− q. �

The lemma tells us that there are no zeros of φ(z)− q in the angles (π/6, 5π/6)
and (−5π/6,−π/6) of the complex plane. We are now ready to prove the propo-
sition.

Proof of Proposition 3.1. We begin with Rn and R̂n. The aim of the proof is
to show that there are εn,q, εn+1,q > 0 (resp ε̂n,q, ε̂n+1,q > 0) such that on the

boundary of Kn = Rn\{Dn,q ∪ Dn+1,q} (see Figure 2) (resp K̂n = R̂n\{D̂n,q ∪
D̂n+1,q}), the condition of Rouché’s theorem applies, that is,

(∗∗) |φ(z)− q − Φn(z)| < |φ(z)− q|+ |Φn(z)|

(resp |φ(z)− q − Φ̂n(z)| < |φ(z)− q|+ |Φ̂n(z)|). To prove this, we will rely on the
following equivalence, for x, y ∈ C

|x− y| = |x|+ |y|
if and only if

<(x)=(y) = =(x)<(y) and =(x)=(y) ≤ 0 and <(x)<(y) ≤ 0

 (3.6)

We are first interested in the horizontal and vertical segments of ∂Kn, a set
which we denote by Sn (see Figure 2). Recall the expression of <(φ(a + ib)) −
a
b=(φ(a+ ib)) given by (3.5). Because of (∗) (vertical segments), and Lemma 3.5
(horizontal segments), we have, for z = a+ib ∈ Sn, <(φ(a+ib))− a

b=(φ(a+ib)) < 0.
Hence, near the zeros of =(φ), <(φ) is negative. More precisely, there are two cases
involving εn := inf{|=(φ(z))|, z ∈ Sn}:

• either εn > 0 and =(φ) has no zero on Sn
• or εn = 0 and there exists ε > 0 such that Vn,q,ε = {z ∈ Sn, |=(φ(z))| <
ε,<(φ(z)− q) < 0} 6= ∅.

In either case, on Sn\Vn,q,ε, |=(φ)| is bounded from below by, say, κn,q,ε > 0.
We want to prove (∗∗) on the following three sets: Vn,q,ε, Sn\Vn,q,ε and ∂Kn\Sn

(this last set consisting in the two semi-circles).

• by Lemma 3.2, <(Φn) < 0 on Sn thus (3.6) ensures that (∗∗) holds on
Vn,q,ε if it is not empty.
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nρ n+ρ
1

n+1ρ

n+1ρ

Dn,q Dn+1,q

Figure 2. the contour Kn with Sn in hard line

• on Sn\Vn,q,ε, |=(φ)| ≥ κn,q,ε > 0 and both =(Φn) and <(φ) are bounded,
it is therefore possible to find a qn (in the definition of Φn) such that

|<(φ(z)− q)=(Φn(z))| < |=(φ(z))<(Φn(z))|, z ∈ Sn\Vn,q,

hence, by (3.6), (∗∗) holds on Sn\Vn,q.

• for the two semi-circles of ∂Kn, we invoke Lemma 3.4. The radiuses must
be chosen small enough for the zeros of Φn to be in Kn.

Therefore, by Rouché’s theorem, for any q > 0, under (∗), the function φ(z)− q
has exactly 2 zeros (or a double zero) in Rn.

The proof is identical for the sets R̂n. For R0, it is easy to see that the properties
of Φn and Φ̂n described in Lemma 3.2 also hold for Φ0 = 1

(ρ̂1+z)2 + 1
(ρ1−z)2 − q0

on ∂R0 and hence the same reasoning applies (with the proper K0, S0 and V0,q,ε).
Lastly, the 3 sets were constructed so that with Lemma 3.5, the whole complex

plane is covered. �

We denote by ζ+
n and ζ−n the two roots in Rn. If they are complex then =(ζ+

n ) >

=(ζ−n ), if not, then <(ζ+
n ) ≥ <(ζ−n ). The equivalent notations hold for R0 and R̂n.

4. Proof and Discussion of the Theorem

This section is divided into three parts. First, we prove Theorem 2.1, using
Proposition 3.1 and Kuznetsov’s paper [11]. Then we discuss a possible gener-
alization when the poles of φ are allowed to have any finite order. Lastly, we
introduce a simple condition which implies (∗).

4.1. Proof of Theorem 2.1. The proof will rely on the following lemma. We
denote by log the principal branch of the complex logarithm defined on C\R−.
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Lemma 4.1. Define A±(z) =

∣∣∣∣∣1z log

( ∞∏
n=1

ζ±n (ρn − z)
ρn(ζ±n − z)

)∣∣∣∣∣ and

Â±(z) =

∣∣∣∣∣1z log

( ∞∏
n=1

ζ̂±n (ρ̂n + z)

ρ̂n(ζ̂±n − z)

)∣∣∣∣∣ .
Then

A±(z) (resp. Â±(z))→ 0, as |z| → ∞, <(z) ≤ 0 (resp. <(z) ≥ 0).

Proof. First note that by Proposition 3.1 and (2.2),∣∣∣∣ζ±n (ρn − z)
ρn(ζ±n − z)

− 1

∣∣∣∣ =

∣∣∣∣z ρn − ζ+
n

ρn(ζ+
n − z)

∣∣∣∣ = O(n−1−ε),

so that the infinite product is well defined. Again by Proposition 3.1 and (2.2),

|ζ+
n /ρn| > 1. Moreover,

∣∣∣∣ ρn − zζ+
n − z

∣∣∣∣ → 1 as |z| → ∞, <(z) ≤ 0. The function

z 7→
∣∣∣∣ζ+
n (ρn − z)
ρn(ζ+

n − z)

∣∣∣∣ is thus bounded from below for <(z) ≤ 0 and there is C > 0

such that for <(z) ≤ 0 and n ≥ 1,∣∣∣∣log

(
ζ+
n (ρn − z)
ρn(ζ+

n − z)

)∣∣∣∣ ≤ C ∣∣∣∣ζ+
n (ρn − z)
ρn(ζ+

n − z)
− 1

∣∣∣∣ .
Hence,

A+(z) ≤

∣∣∣∣∣
∞∑
n=1

ρn − ζ+
n

ρn(ζ+
n − z)

∣∣∣∣∣ = O

( ∞∑
n=1

1

|ζ+
n − z|

)
.

Proposition 3.1 and (2.2) ensure that the infinite sum is finite for any z with
negative real part and by dominated convergence, A+(z)→ 0 as |z| → ∞.

The proof for A−, Â± is achieved in a similar fashion. �

Proof of Theorem 2.1. First note that due to condition (2.2) and Proposition 3.1,
∞∑
n=1

1

|ζ±n |
<∞, so that the order of the entire function

(q − φ(z))
∞∏
n=1

(
1− z

ρn

)2 ∞∏
n=1

(
1 +

z

ρ̂n

)2

is less than one (see [16], lecture 5, for instance). Hence, the only possible
Hadamard/Weierstrass representation ([16] page 26) for q

q−φ(z) is

q

q − φ(z)
= ecz

1

1− z
ζ+0

1

1− z
ζ−0

∞∏
n=1

1− z
ρn

1− z
ζ+n

1− z
ρn

1− z
ζ−n

∞∏
n=1

1 + z
ρ̂n

1− z
ζ̂+n

1 + z
ρ̂n

1− z
ζ̂−n

, (4.1)

for some c ∈ C after arrangement.
We rely on Lemma 4.1 to prove that c = 0 (in the same way as in the end of the

proof of Theorem 5 in [8], using the fact that φ(iz) = O(z2) for z → ∞, z ∈ R).
Lastly, all the conditions of Theorem 1 (f) from [11] are fulfilled, which completes
the proof. �
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4.2. Towards a generalization. It is natural to ask what might happen if the
density of the Lévy measure had the more general form

π(x) =1(x>0)

∞∑
n=1

an
ρmnn

(mn − 1)!
xmn−1e−ρnx

+ 1(x<0)

∞∑
n=1

ân
ρ̂m̂nn

(m̂n − 1)!
(−x)m̂n−1eρ̂nx,

where (an, ân, ρn, ρ̂n) satisfy the usual conditions and (mn, m̂n) ∈ {1, ...,M},
(M <∞), which would give

φ(z) = mz +
σ2z2

2
+
∞∑
n=1

an

(
ρmnn

(ρn − z)mn
− 1− zmn

ρn

)

+
∞∑
n=1

ân

(
ρ̂m̂nn

(ρ̂n + z)m̂n
− 1 +

zm̂n

ρ̂n

)
.

The case M = 2 can be treated using the ideas of the present paper (with a slightly
different condition (∗) and four pairs of test functions). The central problem
remains to get precise results on the location of the zeros of φ(z)− q.

In the general case, finding a multiple zero is not easy and we cannot apply
Theorem 2.1. However, heuristically, if we consider q →∞, we see that, asymptot-
ically, the (ρn,−ρ̂n) become zeros of order mn and m̂n. Hence, when q decreases,
the zeros should be located in the vicinity, in some sense, of the ρn and −ρ̂n.
Empirically, many computations show that, in fact, each ρn engenders mn zeros,
all of which are located inside circles with center ρn, radius ρn and all the more
close to ρn than q is large. However, this fact (which requires formal proof) does
not suffice to show the convergence A(z)→ 0 in the proof of the theorem.

In this spirit, we would like expose a set of conditions under which the theorem
remains valid. Namely,

Theorem 4.2. If there is an ordering of the zeros and poles, repeated according
to multiplicity, such that

i) φ(z) − q is meromorphic with real poles ρn,−ρ̂n and zeros ζn, ζ̂n satisfying

<(ζn) > 0, <(ζ̂n) < 0,

ii) the series with terms
1

ρn
,

1

ρ̂n
,

1

ζn
,

1

ζ̂n
are absolutely convergent,

iii) ∀n > 0, |ζn − ρn| < C|ρn|, |ζ̂n − ρ̂n| < Ĉ|ρ̂n| for some C, Ĉ > 0,

then (2.4) and (2.5) hold.

Proof. Condition ii) ensures that q/(φ(z)− q) is the ratio of two entire functions
of order less than one and has thus a similar form as (4.1), namely

q

q − φ(z)
= ecz

h+(z)

g+(z)

h−(z)

g−(z)
,

where h±, g± are holomorphic in C, with zeros in C± = {z ∈ C,±<(z) > 0}
normalized so that h±(0) = g±(0) = 1. Then, as in the proof of Theorem 2.1,
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MEROMORPHIC LÉVY-KHINTCHINE EXPONENTS WITH POLES OF ORDER TWO 189

condition iii) will ensure that z−1 log
(
h±(z)
g±(z)

)
→ 0 as z → ∓∞, so that the

factorization is indeed of Wiener-Hopf type (and c = 0). �

Remark 4.3. We wish to show the connexion between the papers on meromorphic
Lévy-Khintchine exponents and the ideas in [6]. For simplicity, we will consider
q ∈ Q := {q > 0, φ(z) − q has only simple zeros}. Once the zeros are located,
Theorem 1 in [9] is a special case of Theorem 4.1 in [6]. It is however possible to
consider complex zeros, as long as the proof of Lemma 3.1 in [6] remains valid.
This can only happen if the arguments of the zeros stay away from π/2 and −π/2.
Condition iii) in Theorem 4.2 implies this and it is verified in [8], [9] and [13], as
long as the (ρn, ρ̂n) in those papers have at most an exponential growth. It is thus
possible to very briefly prove Theorem 4.2 using the fact that under i), ii) and
iii),

∞∑
n=1

h+(ζn)

g′+(ζn)
e−xζn ,

∞∑
n=1

h−(ζ̂n)

g′−(ζ̂n)
e−xζ̂n

are convergent for x > 0 and can then be proven to be the densities of Seq and Ieq
using dominated convergence, as in [6], Theorem 4.1 (using Lemma 3.2).

5. An Example

5.1. Introducing the Laplace Exponent. Our goal in this section is to be
able to locate precisely the zeros of φ for one exponent involving known functions.
We will show that even in this very simple case, this is not so easy to achieve. We
set ρn = ρ̂n = n2 and unit an and ân, and propose the following Lévy measure,

π(x) = 1{x>0}

∞∑
n=1

xn4e−n
2x + 1{x<0}

∞∑
n=1

(−x)n4en
2x.

First note that in this case, as is shown at the very end of the Appendix, (∗)
holds. Moreover, it is easy to show (see Proposition 4 in [9]) that as x → 0±,
π(x) = O(|x|−3/2), which confirms that we can take a zero cut-off function (h := 0)
and the following representation for φ:

φ(z) = mz +
σ2z2

2
+
∞∑
n=1

2zn2 − z2

(n2 − z)2
−
∞∑
n=1

2zn2 + z2

(n2 + z)2
.

This particular choice of φ was made to exhibit known functions. Using the fact
that

2zn2 − z2

(n2 − z)2
=

1

4

(
−6z

z − n2
+ 2

z2 + zn2

(z − n2)2

)
and relations 1.421-3, 1.422-4 (second equality) in [7], we get

∞∑
n=1

2n2z − z2

(n2 − z)2
=

1

4

(
2− 3π

√
z cot(π

√
z) + π2z csc(π

√
z)2
)

and substituting i
√
z for

√
z,

−
∞∑
n=1

2n2z + z2

(n2 + z)2
=

1

4

(
2− i3π

√
z cot(iπ

√
z)− π2z csc(iπ

√
z)2
)
,
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where cot and csc are the usual cotangent and cosecant functions. Recalling

csc(z)2 = sin(z)−2 =
cos(z)2 + sin(z)2

sin(z)2
= 1 + cot(z)2, (5.1)

φ can in this case be expressed solely in terms of the cotangent function

φ(z) = mz + σ2

2 z
2 + 1 +

1

4

[
π
√
z cot(π

√
z)(−3 + π

√
z cot(π

√
z))
]

+
i

4

[
π
√
z cot(iπ

√
z)(−3 + iπ

√
z cot(iπ

√
z))
]

:= mz + σ2z2

2 + 1 +
1

4
(c+(z) + c−(z)).

We refer to section 4.3 of [1] for the behavior of the cotangent function in the
complex plane. One of its useful properties is that if z has a large imaginary part,
then both the real and imaginary parts of cot(z) can be accurately estimated.
More precisely, by Euler’s formula and equation 4.3.58 in [1], for any an > 0 and
for any bn > 0 large enough,

cot(an ± ibn) = cot(−an ± ibn)

= 2 sin(2a)e−2bn + i(∓1 + 2 cos(2a)e−2bn) + o(e−2bn)(1 + i). (5.2)

Lastly, recall that the zeros ζ±n = an ± ibn of φ(z) − q are ordered so that the
series (an){n≥1} is increasing.

Lemma 5.1. There are, asymptotically, no real zeros of φ(z)− q, except if σ = 0

and m ≥ π2/4 (resp m ≤ −π2/4), in which case, ζ̂±n (resp ζ±n ) are real.

Proof. The proof lies in the fact that, by (5.2), for z real large enough, c−(z) =
c+(−z) ∼ (−3π

√
z + π2z)/4. Moreover, both c+ and c− are U -shaped between

their poles with a negative local minimum which is close to −0.5. The local minima
of φ thus go to +∞ (yielding only complex zeros) or to −∞ (yielding only real
zeros). �

5.2. Locating the zeros. We will now focus on ζ±n , as the transposition to ζ̂±n
is straightforward. Note that ζ±n verifies

σ2

2
(ζ±n )2 +mζ±n + 1− q +

1

4

[
−3iπ

√
ζ±n cot

(
iπ

√
ζ±n

)
− π2ζ±n cot

(
iπ

√
ζ±n

)2
]

(5.3)

= −1

4

[
−3π

√
ζ±n cot

(
π

√
ζ±n

)
+ π2ζ±n cot

(
π

√
ζ±n

)2
]
.

For ζ±n away from the zeros of <(cot(π
√
z)), dividing (5.3) by ζ±n yields

=

3π

4

cot
(
π
√
ζ±n
)

√
ζ±n

− π2

4
cot

(
π

√
ζ±n

)2
 = ±σ

2

2
bn +O(=((ζ±n )−1)), n→ +∞

(5.4)
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and

<

(
−π

2

4
cot

(
π

√
ζ±n

)2
)

=
σ2

2
an +m+

π2

4
+R(n) + o(R(n)), n→ +∞ (5.5)

where R(n) = − 3π
4 <

(
(ζ±n )−1/2

[
cot
(
π
√
ζ±n
)

+ i cot
(
iπ
√
ζ±n
)])

.

We are now able to accurately locate the ζ±n , asymptotically, in all possible
cases.

Proposition 5.2. As n→ +∞,

• if σ > 0, ζ±n = n2 ± i
√

2/σ2 +O(n−2)(1 + i)

• if σ = 0 and m > 0, then

ζ±n = n2 + c+O(n−1)± in
π

(
cosh−1

(
1 +

π2

2m

)
+O(n−1)

)
• if σ = 0 and m ∈ (−π2/4, 0), then

ζ±n = n2 + n+ c+O(n−1) +±in
π

(
cosh−1

(
−1− π2

2m

)
+O(n−1)

)
• if σ = 0 and m = 0,

<(

√
ζ±n ) = n+ 3/8 +O(log(n)n−2) and

2π=(
√
ζ+
n )

log( 4π
3
√

2
n)
→ 1

• if σ = 0 and m ≤ −π2/4, then

ζ−n = n2 +
n

π

(
cos−1

(
1 +

π2

2m

)
+ cn−1 + o(n−1)

)
and

ζ+
n = (n+ 1)2 − n

π

(
cos−1

(
1 +

π2

2m

)
+ cn−1 + o(n−1)

)
,

for some irrelevant constants c, and where cos−1 and cosh−1 are defined on [−1, 1]
and [1,+∞) respectively.

Proof. The proof being quite lengthy, some minor steps and details will be omitted.
Since the zeros will be located in the vicinity, in some sense, of the poles of φ,

we will keep the following notation throughout the proof√
ζ±n = n+ dn ± i

bn
2(n+ dn)

.

The periodicity of the cotangent function in the real variable yields
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cot

(
π

√
ζ±n

)
= cot

(
πdn ± i

πbn
2(n+ dn)

)
= cot

(
π(2d2

n + 2ndn ± ibn)
1

2(n+ dn)

)
. (5.6)

If σ > 0, then by (5.5), bn/n→ 0 and dn → 0 (if not the real part on the l.h.s.
would be bounded).

Using the following series expansions for z → 0, (4.3.70 in [1])

cot(π(a+ ib)z)2 = (πz(a+ ib))−2 − 2/3 +O(((a+ ib)z)2),

we have the following asymptotics as n→ +∞,

−π
2

4
cot

(
π

√
ζ±n

)2

=− (n+ dn)2

(2d2
n + 2ndn ± ibn)2

+ π2/6 + o(1)(1 + i)

=− (n+ dn)2 4(d2
n + ndn)2 − b2n

(4(ndn + d2
n)2 + b2n)2

+ π2/6

± i(n+ dn)2 4(ndn + d2
n)bn

(4(ndn + d2
n)2 + b2n)2

+ o(1)(1 + i)

= n2 b2n − 4n2d2
n

(4n2d2
n + b2n)2

+
π2

6

± in2 4ndnbn
(4n2d2

n + b2n)2
+ o(1)(1 + i). (5.7)

From (5.5) and (5.4), it follows that

n2 b2n − 4n2d2
n

(4n2d2
n + b2n)2

=
σ2

2
n2 + o(n2), n→ +∞ (5.8)

± n2 4ndnbn
(4(ndn)2 + b2n)2

= ±σ
2

2
bn + o(1), n→ +∞. (5.9)

Because σ > 0, (5.8) imposes that both bn and ndn do not diverge. Therefore,
the l.h.s. of (5.9) implies that either bn or ndn goes to 0 and because the r.h.s. in

(5.8) is positive, then it must be ndn → 0, which gives bn →
√

2/σ2. With (5.9),
this yields dn = O(n−3). All these facts imply that the o(n2) in (5.8) (which stems
from (5.5)) is in fact a O(1), which completes the proof.

If σ = 0 and m 6= 0, then using the eulerian representation of the cotangent
function (see 4.3.58 in [1] for instance), (5.4) and (5.5) are rewritten into

sinh
(
πbn
n+dn

)2

− sin(2πdn)2(
cosh

(
πbn
n+dn

)
− cos(2πdn)

)2 = 1 +
4m

π2
+

4

π2
R(n) + o(R(n)) (5.10)
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and

±
2π sinh

(
πbn
n+dn

)
sin(2πdn)(

cosh
(
πbn
n+dn

)
− cos(2πdn)

)2

−
3
(

bn
2(n+dn) sin(2πdn)± (n+ dn) sinh

(
πbn

(n+dn)

))
((n+ dn)2 +

b2n
4(n+dn)2 )(cosh

(
πbn
n+dn

)
− cos(2πdn))

= O(=((ζ±n )−1)), (5.11)

where both R(n) and O(=((ζ±n )−1)) converge to 0.
Notice that for bn/n→ +∞, the l.h.s. of (5.10) converges to 1, thus bn/n must

be bounded (since m 6= 0). Hence, because 0 is a pole for =(cot(z)), (5.11) imposes
that either sin(2πdn) or bn/n goes to 0. In fact, because of the positivity of (5.10),
sin(2πdn) → 0 while bn = O(n). Note that this gives =((ζ±n )−1) = O(n−3) and
R(n) = O(n−1). Equation (5.10) then imposes dn → 0 if m > 0 and dn → 1/2 if
m < 0. For m > 0, it can then be rewritten into

cosh
(
πbn
n+dn

)2

− 1(
cosh

(
πbn
n+dn

)
− 1
)2 =

cosh
(
πbn
n+dn

)
+ 1

cosh
(
πbn
n+dn

)
− 1

= 1 +
4m

π2
+O(n−1),

thereby yielding the constant in the imaginary part. Using the Taylor expansion
of the sinus function at 0, (5.11) implies dn = (d+ δn)/n and is simplified into

n−1

± 4π2(d+ δn)

cosh
(
πbn
n+dn

)
− 1
∓ 3 +O(n−2)

 = O(n−3),

from which d and δn = O(n−2) can be inferred. Writing bn = (b+βn)n for βn → 0,
and recalling the expansion

sinh(π(bn + βn)) = sinh(πbn) + πβn cosh(πbn) + o(βn)

implies that βn = O(n−1), by (5.10). Note that in this case, the constant c in the
proposition depends on d and b. The case m ∈ (−π2/4, 0) is treated similarly.

The case σ = 0 and m = 0 is very special as, by (5.10), it is in fact necessary
that bn/n → +∞. More precisely, (5.11) yields πbn

n log(δn) → 1 for some constant

δ > 0 which verifies

4π sin(2πdn)

δn
− 3

(
log(δn) sin(2πdn)

δn3
+

1

n

)
= O(log(n)n−3).

From the Taylor expansion of the sinus function at 0 and the fact that sin(a +
b) = sin(a) cos(b) + cos(a) sin(b), we can deduce that dn = d+O(log(n)n−2) with
4π sin(2πd) = 3δ. Because bn/n→ +∞, |=((ζ±n )1/2)| → +∞ and hence, by (5.2),

R(n) = −3π/4n−1 + o(n−1). As sinh
(
πbn
n+dn

)2

∼ cosh
(
πbn
n+dn

)2

∼ δn/2, n→ +∞,
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it can be deduced from (5.10) that

4 cos(2πdn)

δn
+O(n−2) = − 3

πn
+ o(n−1),

from which we infer d = 3/8 and δ = 4π
3 sin(3π/4).

Lastly, if σ = 0 and m < π2/4, writing
√
ζ−n = n + dn and again using the

eulerian form of the cotangent function and (5.5),

− sin(2πdn)2

(cos(2πdn)− 1)2
=

cos(2πdn) + 1

cos(2πdn)− 1

= 1 +
4m

π2
+

3

π

[
1 +

sin(2πdn)

cos(2πdn)− 1

]
n−1 + o(n−1),

which gives dn → d = cos−1
(

1 + π2

2m

)
/2π. Recalling cos(a+ b) = cos(a) cos(b)−

sin(a) sin(b) yields dn = d+ cn−1 + o(n−1). The same method holds for
√
ζ+
n−1 =

n− dn. �

5.3. Laplace transform of the first passage time. This result enables us to
compute interesting fluctuations quantities, such as the Laplace transform of the
first passage time of X: Tx = inf{t ≥ 0, Xt ≥ x}. Indeed, since P [St ≥ x] =
P [Tx ≤ t] it is easy to show that

P [Seq ≥ x] =

∫ 1

0

P [e−qTx ≥ y]dy = E[e−qTx ] := hq(x).

We aim at providing a graph of hq for some fixed values of q, m and σ2. Using
residues, it is possible to perform a Laplace transform inversion on the Wiener-
Hopf factors to get a series representation of the law of Seq (see Theorem 1 in [9]
for instance):

d

dx
P [Seq ≤ x] =

∞∑
n=1

[
c+n ζ

+
n e
−ζ+n x + c−n ζ

−
n e
−ζ−n x

]
+ c0ζ

+
0 e
−ζ+0 x, x > 0, (5.12)

where c±n =
1− ζ±n

n2

1− ζ±n
ζ+0

∏
k≥1
k 6=n

1− ζ±n
k2

1− ζ±n
ζ±k

∏
k≥1

1− ζ±n
k2

1− ζ±n
ζ∓k

, c0 =
∏
k≥1

1− ζ+0
k2

1− ζ+0
ζ+k

1− ζ+0
k2

1− ζ+0
ζ−k

,

and P [Seq = 0] = ζ+
0

∏
k≥1

ζ+
k

k2

ζ−k
(k + 1)2

= E[e−qT0+ ],

with T0+ = inf{t ≥ 0, Xt > 0}. The Laplace transform of this latter random
variable is not equal to 1 whenever 0 is not regular for (0,∞) (see chapter 6 in [15]
for further details).

We start by providing a sample of the the locations of the roots with positive
real and imaginary parts for the following parametrization: σ2/2 ∈ {0, 1}, m = 0
and q = 1:
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Case σ2/2 = 1 Case σ2 = 0
n ζ+

n

0 0.4431 0.4596
1 1.5284+0.4173i 1.800+0.273i
2 4.2785+0.9257i 5.4705+1.2401i
3 9.1176+0.9813i 11.1627+2.2600i
4 16.0638+0.9884i 18.866+3.3642i
5 25.0403+0.9914i 28.5772+4.5378i
6 36.0278+0.9933i 40.2934+5.7690i
7 49.0204+0.9947i 54.0134+7.0492i
8 64.0156+0.9957i 69.7364+8.3720i
9 81.0123+0.9964i 87.4620+9.7321i
10 100.0100+0.9971i 107.1894+11.1263i
...

...
...

50 2500.0004+0.9998i 2536.771+80.085i

The last line of the table is coherent with the asymptotic results of Proposition
5.2. Integrating (5.12) and taking x = 0 yields that∑

n≥0

cn = 1− P [Seq ],

from which we infer that the cn are bounded (in fact , their moduli decrease very
rapidly). Hence, it is possible to compute hq using a finite number of terms, even
for x close to zero. We provide below the graphs for the cases σ2/2 ∈ {0, 1} and
q ∈ {1, 2, 3} in figures 3 and 4.

Appendix A. Some Remarks on the Condition of the Theorem

It is easy to find examples for which (∗) fails. However, for many cases when
an, ân and ρn, ρ̂n are expressed using basic functions (exponential, power), (∗) will
in fact hold. We provide an example below.

We split (∗) into its two inequalities: the upper (∗1) and the lower (∗2), and we
will only comment on (∗1) because the transposition to (∗2) will be immediate. We

Figure 3. Plot of the
function hq for σ2 = 2
and m = 0

Figure 4. Plot of the
function hq for σ2 = 0
and m = 0
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are in fact only interested in the term T (ρj , b) =
∞∑
n=1

an
(ρj − 3ρn)(ρj − ρn) + b2

((ρn − ρj)2 + b2)2
,

since it is the only one which can be negative. Furthermore, if we consider l(j) =
sup{k ≥ 1, 3ρj−k ≥ ρj} (with l(j) = 0 if 3ρj−1 ≤ ρj), we have

T (ρj , b) >

l(j)∑
k=1

[
aj

b2l(j)
+ aj+k

(ρj+k − ρj)(3ρj+k − ρj) + b2

((ρj+k − ρj)2 + b2)2

+ aj−k
(ρj−k − ρj)(3ρj−k − ρj) + b2

((ρj−k − ρj)2 + b2)2

]
(A.1)

:=

l(j)∑
k=1

tk(ρj , b).

Now, tk(ρj , b) can only be negative if 3ρj−k−ρj > 0. This seldom happens if ρn
increases quicky. For instance, if ρn = cn for c > 1, then 3ρj−k − ρj > 0⇐⇒ k <
ln(3)
ln(c) . In this case, if (an)n≥1 is smooth enough (increasing, for instance), it is not

hard to show that (∗1) holds since for any j ≥ 1, there are only a fixed number of
negative terms. However, if ρn increases at a slower rate (typically of power type),
then the number of negative terms increases with j. To show that (∗1) holds then
requires some additional conditions, a set of which is detailed below.

Proposition A.1. If the following conditions are fulfilled,

i) (an)n≥1 is increasing

ii) ∀n ≥ 2, ρn+1 − ρn ≥ (ρn − ρn−1)

iii) ∀j > k ≥ 1, 3ρj−k − ρj ≥ 0 =⇒ 2 (ρj − ρj−k)3 ≥ (3ρj−k − ρj)(ρj+k −
ρj)(ρj+k − 2ρj + ρj−k),

then (∗1) holds.

Proof. We want to study tk(ρj , b) as a function of b. The idea is to show that any
possible negative term indexed by j−k in (A.1) is absolutely smaller than its j+k
counterpart. It is obvious that, by i), it is sufficient to prove this for a constant
sequence (an)n≥1; hence we set aj := 1 for all j ≥ 1. For notational convenience,
we denote

A1 = ρj+k − ρj , A2 = 3ρj+k − ρj , B1 = ρj − ρj−k, B2 = 3ρj−k − ρj ,
which are all positive (the case B2 < 0 is irrelevant) and satisfy A2 = 3A1 +3B1 +
B2. Omitting the constant term in (A.1),

tk(ρj , b) ≥ A1A2 + b2

(A2
1 + b2)2

− B1B2 − b2

(B2
1 + b2)2

=
A1(3A1 + 3B1 +B2) + b2

(A2
1 + b2)2

− B1B2 − b2

(B2
1 + b2)2

≥ c0 + c2b
2 + c4b

4 + 2b6

(A1
1 + b2)2(B2

1 + b2)2
,
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where

c0 = −A4
1B1B2 +A1B

4
1B2 + 3A2

1B
4
1 + 3A1B

5
1

c2 = −2A2
1B1B2 + 2A1B

2
1B2 + 6A2

1B
2
1 + 6A1B

3
1 +A4

1 +B4
1

c4 = −B1B2 +A1B2 + 5A2
1 + 3A1B1 + 2B2

1

Note that by ii), A1 ≥ B1, hence c4 > 0. Condition iii) : 2B3
1 ≥ A1B2(A1 − B1)

implies

c0 ≥ −2B6
1 +A2

1B
4
1 +A1B

5
1 c2 ≥ −4B4

1 + 6A2
1B

2
1 + 6A1B

3
1 +A4

1 +B4
1 ,

which are both positive, by ii). This leads to tk(ρj , b) ≥ 0; the sum in (A.1) is
therefore positive and (∗1) holds. �

This result calls for a few comments. First of all, many positive terms have been
left out in the proof, thus (∗1) holds under much weaker conditions. Furthermore,
for any explicit formulation of an and ρn, i) is usually easily verified, and so is the
convexity condition ii) which is in fact not too restrictive, given (2.2). However,
iii) is much harder to prove. If we consider ρn = nα for α > 1, then we are
interested in

2(jα − (j − k)α)3 − (3(j − k)α − jα)((j + k)α − jα)((j + k)α − 2jα + (j − k)α)

and denoting k as a proportion of j: k = cj, this becomes

[2(1− (1− c)α)3 − (3(1− c)α − 1)((1 + c)α − 1)((1 + c)α − 2 + (1− c)α)]j3α.

Using numerical softwares, it is possible to show that this function of the variable
c is increasing and positive on (0, 1) for 1 < α < 15 (and in fact positive for

1 < α ≤ 15.87). Note that 3ρj−k − ρj ≥ 0 ⇐⇒ k ≤ 31/α−1
31/α j, hence the positivity

criterion should only be checked for c ∈
(

0, 31/α−1
31/α

)
.

Other techniques can be used to show that (∗1) also holds for α > 15.87 when
an is increasing. They rely on the fact that, as in the exponential case, there are,
proportionally, very few negative terms in T (ρj , b).
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