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Abstract. Our goal is to find classes of convolution semigroups on Lie
groups G that give rise to interesting processes in symmetric spaces G/K.
The K-bi-invariant convolution semigroups are a well-studied example. An
appealing direction for the next step is to generalise to right K-invariant con-
volution semigroups, but recent work of Liao has shown that these are in
one-to-one correspondence with K-bi-invariant convolution semigroups. We
investigate a weaker notion of right K-invariance, but show that this is, in
fact, the same as the usual notion. Another possible approach is to use gen-
eralised notions of negative definite functions, but this also leads to nothing
new. We finally find an interesting class of convolution semigroups that are
obtained by making use of the Cartan decomposition of a semisimple Lie
group, and the solution of certain stochastic differential equations. Exam-
ples suggest that these are well-suited for generating random motion along
geodesics in symmetric spaces.

1. Introduction

The category of Gelfand pairs is a beautiful context in which to explore proba-
bilistic ideas. It provides an elegant mathematical formalism, and contains many
important examples, not least the globally Riemannian symmetric spaces and the
homogeneous trees. Until quite recently, most studies of probability measures on
a Gelfand pair (G,K) have focussed on the K-bi-invariant case. In the context
that will concern us here, where the object of study is a convolution semigroup of
such measures, Herbert Heyer’s paper [16] presents a masterly survey of the main
developments of the theory, up to and including the early 1980s.

In fact, rightK-invariant measures on G are natural objects of study as they are
in one-to-one correspondence with measures on the homogeneous spaceN := G/K.
The additional assumption of left K-invariance certainly makes the theory ex-
tremely elegant, as it enables the use of the beautiful concept of spherical function,
as introduced by Harish–Chandra; thus we may study measures in the “Fourier pic-
ture”, using the “characteristic function” given by the spherical transform. Such
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an approach led to a specific Lévy–Khintchine formula, classifying infinitely di-
visible probability measures on non-compact symmetric spaces, in the pioneering
work of Gangolli [11] (see also [21] for a more recent treatment). Another key
consequence of the K-bi-invariance assumption is that it corresponds precisely to
semigroups/Dirichlet forms that are G-invariant on M (see Theorem 4.1 in [8]),
with respect to the natural group action; so that if N is a symmetric space, then
the induced semigroup commutes with all isometries.

In [5], Dooley and the author developed a Lévy–Khintchine formula on non-
compact semi-simple Lie groups, using a matrix-valued generalisation of Harish–
Chandra’s spherical functions. In the last part of the paper, an attempt was made
to project this to non-compact symmetric spaces when the convolution semigroup
comprises measures that are only right K-invariant. Since then Liao has shown
[20] that all right K-invariant convolution semigroups are in fact K-bi-invariant.
In the current paper, we will ask the question – are there any natural classes
of convolution semigroups, other than the K-bi-invariant ones, that give rise to
interesting classes of Markov processes on N?

Since rightK-invariance is so natural and attractive, we begin by asking whether
some weaker notion of convolution may lead to any interesting conclusions. We
present a candidate, but find that it once again leads to K-bi-invariance. Our
second approach is to generalise the ideas of positive-definite and negative-definite
function on the space P of positive-definite spherical functions, which were first
introduced, in the bi-invariant case, by Berg in [8]. The functions that Berg
considered were complex-valued, but when we drop left K-invariance, we find
that their natural generalisations must be vector-valued, and this requires us to
make use of certain direct integrals of Hilbert spaces over the space P . Once again,
however, we show that these objects lead to nothing new. Finally, in the semisimple
Lie group case, we introduce a promising class of convolution semigroups, which
are obtained by solving stochastic differential equations (SDEs). These SDEs are
driven by vector fields that live in that part of the Cartan decomposition of the Lie
algebra of G which projects non-trivially to N . Although we haven’t developed
the ideas very far herein, this concept seems more promising. In particular there
are already some interesting and non-trivial examples, which involve randomising
the notion of geodesic.

The organisation of the paper is as follows. Section 2 is an introduction that
briefly summarises all the harmonic analysis on Gelfand pairs that we will need in
the sequel. In section 3, we discuss various types of convolution semigroup, while
section 4 describes the generalised notions of vector-valued positive-definite and
negative-definite function. In section 5, in the Lie group/symmetric space setting,
we review Hunt’s theorem and the Lévy–Khintchine formula for convolution semi-
groups, and section 6 puts the main results of [5] within a more general framework.
Finally in section 7, we present the new class of convolution semigroups mentioned
above.

Notation. If G is a locally compact Hausdorff group then B(G) is its Borel
σ-algebra, and Cu(G) is the Banach space (with respect to the supremum norm)
of all real-valued, bounded, uniformly continuous functions (with respect to the



CONVOLUTION SEMIGROUPS REVISITED 475

left uniform structure)1 defined on G. The closed subspace of Cu(G) comprising
functions having compact support is denoted by Cc(G). If µ is a measure on G,
then µ̃ is the reversed measure, i.e., µ̃(A) = µ(A−1), for all A ∈ B(G). We recall
that if µ1 and µ2 are two finite measures on (G,B(G)), then their convolution
µ1 ∗ µ2 is the unique finite measure on (G,B(G)) so that

∫

G

f(g)(µ1 ∗ µ2)(dg) =

∫

G

∫

G

f(gh)µ1(dg)µ2(dh),

for all f ∈ Cc(G). If e is the neutral element in G, then δe will denote the Dirac

measure at e. The set Ĝ comprises all equivalence classes (with respect to unitary
conjugation) of irreducible unitary representations of G, acting in some complex
separable Hilbert space. If E is a real or complex Banach space, then B(E) will
denote the algebra of all bounded linear operators on E. If F(G) is some space of
functions on G, and K is a closed subgroup of G, we write FK(G) for the subspace
that comprising those functions that are right K-invariant, and we will naturally
identify this subspace with the corresponding space F(G/K) of functions on the
homogeneous space G/K of left cosets. We choose once and for all a left-invariant
Haar measure on G, which is denoted by dg within integrals. Haar measure on
compact subgroups is always normalised to have total mass one.

2. Gelfand Pairs and Spherical Functions

Let (G,K) be a Gelfand pair, so that G is a locally compact group with neutral
element e, K is a compact subgroup, and the Banach algebra (with respect to
convolution) L1(K\G/K) of K-bi-invariant functions is commutative. We will
summarise basic facts that we will need about these structures in this section.
Most of this is based on Wolf [22], but see also Dieudonné [9]. Throughout this
paper, we will, where convenient, identify functions/measures/distributions on the
homogeneous space G/K with right K-invariant functions/measures/distributions
on G. We emphasise that we do not assume that left K-invariance also holds.

If (G,K) is a Gelfand pair, then Haar measure on G is unimodular. Every

continuous multiplicative function from L1(K\G/K) to C is of the form f → f̂(ω),

where f̂(ω) =
∫
G
f(g)ω(g−1)dg. The mapping ω : G → C is called a (bounded)

spherical function. In general a spherical function on (G,K) is characterised by
the property that it is a non-trivial continuous function such that for all g, h ∈ G,

∫

K

ω(gkh)dk = ω(g)ω(h). (2.1)

The set S(G,K) of all bounded spherical functions on (G,K) is the maximal
ideal space (or spectrum) of the algebra L1(K\G/K). It is locally compact under
the weak-∗-topology (and compact if L1(K\G/K) is unital). The corresponding

Gelfand transform is the mapping f → f̂ (usually called the spherical transform
in this context). Let P := P(S,K) be the closed subspace of S(G,K) compris-
ing positive definite spherical functions. For each ω ∈ P , there exists a triple

1In this context, uniform continuity means that given any ǫ > 0, there exists a neighbourhood
U of e, so that supx∈G |f(g−1x)− f(x)| < ǫ for all g ∈ U .
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(Hω, πω, uω), where Hω is a complex Hilbert space, πω is a unitary representation
of G in Hω, and uω ∈ Hω is a cyclic vector, so that for all g ∈ G,

ω(g) = 〈uω, πω(g)uω〉.

Since ω(e) = 1, uω is a unit vector for all ω ∈ P ; moreover the representation πω
is irreducible, and spherical in that πω(k)uω = uω, for all k ∈ K. Finally, we have
dim(HK

ω ) = 1, where HK
ω := {v ∈ Hω;πω(k)v = v for all k ∈ K}.

There is a unique Radon measure ρ on P , called the Plancherel measure, such
that for all bounded functions f ∈ L1(K\G/K), g ∈ G,

f(g) =

∫

P

f̂(ω)ω(g)ρ(dω).

The support of ρ is the maximal ideal space P+ ⊂ P of the C∗-algebraC∗(G,K),
which is the uniform closure of the range of the representation ψ in B(L2(K\G/K))
whose action is given by ψ(f)h = f ∗h, for all f ∈ L1(K\G/K), h ∈ L2(K\G/K).

The Plancherel theorem states that if f ∈ L1(K\G/K) ∩ L2(K\G/K), then

f̂ ∈ L2(P, ρ) and ||f ||2 = ||f̂ ||2. This isometry extends uniquely to a unitary
isomorphism between L2(K\G/K) and L2(P, ρ).

The theory described above is essential for the analysis of K-bi-invariant func-
tions/measures/distributions on G. To work with objects that are only right K-
invariant we must introduce the direct integrals Hp(G,K), for 1 ≤ p ≤ ∞. These
spaces comprise sections Ψ : P →

⋃
ω∈P Hω for which Ψ(ω) ∈ Hω for all ω ∈ P ,

such that for 1 ≤ p <∞,

||Ψ||Hp
:=

(∫

P

||Ψ(ω)||pHω
ρ(dω)

) 1

p

<∞,

and for p = ∞, ||Ψ||H∞
:= ess supω∈P ||Ψ(ω)||Hω

.

For 1 ≤ p ≤ ∞, letH
(0)
p (G,K) be the subspace ofHp(G,K) comprising sections

Ψ for which Ψ(ω) ∈ HK
ω for all ω ∈ P . We will find it convenient in the sequel

to regard Lp(P , ρ) as a subspace of Hp(G,K), by observing that it is precisely

H
(0)
p (G,K).
Hp(G,K) is a Banach space, while H2(G,K) is a Hilbert space with inner

product

〈Ψ1,Ψ2〉H2
=

∫

P

〈Ψ1(ω),Ψ2(ω)〉Hω
ρ(dω),

for all Ψ1,Ψ2 ∈ H2(G,K).
We introduce the Fourier cotransform for any unitary representation π of G,

π(f) :=
∫
G
f(g)π(g)dg, where f ∈ L1(G/K). We will need the scalar Fourier

inversion formula for bounded f ∈ L1(G/K), g ∈ G:

f(g) =

∫

P

〈πω(f)uω, πω(g)uω〉ρ(dω). (2.2)

The vector-valued Fourier transform is the mapping F : L1(G/K) → H∞(G,K)
defined for each f ∈ L1(G/K), ω ∈ P by

(Ff)(ω) = πω(f)uω.
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The vector-valued Fourier inversion formula is a minor reformulation of (2.2).
It states that if f ∈ L1(G/K) is bounded, then Ff ∈ H1(G,K) and for all g ∈ G:

f(g) =

∫

P

〈(Ff)(ω), πω(g)uω〉ρ(dω).

There is also a Plancherel formula within this context: if f ∈ L1(G/K) ∩
L2(G/K), then Ff ∈ H2(G,K) and

||Ff ||H2(G,K) = ||f ||L2(G/K), (2.3)

and the action of F extends to a unitary isomorphism between L2(G/K) and
H2(G,K).

3. Restricted Convolution Semigroups

A family (µt, t ≥ 0) of probability measures on (G,B(G)) is said to be a con-
volution semigroup if µs+t = µs ∗ µt for all s, t ≥ 0. Then µ0 is an idempotent
measure and so must be the normalised Haar measure of a compact subgroup of G
(see [15], Theorem 1.2.10, p.34). A convolution semigroup is said to be continuous
if vague− limt→0 µt = µ0. It then follows that it is vaguely continuous on [0,∞).
A continuous convolution semigroup is said to be standard if µ0 = δe. If (µt, t ≥ 0)
is standard, then (Pt, t ≥ 0) is a C0-contraction semigroup on Cu(G), where

Ptf(g) =

∫

G

f(gh)µt(dh), for all t ≥ 0, f ∈ Cu(G), g ∈ G. (3.1)

It is precisely the standard continuous convolution semigroups that are the laws
of Lévy processes in Lie groups (see e.g. [19]).

Now let us return to Gelfand pairs (G,K). Let MK(G) be the space of all
right K-invariant Radon probability measures on G. We say that a continuous
convolution semigroup (µt, t ≥ 0) is right K-invariant, if µt ∈ MK(G) for all
t ≥ 0. In that case, µ0 is normalised Haar measure on K, and then µt is K-bi-
invariant for all t ≥ 0, as is shown in Proposition 2.1 of [20]. Indeed since for all
t ≥ 0, µt = µ0 ∗ µt, left K-invariance of µt follows from that of µ0.

It would be desirable to be able to study families of measures on G that are
rightK-invariant, but not necessarilyK-bi-invariant, and which capture the essen-
tial features of a convolution semigroup that we need, within a right K-invariant
framework. Here is a plausible candidate. A family (µt, t ≥ 0) of probability
measures on (G,B(G)) is said to be a right K-invariant restricted convolution
semigroup if

(A1) µt is right K-invariant for all t > 0,
(A2) µ0 = δe,
(A3)

∫
G f(g)µs+t(dg) =

∫
G

∫
G f(gh)µs(dg)µt(dh), for all f ∈ Cu(G/K),

(A4) limt→0

∫
G
f(σ)µt(dσ) = f(e), for all f ∈ Cc(G/K).
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Notes.

(1) In (A4) we can replace f with any bounded continuous right K-invariant
function, by the argument of Theorem 1.1.9 in [15].

(2) The term “restricted convolution semigroup” is a misnomer, as (A3) ap-
pears to be too weak to define a convolution of measures in the usual sense
(but see Theorem 3.1 below). Nonetheless there is a more general frame-
work that these ideas fit into. We regard Cu(G/K) as a ∗-bialgebra where
the comultiplation ∆ : Cu(G/K) → Cu(G/K)⊗ Cu(G/K) is given by

∆f(g, h) =

∫

K

f(gkh)dk;

then we can interpret (A3) as a convolution of states on Cu(G/K), as
described in e.g. [10].

Note that Pt, as defined in (3.1) does not preserve the space Cu(G/K). Instead
we define the family of operators Tt : Cu(G/K) → Cu(G/K), for t ≥ 0 by

Ttf(g) =

∫

G

∫

K

f(gkh)µt(dh)dk, for all t ≥ 0, f ∈ Cu(G), g ∈ G. (3.2)

Then by using (A1) to (A4), we can verify that (Tt, t ≥ 0) is a C0-contraction
semigroup on Cu(G/K). Indeed, for s, t ≥ 0, to verify the semigroup property, we
observe that by right K-invariance of µs, Fubini’s theorem, and (A3):

Ts(Ttf)(g) =

∫

G

∫

K

(Ttf)(gkh)µs(dh)dk

=

∫

G

∫

K

∫

G

∫

K

f(gkhk′h′)µt(dh
′)dk′µs(dh)dk

=

∫

G

∫

K

∫

G

f(gkhh′)µt(dh
′)µs(dh)dk

=

∫

G

∫

K

f(gkh)µs+t(dh)dk

= Ts+tf(g).

Although they appear to be promising objects, as pointed out to the author by
Ming Liao, restricted convolution semigroups are just continuous K-bi-invariant
convolution semigroups, and so there is nothing new in this idea. We prove this
as follows.

Theorem 3.1. Every right K-invariant restricted convolution semigroup is a con-
tinuous K-bi-invariant convolution semigroup.

Proof. Let (µt, t ≥ 0) be a right K-invariant restricted convolution semigroup.
For each f ∈ Cu(G), g ∈ G, define fK(g) =

∫
K f(gk)dk. Then fK ∈ Cu(G/K),

and for all s, t ≥ 0, using right-K-invariance of µs+t, Fubini’s theorem, and right
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K-invariance of µt∫

G

f(g)µs+t(dg) =

∫

G

fK(g)µs+t(dg)

=

∫

G

∫

G

fK(gh)µs(dg)µt(dh)

=

∫

G

∫

G

f(gh)µs(dg)µt(dh).

By a similar argument

lim
t→0

∫

G

f(g)µt(dg) = lim
t→0

∫

G

fK(g)µt(dg)

= fK(e) =

∫

K

f(k)dk.

So (µt, t ≥ 0) is a continuous right K invariant convolution semigroup, with
µ0 being normalised Haar measure on K. Hence, by Proposition 2.1 of [20], µt is
K-bi-invariant for all t > 0. �

4. Negative Definite Functions

We define the vector-valued Fourier transform of µ ∈ MK(G) in the obvious
way, i.e.,

(Fµ)(ω) = πω(µ)uω,

where πω(µ) =
∫
G
πω(g)µ(dg) for all ω ∈ P . A straightforward calculation yields:

(F(µ1 ∗ µ2))(ω) = πω(µ1)(Fµ2)(ω), (4.1)

for all µ1, µ2 ∈ MK(G), ω ∈ P . We also use the standard notation

µ̂(πω) := πω(µ)
∗ =

∫

G

πω(g
−1)µ(dg)

for the Fourier transform of an arbitrary bounded measure on (G,B(G)).
LetM(K\G/K) denote the space ofK-bi-invariant Radon probability measures

on (G,B(G)). If ω ∈ P then the spherical transform of µ is given by

µ̂S(ω) :=

∫

G

ω(g−1)µ(dg),

so that
µ̂S(ω) = 〈µ̂(πω)uω, uω〉.

It is shown in Theorem 6.8 of [16] that the mapping µ → µ̂S is injective.

Proposition 4.1. The mapping F : MK(G) → H∞(G,K) is injective.

Proof. We follow the procedure of the proof of Lemma 2.1 in [8]. First assume
that µ is absolutely continuous with respect to Haar measure, and that the Radon–
Nikodym derivative dµ

dg =: f ∈ L1(G/K) ∩ L2(G/K). Then Fµ = 0 implies that

Ff = 0 and so f = 0 (a.e.) by (2.3). For the general case, let (ψV , V ∈ V) be an
approximate identity based on a fundamental system V of neighbourhoods of e.
Now define fV = ψV ∗µ. Then for all V ∈ V , we see from (4.1) that Fµ = 0 implies
that FfV = 0, hence fV = 0 (a.e.), and it follows that µ = 0, as required. �
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In [8], Berg defined notions of positive- and negative-definite function that could
be used to investigate K-bi-invariant convolution semigroups. We remind the
reader of these notions. A continuous function p : P → C is said to be positive
definite if p = µ̂S(ω) for some µ ∈ M(K\G/K), and a continuous function q :
P → C is said to be negative definite if q(1) = 0 and exp(−tq) is positive definite
for all t > 0. Berg then showed that there is a one-to-one correspondence between
negative definite functions and continuous convolution semigroups inM(K\G/K).

We extend these notions to a more general context as follows. A field Ψ ∈
H∞(G,K) is said to be generalised positive definite if there exists µ ∈ MK(G)
such that Ψ = Fµ. A densely defined closed linear operator Q on L2(P , ρ) =∫
ω∈P

HK
ω ρ(dω) is said to be generalised negative definite if it is diagonalisable, in

that Q = (Q(ω), ω ∈ P) with each Q(ω) acting as multiplication by a scalar in
HK
ω , for ω ∈ P , and is such that

(1) Q(1) = 0, where Q(1) denotes the restriction of Q to H1 = HK
1 .

(2) Q is the infinitesimal generator of a one-parameter contraction semigroup
(Rt, t ≥ 0) acting on L2(P , ρ).

(3) For each t ≥ 0, Rt extends to a bounded linear operator on H∞(G,K), so
that the mapping ω → Rt(ω)uω is positive definite.

Notes.

(1) In (3), as uω is cyclic in Hω, it is equivalent to require

Rt(ω)πω(g)uω = πω(µt)πω(g)uω,

for all g ∈ G, t ≥ 0, ω ∈ P .
(2) The positive definite field (Rt(ω)uω, ω ∈ P) is uniquely determined by Q

as the solution of a family of initial value problems in HK
ω for ω ∈ P :

dΨ(t)(ω)

dt
= Q(ω)Ψ(t)(ω), with initial condition Ψ(0)(ω) = uω.

Now suppose that Ψ is positive definite and that µ is K-bi-invariant. Then for
all ω ∈ P ,

〈uω,Ψ(ω)〉 = 〈uω, πω(µt)uω〉

=

∫

G

〈uω, πω(g)uω〉µ(dg)

=

∫

G

ω(g)µ(dg) = ̂̃µS(ω),

and so p(ω) := 〈uω,Ψ(ω)〉 essentially coincides with the notion of positive definite
function in the bi-invariant context, as introduced by Berg in [8]. The word “es-
sentially” is included, because Berg required his positive-definite functions to be
continuous. Although we could impose continuity on our mapping Ψ, it is then
not clear to the author how to prove the next theorem.

Theorem 4.2. There is a one-to-one correspondence between generalised negative
definite functions on P and right K-invariant restricted convolution semigroups
on G.
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Proof. Suppose that (µt, t ≥ 0) is a right K-invariant restricted convolution semi-
group on G. Then Rt(ω) = πω(µt) defines a one-parameter contraction C0-
semigroup (of positive real numbers) in HK

ω . To see that Rt(ω) preserves HK
ω ,

for all ω ∈ P , t ≥ 0, note that, by Theorem 3.1, µt is left K-invariant, and so for
all k ∈ K,

πω(k)Rt(ω)uω =

∫

G

πω(kg)µt(dg) = Rt(ω)uω.

To verify the semigroup property, it is sufficient to observe that for all ω ∈
P , fω ∈ Cu(G/K), where fω(·) = 〈πω(·)uω , uω〉 and that for all s, t ≥ 0, by (A3),

〈πω(µs)πω(µt)uω, uω〉 =

∫

G

∫

G

〈πω(gh)uω, uω〉µs(dg)µt(dh)

=

∫

G

〈πω(g)uω, uω〉µs+t(dg)

= 〈πω(µs+t)uω, uω〉.

For all ψ ∈ H∞(G,K), we define Rtψ(ω) = Rt(ω)ψ(ω). Then Rt ∈ B(H∞(G,K))
for all t ≥ 0, since

||Rtψ||H∞(G,K) = ess sup
ω∈P

||Rt(ω)ψ(ω)||Hω
≤ ||ψ||H∞(G,K).

It is easy to see that the restriction of (Rt, t ≥ 0) to L2(P , ρ) is in fact a contraction
C0-semigroup; indeed to verify strong continuity, we can use Lebesgue’s dominated
convergence theorem to deduce that

lim
t→0

∫

P

||πω(µt)Ψ(ω)−Ψ(ω)||2HK
ω
ρ(dω) = 0,

for all Ψ ∈ L2(P , ρ). The infinitesimal generator of (Rt, t ≥ 0) is then the required
negative definite function. Note that since π1(µt) = 1 for all t ≥ 0, it is clear that
Q(1)u1 = 0.

Conversely, if Q is negative definite, it follows that there exists a family of
measures {µt; t ≥ 0} in MK(G) so that for all ω ∈ P , Q(ω) is the infinitesimal
generator of the semigroup (πω(µt), t ≥ 0) acting in HK

ω . Hence, by (4.1) and
Proposition 4.1, (µt, t ≥ 0) is a semigroup under convolution with µ0 = δe. Indeed,
for all s, t ≥ 0, ω ∈ P we have

πω(µs+t)uω = πω(µs)πω(µs)uω = πω(µs ∗ µt)uω.

To show that the semigroup of measures satisfies (A3), let f ∈ Cc(G/K) and
use scalar Fourier inversion (2.2) as follows

∫

G

f(g)µt(dg) =

∫

G

∫

P

〈πω(f)uω, πω(g)uω〉ρ(dω)µt(dg)

=

∫

P

∫

G

〈πω(f)uω, πω(g)uω〉µt(dg)ρ(dω)

=

∫

P

〈πω(f)uω, µ̂t(πω)uω〉ρ(dω),

where the use of Fubini’s theorem to interchange integrals is justified by the fact
that the sections ω → πω(f)uω ∈ H1(G,K). This latter fact also justifies the use
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of Lebesgue’s dominated convergence theorem to deduce from the above that

lim
t→0

∫

G

f(g)µt(dg) =

∫

P

〈πω(f)uω, uω〉ρ(dω) = f(e).

�

The result of this theorem is negative. When combined with the conclusion
of Theorem 3.1, it tells us that there is a one-to-one correspondence between
generalised negative definite functions and continuous K-bi-invariant convolution
semigroups, and hence between generalised negative definite functions and negative
definite functions. It may be interesting for future work to investigate negative
definite functions that fail to be diagonalisable.

Before we leave the topic of generalised negative definite functions, we will, for
completeness, follow Berg [8], by making intrinsic characterisations of generalised
positive and negative definite functions.

We say that a field P ∈ H∞(G,K) is a Berg P-D function if for all n ∈
N, a1, . . . , an ∈ C, ω1, . . . , ωn ∈ P ,

ℜ

(
n∑

i=1

aiωi

)
≥ 0 on G⇒ ℜ

(
n∑

i=1

ai〈uωi
, P (ωi)uωi

〉

)
≥ 0.

A closed densely defined linear operator Q acting in L2(P , ρ) is said to be a
Berg N-D function if

(1) Q(1) = 0,
(2) for all n ∈ N, a1, . . . , an ∈ C, ω1, . . . , ωn ∈ P ,

n∑

i=1

ai = 0 and ℜ

(
n∑

i=1

aiωi

)
≥ 0 on G

⇒ ℜ

(
n∑

i=1

ai〈uωi
, Q(ωi)uωi

〉

)
≤ 0.

We generalise Theorem 5.1 in [8], where the K-bi-invariant case was explicitly
considered:

Theorem 4.3. (1) Every generalised positive definite function on P is a Berg
P-D function.

(2) If Q is a generalised negative definite function, then −Q is a Berg N-D
function.

Proof. (1) Suppose that Ψ is positive definite, so that ψ = Fµ for some µ ∈
MK(G). For arbitrary a1, . . . , an ∈ C, ω1, . . . , ωn ∈ P , we have

n∑

i=1

ai〈uωi
,Ψ(ωi)uωi

〉 =

∫

G

n∑

i=1

ai〈uωi
, πωi

(g)uωi
〉µ(dg)

=

∫

G

n∑

i=1

aiωi(g)µ(dg),

from which the required result follows easily.
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(2) Now suppose that Q is negative definite. Then Q is the infinitesimal
generator of a one-parameter contraction semigroup (Rt, t ≥ 0) acting
on L2(P , ρ), and the field (Rt(ω)uω, ω ∈ P) is positive definite. Then if∑n

i=1 ai = 0 and ℜ (
∑n

i=1 aiωi) ≥ 0 on G, we see that

ℜ

(
n∑

i=1

ai.
1

t
〈uωi

, (Rt(ωi)− 1)uωi
〉

)
≥ 0

and the result follows when we take the limit as t→ 0.
�

5. The Lévy–Khintchine Formula

In this section G is a Lie group of dimension d having Lie algebra g. Let
{X1, . . . , Xd} be a basis for g, which we consider as acting as left-invariant vector
fields on G. We obtain a dense subspace C2

u(G) of Cu(G) by

C2
u(G) := {f ∈ Cu(G);Xif ∈ Cu(G) and XjXkf ∈ Cu(G)

for all 1 ≤ i, j, k ≤ d} .

It is well-known that there exist functions xi ∈ Cc(G) (1 ≤ i ≤ d) which are
canonical co-ordinate functions in a co-ordinate neighbourhood of e, and we say
that ν is a Lévy measure on G if ν({e}) = 0 and for any co-ordinate neighbourhood
U of the neutral element in G:

∫

G

(
d∑

i=1

xi(τ)
2

)
ν(dτ) <∞ and ν(U c) <∞, (5.1)

where (x1, . . . , xd) are canonical co-ordinate functions on U as above.
The proof of the next celebrated theorem, goes back to the seminal work of

Hunt [17]. The first monograph treatment was due to Heyer [15], and more recent
treatments can be found in Liao [19], and Applebaum [4].

Theorem 5.1 (Hunt’s theorem). Let (µt, t ≥ 0) be a convolution semigroup of
measures in G, with associated semigroup of operators (Pt, t ≥ 0) acting on Cu(G)
in G with generator L then

(1) C2
u(G) ⊆ Dom(L).

(2) For each σ ∈ G, f ∈ C2
u(G),

Lf(σ) =
d∑

i=1

biXif(σ) +
d∑

i,j=1

aijXiXjf(σ)

+

∫

G−{e}

(
f(στ)− f(σ) −

d∑

i=1

xi(τ)Xif(σ)

)
ν(dτ), (5.2)

where b = (b1, . . . bd) ∈ Rd, a = (aij) is a non-negative-definite, symmetric
d× d real-valued matrix and ν is a Lévy measure on G.

Conversely, any linear operator with a representation as in (5.2) is the restric-
tion to C2

u(G) of the infinitesimal generator corresponding to a unique convolution
semigroup of probability measures.
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Now it is well-known that if (µt, t ≥ 0) is a convolution semigroup of measures,

then so is (µ̃t, t ≥ 0); from which it follows that for each π ∈ Ĝ, ( ̂̃µt(π), t ≥ 0) is
a contraction semigroup in Hπ . Let Aπ denote the infinitesimal generator of this
semigroup, and Dπ be its domain. Following Heyer [14] pp.269–70, we may extend
the domain of L to include bounded uniformly continuous functions on G that take
the form fψ,φ(g) = 〈π(g)ψ, φ〉 for all ψ ∈ Dπ, φ ∈ Hπ, g ∈ G, by observing that for
all t ≥ 0,

Ptfψ,φ(g) = 〈 ̂̃µt(π)ψ, π(g−1)φ〉,

from which we can deduce that

Lfψ,φ(g) = 〈Aπψ, π(g
−1)φ〉. (5.3)

In the sequel, we will need the infinitesimal representation dπ of g, corresponding

to each π ∈ Ĝ, where for each Y ∈ g,−idπ(Y ) is the infinitesimal generator of
the strongly continuous one-parameter unitary group (π(exp(tY )), t ∈ R), where
exp : g → G is the exponential map. Hence dπ(Y ) is a (densely-defined) skew-
adjoint linear operator acting in Hπ.

We will also need the dense set Hω
π of analytic vectors in Hπ defined by

Hω
π := {ψ ∈ Hπ; g → π(g)ψ is analytic}.

It is shown in [3] that Hω
π ⊆ Dπ.

The following Lévy–Khintchine type formula first appeared in Heyer [14], where
it was established for compact Lie groups. Its extension to general Lie groups is
implicit in Heyer [15]. For an alternative approach, based on operator-valued
stochastic differential equations, see [3].

Theorem 5.2. If (µt, t ≥ 0) is a convolution semigroup of probability measures

on G, then for all t ≥ 0, π ∈ Ĝ,

̂̃µt(π) = etAπ ,

where for all ψ ∈ Hω
π ,

Aπψ =
d∑

i=1

bidπ(Xi)ψ +
d∑

j,k=1

ajkdπ(Xj)dπ(Xk)ψ

+

∫

G

(
π(τ)ψ − ψ −

d∑

i=1

xi(τ)dπ(Xi)ψ

)
ν(dτ), (5.4)

where b, a, ν and xi(1 ≤ i ≤ d) are as in Theorem 5.1.

Proof. This follows from (5.2) and (5.3) by the same arguments as used in the
proof of Theorem 5.5.1 in [4], p.145–6. �

6. Convolution Semigroups on Semisimple Lie Groups

and Riemannian Symmetric Pairs

In this section we will assume that G is a Lie group and that K is a compact
subgroup of G. Let k denote the Lie algebra ofK, then it is easy to see thatXf = 0
for all X ∈ k, f ∈ C2

u(G/K). We write the vector space direct sum g = k⊕ k⊥, and
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we choose the basis {X1, . . . , Xd} of g so that {X1, . . . , Xm} is a basis for k⊥, and
{Xm+1, . . . , Xd} is a basis for k.

If G is semisimple, we have the Iwasawa decomposition at the Lie algebra level:

g = k⊕ a⊕ n,

where a is abelian and n is nilpotent. At the global level G is diffeomorphic to
KAN , where A is abelian and N is nilpotent, and we may write each g ∈ G as

g = u(g) exp(A(g))n(g),

where u(g) ∈ K,A(g) ∈ a and n(g) ∈ N (see e.g. Chapter VI in [18]). Any
minimal parabolic subgroup of G has a Langlands decomposition MAN where M
is the centraliser of A in K. The principal series of irreducible representations of
G are obtained from finite dimensional representations of M by Mackey’s theory
of induced representations. We will say more about this below.

A Gelfand pair (G,K) is said to be a Riemannian symmetric pair, if G is a
connected Lie group and there exists an involutive analytic automorphism σ of G
such that (Kσ)0 ⊆ K ⊆ Kσ, where

Kσ := {k ∈ K;σ(k) = k},

and (Kσ)0 is the connected component of e in Kσ. In this case, we always write
p := k⊥, and note that

p = {X ∈ g; (dσ)e(X) = −X}.

We also have that N = G/K is a Riemannian symmetric space, under any G-
invariant Riemannian metric on N , and if ♮ is the usual natural map from G to
N , then (d♮)e : p → To(X) is a linear isomorphism, where o := ♮(e). For details
see e.g. Helgason [13], pp.209–10.

If G is semisimple, then we can find a Cartan involution θ of g, so that (dσ)e = θ.
In this case Kσ = K, and there is a natural Riemannian metric on N , that is
induced by the inner product Bθ on g, where for all X,Y ∈ g,

Bθ(X,Y ) = −B(X, θ(Y )),

with B being the Killing form on g (see e.g. [18] pp.361–2).
From now on in this section, we assume that G is a noncompact, connected

semisimple Lie group with finite centre, and that K is a maximal compact sub-
group. Then G/K is a noncompact Riemannian symmetric space. We also assume
that G/K is irreducible, i.e., that the action of Ad(K) on g is irreducible. Write
gij = B(Xi, Xj), for i, j = 1, . . .m, and define the horizontal Laplacian in G to be

∆H =
n∑

i,j=1

g−1
ij XiXj ,

where (g−1
ij ) is the (i, j)th component of the inverse matrix to (gij). Then for all

f ∈ C2
u(N), we have

∆H(f ◦ ♮) = ∆f,

where ∆ is the Laplace–Beltrami operator onN . We also have that for each ω ∈ P ,
there exists cω > 0 so that

∆Hω = −cωω.
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It is shown in [2] that if (µt, t ≥ 0) is a K-bi-invariant continuous convolution
semigroup, then for all f ∈ C2

u(G), (5.2) reduces to

Lf(σ) = a∆Hf(σ) +

∫

G

(f(στ) − f(σ))ν(dτ),

for all σ ∈ G, where a ≥ 0, ν is a K-bi-invariant Lévy measure on G, and the
integral should be understood as a principal value. Then from (5.4), we obtain
Gangolli’s Lévy–Khintchine formula (see also [21]), i.e., for all t ≥ 0, ω ∈ P ,

̂̃µtS(ω) = e−tψω ,

where

ψω : = 〈Aπω
uω, uω〉

= −acω +

∫

G

(ω(g)− 1)ν(dg).

In the remainder of this section, we will focus on more general Lévy–Khintchine
formulae for standard convolution semigroups on semi-simple Lie groups.

The spherical representations of G are precisely the spherical principal series,
which are obtained as follows. For each λ ∈ a∗, define a representation ηλ of M
on C by

ηλ(man) = e−iλ(ξ),

where m ∈ M,a = exp(ξ) ∈ A, n ∈ N . The required spherical representation πλ
acting on L2(K) is obtained by applying the “Mackey machine” to ηλ. In fact, we
have for each g ∈ G, l ∈ K, f ∈ L2(K),

(ξλ(g)f)(l) = e−(iλ−ρ)(A(lg))f(u(lg), (6.1)

where ρ is the celebrated half-sum of positive roots (see e.g. the Appendix to
[5]), and we are using the notation ξλ instead of πωλ

, for a generic element of the
spherical principal series.

In this case we have uλ := uωλ
= 1 in L2(K) and we obtain Harish–Chandra’s

beautiful formula for spherical functions:

ωλ(g) = 〈uλ, πλ(g)uλ〉

=

∫

K

e(iλ+ρ)(A(kg))dk, (6.2)

for all g ∈ G, λ ∈ a∗. In particular, we may identify P with a∗.
For the general case, we explore the connection between the approach taken

here, and the Lévy–Khintchine formula that was obtained in [5]. To that end, let

K̂ be the unitary dual of K, i.e., the set of all equivalence classes (up to unitary

equivalence) of irreducible representations of K. For each π ∈ K̂, let Vπ be the
finite-dimensional inner product space on which π(·) acts, and write dπ = dim(Vπ).

For each π1, π2 ∈ K̂, λ ∈ a∗, define the generalised spherical function Φλ,π1,π2
by

Φλ,π1,π2
(g) :=

√
dπ1

dπ2

∫

K

e−(iλ−ρ)(A(kg))(π1(u(kg))⊗ π2(k))dk, (6.3)

for all g ∈ G, where π denotes the conjugate representation associated to π. Hence
Φλ,π1,π2

(g) is a (bounded) linear operator on the space Vπ1
⊗V ∗

π2
. The connection
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with principal series representations is made apparent in Theorem 3.1 of [5], in
that for all g ∈ G, u1, v1 ∈ Vπ1

, u2, v2 ∈ Vπ2
,

〈Φλ,π1,π2
(g)(u1 ⊗ u∗2), v1 ⊗ v∗2〉Vπ1

⊗V ∗

π2

= 〈ξλ(g)f
u1,v1
π1

, fu2,v2
π2

)〉L2(K), (6.4)

where for each π ∈ K̂, u, v ∈ Vπ, k ∈ K, fu,vπ (k) := 〈π(k)u, v〉. Note that by Peter–

Weyl theory, M(K) := lin. span{fu,vπ (k);π ∈ K̂, u, v ∈ Vπ} is dense in L2(K).
If µ is a finite measure defined on (G,B(G)) then its generalised spherical trans-

form is defined to be

µ̂λ,π1,π2

(S)
:=

∫

G

Φλ,π1,π2
(g−1)µ(dg).

Then from (6.4), we easily deduce that

〈µ̂λ,π1,π2

(S)
(u1 ⊗ u∗2), v1 ⊗ v∗2〉Vπ1

⊗V ∗

π2

= 〈µ̂(ξλ)f
u1,v1
π1

, fu2,v2
π2

〉L2(K). (6.5)

Now replace µ by µt in (6.5). In [5] a Lévy–Khinchine-type formula which
extended Gangolli’s result from [11] was obtained, wherein the role of the charac-
teristic exponent was played by

ηλ,π1,π2
:=

d

dt
̂(µt)λ,π1,π2

(S)
∣∣∣∣
t=0

.

Differentiating in (6.5), we obtain

〈ηλ,π1,π2
(u1 ⊗ u∗2), v1 ⊗ v∗2〉Vπ1

⊗V ∗

π2

= 〈Aξλf
u1,v1
π1

, fu2,v2
π2

〉L2(K), (6.6)

where we use the fact that M(K) ⊆ C∞(K) ⊆ Dom(Aξλ), and from here we have
a direct relationship between the Lévy–Khinchine-type formula given in Theorem
5.1 of [5], and that of Theorem 5.2.

In section 6 of [5] an attempt was made to use the generalised spherical trans-
form to obtain a Lévy–Khintchine formula for right K-invariant convolution semi-
groups, in the mistaken belief that there were non-trivial elements in that class
that were not K-bi-invariant. The work of [20], as described in section 2 above,
shows that this was erroneous.

7. A New Class of Processes on Symmetric Spaces

Let (Ω,F , P ) be a probability space, and (L(t), t ≥ 0) be a right Lévy pro-
cess on G (so that it has stationary and independent left increments). Then the
family of laws (µt, t ≥ 0) is a (standard) convolution semigroup. We are inter-
ested in identifying classes of these processes so that the process (♮(L(t)), t ≥ 0)
on N = G/K, which is a Feller process (by Proposition 2.1 in [19], p.33), has
interesting probabilistic and geometric properties. If (µt, t ≥ 0) is K-bi-invariant,
then (♮(L(t)), t ≥ 0) is a Lévy process on N . Such processes were first investigated
by Gangolli in [12] (see also [2, 21]), and the generic process was shown to be a
Brownian motion on N interlaced with jumps having a K-bi-invariant distribu-
tion. We have seen that requiring that (µt, t ≥ 0) is only right K-invariant gives
us nothing new.
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We begin with a càdlàg Lévy process (Z(t), t ≥ 0) taking values on Rm, where
for each t ≥ 0, Z(t) = (Z1(t), . . . , Zm(t)), and having characteristics (b, a, ν). As-
sume that G is semisimple and consider the global Cartan decomposition G =
exp(p)K. We induce a Lévy process (Z̃(t), t ≥ 0) on p by defining Z̃(t) =∑m
i=1 Zi(t)Xi. As is shown in [7], Corollary to Theorem 2.4, we obtain a left

Lévy process (M(t), t ≥ 0) on G by solving the stochastic differential equation
(using the Markus canonical form ⋄):

dM(t) =M(t−) ⋄ dZ̃(t),

with initial condition M(0) = e (a.s.).
The generator takes the form

Lf(σ) =

m∑

i=1

biXif(σ) +

m∑

i,j=1

aijXiXjf(σ)

+

∫

Rm

[
f

(
σ exp

(
m∑

i=1

yiXi

))

− f(σ)− 1B1
(y)

m∑

i=1

yiXif(σ)

]
ν(dy),

where f ∈ C2
u(G), σ ∈ G. We then take L(t) = M(t)−1 for all t ≥ 0, to get the

desired right Lévy process.

Example 7.1 (Geodesics). Here the process Z has characteristics (b, 0, 0). Fix
Y =

∑m
i=1 biXi ∈ p, and consider the deterministic Lévy process L(t) = exp(tY )

for t ≥ 0. Then the operator L = Y and ♮(L(t)) = Exp(td♮(Y ))o, where Exp is
the Riemannian exponential; i.e., ♮(L(t)) moves from o along the unique geodesic
having slope d♮(Y ) ∈ To(N) at time zero.

Example 7.2 (Compound Poisson Process with Geodesic Jumps). Let (Wn, n ∈
N) be a sequence of independent, identically distributed random variables, taking
values in p, and having common law η, and let (N(t), t ≥ 0) be a Poisson process of
intensity 1 that is independent of all the Wn’s. Consider the Lévy process defined
for t > 0 by

L(t) = exp(WN(t)) exp(WN(t)−1) · · · exp(W1),

The law of L(t) is µt = e−tδe +
∑∞

n=1
tn

n! η
∗(n). Then

♮(L(t)) = Exp(d♮(WN(t))) ◦ Exp(d♮(WN(t)−1)) ◦ · · · ◦ Exp(d♮(W1))o,

describes a process which jumps along random geodesic segments. Here we slightly
abuse notation so that for X,Y ∈ p, we write Exp(d♮(X)) ◦ Exp(d♮(Y ))o for
the geodesic that moves from time zero to time one, starting at the point q =
Exp(d♮(Y ))o, and having slope dτg ◦ d♮(X), where g is the unique element of G
such that q = τg(o) := gK.

In this case, (P (t), t ≥ 0) has a bounded generator,

Lf(σ) =

∫

g

(f(σ exp(Y ))− f(σ))η̃(dY ),
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for f ∈ Cu(G), σ ∈ G. The Lévy process Z has characteristics (b′, 0, η′). Here
η′ := η̃ ◦ T and b′i =

∫
|y|<1 y

iη′(dy), where T is the vector space isomorphism

between Rm and g, which maps each element ei of the natural basis in Rm to
Xi(i = 1, . . . ,m).

More examples can be constructed from (1) and (2) by interlacing. These extend
the results of [6] (within the symmetric space context). They can also be seen as
a special case of the construction in [1]. It is anticipated that the ideas in this
section will be further developed in future work.
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infinitely divisible measures and Lévy processes on semi-simple Lie groups and symmetric
spaces, Annales Institut Henri Poincaré (Prob.Stat.), 51 (2015) 599–619.
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