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Abstract. We introduce the notion of a k-mode weakly stationary quantum
process ̺ based on the canonical Schrödinger pairs of position and momen-
tum observables in copies of L2(Rk), indexed by an additive abelian group D

of countable cardinality. Such observables admit an autocovariance map K̃

from D into the space of real 2k × 2k matrices. The map K̃ admits a spec-
tral representation as the Fourier transform of a 2k × 2k complex Hermitian

matrix-valued totally finite measure Φ on the compact character group D̂,
called the Kolmogorov-Wiener-Masani (KWM) spectrum of the process ̺.
Necessary and sufficient conditions on a 2k × 2k complex Hermitian matrix-

valued measure Φ on D̂ to be the KWM spectrum of a process ̺ are obtained.
This enables the construction of examples. Our theorem reveals the dramatic

influence of the uncertainty relations among the position and momentum ob-
servables on the KWM spectrum of the process ̺. In particular, the KWM

spectrum cannot admit a gap of positive Haar measure in D̂.

1. Introduction

In his celebrated little book “Osnovnye ponyatiya teorii veroyatnostei” [5], A. N.
Kolmogorov introduced the notion of a stochastic process as a consistent family of
finite dimensional probability distributions in Rn, n = 1, 2, · · · . In the same spirit
a quantum process can be described as a consistent family of density operators
or, equivalently, states in tensor products H1 ⊗ · · · ⊗ Hn of Hilbert spaces with
n = 1, 2, · · · . One can replace the ‘time set’ {1, 2, · · · } by an abstract countable set
D with the discrete topology and a family {Ha : a ∈ D} of Hilbert spaces. Then
a quantum process yields a density operator ρa1,a2,··· ,an

in Ha1
⊗ · · · ⊗ Han

for
every finite sequence (a1, · · · , an) with distinct elements from D. All these den-
sity operators will obey natural consistency conditions. For example, the relative
trace of ρa1,a2,··· ,an

over Han
is ρa1,a2,··· ,an−1

. If (b1, · · · , bn) is a permutation of

a1, · · · , an then ρb1,··· ,bn = Uρa1,··· ,an
U−1 where U is the corresponding Hilbert

space isomorphism from Ha1
⊗ · · · ⊗ Han

onto Hb1 ⊗ · · · ⊗ Hbn induced by the
permutation. We denote the quantum process over D by

̺ = {(Ha1,··· ,an
, ρa1,··· ,an

) : (a1, · · · , an) ∈ SD} , (1.1)

Received 2016-5-23; Communicated by D. Applebaum.
2010 Mathematics Subject Classification. Primary 81S25; Secondary 60G25, 60G10.
Key words and phrases. Weakly stationary quantum process, Kolmogorov-Wiener-Masani

spectrum, autocovariance map, spectral representation, uncertainty relations.

433

           Serials Publications 
                 www.serialspublications.com 

Communications on Stochastic Analysis 
Vol. 10, No. 4 (2016) 433-449



434 K. R. PARTHASARATHY AND RITABRATA SENGUPTA

where SD denotes the set of all finite-length sequences of distinct elements from
the countable set D.

In this paper we are interested in the special case where Ha = L2(Rk) for
all a in D, k being a fixed positive integer, called the number of modes of the
process. Each Ha admits Schrödinger canonical pairs qar, par, r = 1, 2, · · · , k, of
position and momentum observables obeying the Heisenberg canonical commuta-
tion relations (CCR). We can look upon qar, par, r = 1, 2, · · · , k, as observables
in Ha1

⊗ · · · ⊗ Han
whenever the sequence (a1, a2, · · · , an) from SD contains the

element a and denote such ampliated observables by the same respective symbols.
With such a convention one obtains the algebra of all polynomials of all qar, par,
where r = 1, 2, · · · , k, and a ∈ D. Using the finite-partite states ρa1,··· ,an

, where
(a1, · · · , an) ∈ SD, one can compute the expectations of the polynomials whenever
they exist. Write

(
Xa 1, Xa 2, · · · , Xa (2k−1), Xa 2k

)
= (qa 1, pa 1, · · · , qa k, pa k)

and define the covariances

κr s(a, b) =

〈
1

2
(Xa rXb s +Xb sXa r)

〉
− 〈Xa r〉 〈Xb s〉 (1.2)

where 〈,〉 denotes expectation. To compute these quantities we need a knowledge
of only the ‘bipartite’ states ρa,b for all (a, b) ∈ SD. Thus we obtain a 2k× 2k real
matrix-valued covariance kernel K = [[K(a, b)]] defined by

K(a, b) = [[κr s(a, b)]], r, s,∈ {1, 2, · · · , 2k} (1.3)

for any a, b ∈ D.
Suppose D is a countable discrete additive abelian group with addition oper-

ation + and null element 0. Let the covariance kernel K of a k-mode quantum
process over D be translation invariant in the sense that

K(a+ x, b+ x) = K(a, b) ∀a, b, x ∈ D. (1.4)

Then we say that the quantum process is second order weakly stationary, or,

simply, weakly stationary. For such a process there exists a map K̃ from D into
the space of 2k × 2k real matrices such that

K(a, b) = K̃(b− a) ∀a, b ∈ D. (1.5)

The map K̃ is called the autocovariance map of the weakly stationary quantum
process.

Owing to the matrix-positivity properties enjoyed by covariances between ob-

servables the autocovariance map K̃ satisfies the matrix inequalities
∑

i, j

αiαjK̃(aj − ai) ≥ 0 (1.6)

for any a1, a2, · · · , an ∈ D and real scalars α1, α2, · · · , αn, n = 1, 2, · · · . Thanks
to Bochner’s theorem for locally compact abelian groups there exists a complex
Hermitian and positive 2k × 2k matrix-valued measure Φ on the compact dual
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character group D̂ of D such that

K̃(a) =

∫

D̂

χ(a)Φ(dχ) for all a in D. (1.7)

The matrix-valued measure Φ satisfies the conjugate symmetry property

Φ(S−1) = Φ(S) (1.8)

for any Borel set S ⊂ D̂. Furthermore, the Heisenberg uncertainty relations pre-
vailing among the various position and momentum observables of the quantum
process reveal their dramatic influence on the measure Φ through the matrix in-
equalities

Φ(S) +
ı

2
λ(S)J2k ≥ 0 (1.9)

for all Borel sets S ⊂ D̂, where λ is the normalised Haar measure of the compact

group D̂ and J2k is the fundamental symplectic matrix given by

J2k =
⊕

k copies

[
0 1
−1 0

]
, (1.10)

which is a diagonal block matrix with each diagonal block equal to J2. The
inequality (1.9) implies, in particular, that whenever Φ(S) = 0, λ(S) is also zero.

Borrowing from the extensive theory of linear least square prediction of real
valued weakly stationary processes pioneered by A. N. Kolmogorov [3, 4] and N.
Wiener [10], and multivariate weakly stationary processes by N. Wiener and P.

Masani [11, 12] we call (1.7) the spectral representation of K̃ in D̂ and the matrix-
valued positive measure Φ the Kolmogorov - Wiener - Masani spectrum (or KWM

spectrum) of the autocovariance map K̃ of the underlying quantum process.
As noted above, inequality (1.9) implies that whenever Φ(S) = 0 for some Borel

set S ⊂ D̂, then λ(S) = 0. In other words, the KWM spectrum does not admit a
‘Haar gap’.

Conversely, given a complex Hermitian positive 2k× 2k matrix-valued measure

Φ on the Borel σ-algebra of D̂ satisfying the conjugate symmetry condition (1.8),

the spectral uncertainty relations (1.9), and the condition Φ(D̂) = K̃(0), there
exists a weakly stationary k-mode quantum process over D with KWM spectrum
Φ. Indeed, such a process can be realized as a mean zero quantum Gaussian process
in the sense that all its finite-partite states ρa1,··· ,an

, where (a1, · · · , an) ∈ SD, are
mean zero Gaussian states.

The spectral representation of the autocovariance function and its converse en-
able us to construct interesting examples of weakly stationary quantum processes.

2. Quantum Processes

A quantum system in its most elementary form is determined by a pair (H, ρ),
where H is a complex separable Hilbert space and ρ is a density operator in H,
i.e., a positive operator with unit trace. The operator ρ is called the state of
the system. We shall deal with several quantum systems and assume that all the
Hilbert spaces in this paper are complex and separable. Scalar products in Hilbert
spaces will be expressed in the Dirac notation and adjoints of operators as well as
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matrices will be indicated by the symbol †. By a positive operator X in a Hilbert
space H we mean that 〈u|X |u〉 ≥ 0 for all u ∈ H. By a positive n× n matrix we
mean an n× n Hermitian matrix which is positive semidefinite.

If H = H1 ⊗ H2 ⊗ · · · ⊗ Hn is the tensor product of Hilbert spaces Hi for
1 ≤ i ≤ n, ρ is a state in H and F ⊂ {1, 2, · · · , n} is the subset {i1 < i2 < · · · < ik}
then we write HF = Hi1 ⊗ · · · ⊗Hik . One obtains a state ρF in HF by taking the
relative trace of ρ successively in Hi, for all i /∈ F in some order. The resulting
state ρF is independent of the order in which the traces are taken. The system
(HF , ρF ) is called the F -marginal of (H, ρ).

In the Hilbert space of any quantum system a bounded or unbounded self-
adjoint operator X is called an observable of the system. Suppose FR is the Borel
σ-algebra of R and PX(·) is the spectral measure of X on FR. Then the quantity
Tr ρPX(E), where E ∈ FR, is interpreted as the probability that the observable
takes a value in E in the state ρ. Thus Tr ρPX(·) is the distribution of X in the
state ρ. Such an interpretation enables the computation of all moments of X .
Indeed, the n-th moment of X , if it exists, is denoted by 〈Xn〉 and is given by

〈Xn〉 = TrXnρ.

If X , Y are two observables such that XY + Y X is also an observable then the
covariance between X and Y in the state ρ is denoted by Cov(X,Y ) and is defined
as

Cov(X,Y ) = 〈
1

2
(XY + Y X)〉 − 〈X〉 〈Y 〉 .

The quantity Cov(X,X) is called the variance of X . If X1, X2, · · · , Xn are ob-
servables with well-defined covariance between Xi and Xj for all i, j then the n×n
positive matrix

Σn = Σn(X1, · · · , Xn) = [[Cov(Xi, Xj)]]

is called the covariance matrix of the observables (X1, X2, · · · , Xn) in the state ρ.
Consider a composite quantum system (H, ρ), where H = H1 ⊗H2 ⊗ · · · ⊗Hn.

If the set {1, 2, · · · , n} = E ∪F with E ∩F = ∅, E 6= ∅, and F 6= ∅ then H can be
viewed as the tensor product

H = HE ⊗HF

and an observable in HE can be looked upon as the observable XE ⊗ IF in H with
IF being the identity operator in HF . We call XE ⊗ IF the ampliation of XE in
H and denote it by the same symbol XE . If ρE is the E-marginal of ρ in HE then

〈XE〉 = TrXEρE = TrXEρ = 〈XE ⊗ IF 〉 .

We now introduce the notion of a quantum process over a countable index set
D. Let {Ha : a ∈ D} be a family of Hilbert spaces. Denote by SD the set of
all finite sequences of distinct elements from D. Suppose ρa1,a2,··· ,an

is a density
operator in Ha1,a2,··· ,an

as in (1.1) for each (a1, a2, · · · , an) in SD, satisfying the
following properties:

(1) If {a1, a2 · · · , an} = {b1, b2, · · · , bn} as sets and π is a permutation of
{1, 2, · · · , n} such that aπ(j) = bj, ∀j and

Uπ : Ha1,a2,··· ,an
→ Hb1,b2,··· ,bn
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is the natural Hilbert space isomorphism induced by π then

ρb1,b2,··· ,bn = Uπρa1,a2,··· ,an
U−1
π .

(2) The {a1, a2, · · · , an}-marginal of ρa1,a2,···an+1
is equal to ρa1,a2,··· ,an

for all (a1, a2, · · · , an+1) ∈ SD, n = 1, 2, · · · .

Then we say that {ρa1,a2,··· ,an
: (a1, · · · , an) ∈ SD} is a consistent family of

states. The family ̺ = {(Ha1,··· ,an
, ρa1,··· ,an

) : (a1, · · · , an) ∈ SD} of finite-partite
quantum systems is called a quantum process over D.

One obtains interesting examples of discrete ‘time’ quantum processes with D
equal to Z, Zd or a general discrete abelian group. When D is Z, the element a in
Z can be interpreted as time. In general, a in D is interpreted as a site.

Suppose D = {0, 1, 2, · · · } and Hn] = H0 ⊗H1 ⊗ · · · ⊗Hn. Let ρn] be a density
operator in Hn] such that ρn−1] is the marginal in Hn−1] obtained by tracing out
ρn] over Hn for each n. Then {(Hn], ρn]) : n = 0, 1, 2, · · · } yields a quantum
process. Denote by Bn] the C* algebra of all bounded operators in Hn]. Then
there is a natural C* embedding φn : Bn] → Bn+1] with the property

φn(X) = X ⊗ I ∀X ∈ Bn],

where I is the identity operator in Hn+1. This enables the construction of an
inductive limit C* algebra B∞ with a C* embedding πn : Bn] → B∞ such that the
sequence {πn(Bn])} is increasing in n and

⋃
n πn(Bn]) is dense in B∞. This yields

a normalized positive linear functional ω in B∞ such that

ω(πn(X)) = ρn](X) ∀X ∈ Bn] and n = 0, 1, 2, , · · · .

In other words (B∞, ω) is a C* probability space which may be considered as the
analogue of Kolmogorov’s measure space constructed from a consistent family of
finite dimensional probability distributions. However, there is no limiting Hilbert
space in general with a density operator. A similar construction of a C* probability
space is possible for a quantum process over any countable index set D.

Definition 2.1. Suppose D is a countable abelian group with addition operation
+, Ha = H for all a ∈ D, and ̺ is a quantum process over D. Then it is said to
be strictly stationary or translation invariant if

ρa1+x,a2+x,··· ,an+x = ρa1,a2,··· ,an
∀x ∈ D and (a1, · · · , an) ∈ SD.

Let {ρa1,··· ,an
} and {σa1,··· ,an

}, where (a1, · · · , an) ∈ SD, be a pair of consistent
families of finite-partite states in {Ha1,··· ,an

}. Then, for any 0 < p < 1, setting

τa1,··· ,an
= pρa1,··· ,an

+ (1− p)σa1,··· ,an
∀(a1, · · · , an) ∈ SD

yields a consistent family of finite-partite states.
Suppose, a 7→ Ua is any map on D where Ua is a unitary operator in Ha for

every a ∈ D. Then setting

ρ′a1,··· ,an
= (Ua1

⊗ · · · ⊗ Uan
) ρa1,··· ,an

(
U †
a1

⊗ · · · ⊗ U †
an

)
∀(a1, · · · , an) ∈ SD

also yields a consistent family of states. Indeed, this is a consequence of the
following proposition.
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Proposition 2.2. Let H and K be Hilbert spaces, ρ a state in H⊗K, and U and
V unitary operators in H and K respectively. Then

TrK(U ⊗ V )ρ(U ⊗ V )† = U (TrK ρ)U
†,

where TrK is relative trace over K.

Proof. This is immediate from the fact that the relative trace over K can be
computed by using any orthonormal basis {ej} in K, and if {ej} is one such basis
so is {V †ej}. �

Combining the two elementary remarks above we can construct new quantum
processes over D from a given quantum process {(Ha1,··· ,an

, ρa1,··· ,an
) : (a1, · · · ,

an) ∈ SD} as follows: Start with a probability space (Ω,F ,P) and a random
process {Ua(ω) : a ∈ D} where Ua(ω) is a unitary operator in Ha for every a.
Define

ρ′a1,··· ,an
=

∫

Ω

P (dω) (Ua1
⊗ · · · ⊗ Uan

) ρa1,··· ,an
(Ua1

⊗ · · · ⊗ Uan
)
†
. (2.1)

Then {ρ′a1,··· ,an
: (a1, · · · , an) ∈ SD} is also a consistent family of finite-partite

states.

Remark 2.3. When D is a countable additive abelian group and Ha = H for
all a ∈ D, ̺ is a strictly stationary quantum process and the random process
{Ua(ω) : a ∈ D} is also strictly stationary, then the quantum process ̺′ determined
by equation (2.1) is also strictly stationary.

3. Multi-mode Processes and Their Covariance Kernels

We now pass on to the definition of a k-mode quantum process over a countable
index set D. Let Ha = L2(Rk) for each a ∈ D, where k is a fixed positive integer
called the number of modes. We view Ha as the a-th copy of L2(Rk) and introduce
the canonical Schrödinger pairs of position and momentum observables qaj , paj,
where 1 ≤ j ≤ k, given by

(qajf) (x) = xjf(x),

(pajf) (x) =
1

ı

∂

∂xj
f(x)

on their respective maximal domains in L2(Rk), x denoting (x1, x2, · · · , xk) ∈ R
k.

We arrange these 2k observables as

(Xa1, Xa2, · · · , Xa 2k−1, Xa2k) = (qa1, pa1, · · · , qak, pak) .

Let now ̺ be a quantum process over D. Then Xa r can be viewed as an am-
pliated observable in Ha1,a2,··· ,an

whenever the element a occurs in the sequence
a1, a2, · · · , an. We assume that all observables which are closures of polynomials
of degree not exceeding 2 in {Xa r : a ∈ D, r = 1, 2, · · · , 2k} have finite expecta-
tions under the process so that Xa r and Xb s have a well-defined covariance for
any a, b ∈ D, and r, s ∈ {1, 2, · · · , 2k}. We write for any a, b ∈ D,

κr,s(a, b) = Cov (Xa r, Xb s) ∀r, s ∈ {1, 2, · · · , 2k},
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where the covariances can be evaluated in any state ρa1,a2,··· ,an
when both a and

b occur in (a1, · · · , an) ∈ SD. Indeed, this follows from consistency of the states
occurring in the quantum process. We call K = [[K(a, b)]], where a, b ∈ D, the
covariance kernel of the k-mode quantum process ̺, where K(a, b) is the 2k× 2k
matrix [[kr,s(a, b)]] with r, s ∈ {1, 2, · · · , 2k}.

If D is an additive abelian group, 〈Xaj〉 = 0 for all a ∈ D, 1 ≤ j ≤ 2k, and
K(a, b) = K(a+c, b+c) for all a, b, c ∈ D we then say that ̺ is a mean zero second
order weakly stationary or simply weakly stationary k-mode quantum process. In

such a case, there exists a map K̃ from D into the space of 2k× 2k real matrices,

such that K(a, b) = K̃(b − a). This map K̃ is called the autocovariance map of
the weakly stationary process.

Theorem 3.1. Let K(a, b) = [[κr s(a, b)]] where a, b ∈ D, be a family of 2k × 2k
real matrices satisfying the following conditions:

κr s(a, b) = κs r(b, a) ∀r, s ∈ {1, 2, · · · , 2k} and a, b ∈ D.

Then there exists a k-mode quantum process ̺ with covariance kernel K(·, ·) if and
only if for any sequence (a1, · · · , an) ∈ SD the block matrix [[K(ai, aj)]] satisfies
the matrix inequality

[[K(ai, aj)]] +
ı

2
J2kn ≥ 0. (3.1)

Proof. Since ρa1,··· ,an
is a kn-mode state and [[K(ai, aj)]] is the covariance matrix

of the position-momentum observables (Xa1 1, · · · , Xa1 2k, Xa2 1, · · · , Xa2 2k, · · · ,
Xan 1, · · · , Xan 2k) in L2(Rkn), necessity is immediate from the uncertainty rela-
tion fulfilled by such a covariance matrix [2, 1, 7]. From Theorem 3.1 of [7] and
inequality (3.1), it follows that thre exists a Gaussian state {ρa1,··· ,an

} with co-
variance matrix [[K(ai, aj)]]. Then {ρa1,··· ,an

} is a consistent family of Gaussian
states constituting the required quantum process. �

Definition 3.2. A kernel

K = [[K(a, b)]] ∀a, b ∈ D,

where K(a, b) are real 2k × 2k matrices satisfying the conditions

(1) K(a, b)T = K(b, a) for all a, b ∈ D,
(2) [[K(ai, aj)]] ≥ 0 for all (a1, a2, · · · , an) ∈ SD,

is called a k-mode classical covariance kernel.
If, in addition, the inequality (3.1) is fulfilled, then it is called a (k-mode)

quantum covariance kernel.

Corollary 3.3. If K is a k-mode quantum covariance kernel and C is a k-mode
classical covariance kernel then K + C is a k-mode quantum covariance kernel.

Proof. Immediate. �

Let ̺ be a k-mode quantum process over D with quantum covariance kernel
K = [[K(a, b)]]. Suppose C = [[C(a, b)]] is the covariance kernel of a real 2k-variate
classical stochastic process with index set D so that the matrix inequalities

∑

i,j

αiαjC(ai, aj) ≥ 0
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for all real scalars α1, · · · , αn and all elements a1, · · · , an ∈ D. Then the sum

K + C = [[K(a, b) + C(a, b)]]

is the covariance kernel of a k-mode quantum process σ. We shall now realise
such a process σ by an explicit construction which is an interaction between the
quantum process ̺ and a family of unitary conjugations mediated by a classical
process with covariance kernel C.

To this end we start with the 1-mode Hilbert space L2(R), its Schrödinger
position-momentum pair q, p, the associated annihilation-creation pair â, â† given

by â = 2−
1
2 (q+ıp), â† = 2−

1
2 (q−ıp) and the unitary Weyl (displacement) operators

W (z) = exp(zâ† − z̄â), where z ∈ C. These satisfy the relations

W (z)âW (z)† = â− z ∀z ∈ C,

with the convention that z denotes the scalar as well as the operator zI. This
leads to the relations

W (2−
1
2 z)qW (2−

1
2 z)† = q − x, (3.2)

W (2−
1
2 z)pW (2−

1
2 z)† = p− y, (3.3)

where x = Re z and y = Im z.
Now for a ∈ D, let

za = (za 1, za 2, · · · , zak)
T ,

za r = xa r + ıya r,

where xa r = Re za r and ya r = Im za r. Viewing H = L2(Rk) as the k-fold product
L2(R)⊗ L2(R)⊗ · · · ⊗ L2(R), introduce the k-mode Weyl operators

W (za) = W (za 1)⊗ · · · ⊗W (za k).

Then the relations (3.2, 3.3) yield the relations for the operators Xa 1, · · · , Xa 2k

defined above as

W (2−
1
2za)




Xa 1

Xa 2

...
Xa 2k


W (2−

1
2za)

† =




Xa 1 − αa 1

Xa 2 − αa 2

...
Xa 2k − αa 2k


 (3.4)

where
(αa 1, αa 2, · · · , αa 2k) = (xa 1, ya 1, xa 2, ya 2, · · · , xa k, ya k) . (3.5)

Let (ξa 1, ηa 1, ξa 2, ηa 2, · · · , ξa k, ηa k) (ω), where ω ∈ Ω, and a ∈ D, be a 2k real
variate stochastic process defined on a probability space (Ω,F , P ) with zero mean
and covariance kernel C = [[C(a, b)]], where

C(a, b) = E




ξa 1

ηa 1

ξa 2

ηa 2

...
ξa k

ηa k




[
ξa 1, ηa 1, ξa 2, ηa 2, · · · , ξa k, ηa k

]
∀a, b ∈ D. (3.6)
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Define the random unitary operators Ua(ω) in Ha, where a ∈ D, by putting

ζa r = ξa r + ıηa r for r = 1, 2, · · · , k, (3.7)

Ua(ω) = W (2−
1
2 ζa(ω))

†, (3.8)

where ζa = (ζa 1 · · · , ζa k) ∈ Ck. By following the remarks in §2 around equation
(2.1), define the k-mode quantum process σ by

σa1,··· ,an
=

∫

Ω

P (dω)Ua1
(ω)⊗· · ·⊗Uan

(ω)ρa1,··· ,an
Ua1

(ω)†⊗· · ·⊗Uan
(ω)†. (3.9)

Then we have the following theorem:

Theorem 3.4. The covariance kernel of the σ process determined by the finite-
partite states (3.9) is equal to K + C.

Proof. Consider the observable Xa j . Its expectation under the σ process is given
by

TrXa rσa =

∫
P (dω)TrUa(ω)

†Xa rUa(ω)ρa

=

∫
P (dω)Tr (Xa r − γa r) ρa,

where

(γa 1(ω), · · · , γa 2k(ω)) = (ξa 1(ω), ηa 1(ω), · · · , ξa k(ω), ηa k(ω)) .

Since the classical γ process has mean 0 we have

〈Xa r〉σ = 〈Xa r〉ρ . (3.10)

Going to second order moments

TrXa rXb s σa b

=

∫
P (dω)TrXa rXb sUa(ω)⊗ Ub(ω)ρa bUa(ω)

† ⊗ Ub(ω)
†

=

∫
P (dω)W (2−

1
2 ζa)⊗W (2−

1
2 ζb)Xa rXb sW (2−

1
2 ζa)

† ⊗W (2−
1
2 ζb)

†ρa b

=

∫
P (dω)Tr (Xa r − γa r) (Xb s − γb s) ρa b

=

∫
P (dω)

[
〈Xa rXb s〉̺ + γa r(ω)γb s(ω)− γa r(ω) 〈Xb s〉̺ − γb s(ω) 〈Xa r〉̺

]

= 〈Xa rXb s〉̺ + Cr s(a, b).

Let a 6= b. Then

Covσ(Xa r, Xb s) = 〈Xa rXb s〉σ − 〈Xa r〉σ 〈Xb s〉σ
= 〈Xa rXb s〉̺ + Cr s(a, b)− 〈Xa r〉̺ 〈Xb s〉̺
= Kr s(a, b) + Cr s(a, b).



442 K. R. PARTHASARATHY AND RITABRATA SENGUPTA

Let a = b. Then Cr s(a, b) = Cr s(a, a) = Cs r(a, a), and so

Covσ(Xa r, Xa s) =

〈
1

2
(Xa rXa s +Xa sXa r)

〉

σ

− 〈Xa r〉̺ 〈Xa s〉̺

=

〈
1

2
(Xa rXa s +Xa sXa r)

〉

̺

+ Cr s(a, a)− 〈Xa r〉̺ 〈Xa s〉̺

= Cov̺(Xa r, Xa s) + Cr s(a, a)

= Kr s(a, a) + Cr s(a, a).

�

Remark 3.5. If ̺ is a weakly stationary quantum process and (ξa 1, ηa 1, · · · , ξa k,
ηa k) is a weakly stationary classical process with mean 0 such that

K(a, b) = K̃(b− a) and

C(a, b) = C̃(b − a) ∀a, b ∈ D,

then σ is also a weakly stationary quantum process. If in addition, ̺ is Gaussian
then so is σ.

4. The KWM Spectrum of a Weakly Stationary k-mode

Quantum Process

Let ̺ be a weakly stationary k-mode quantum process over a countable discrete

additive abelian groupD, with autocovariance map K̃. Let D̂ be the compact dual
multiplicative group of all characters of D. Denote by F the Borel σ-algebra on

D̂.
Define

L(a) = K̃(a) +
ı

2
1{0}(a)J2k ∀a ∈ D. (4.1)

Then Theorem 3.1 yields the following proposition.

Proposition 4.1. A real 2k×2k matrix-valued map K̃ is the autocovariance map
of a second order weakly stationary k-mode quantum process on D if and only if
the associated map L defined by (4.1) satisfies the following matrix inequalities

[[L(as − ar)]] ≥ 0, where r, s ∈ {1, 2, · · · , n},

for all (a1, a2, · · · , an) ∈ SD, and n = 1, 2, · · · .

Proof. Immediate. �

Theorem 4.2. A real 2k × 2k matrix-valued map K̃ on D is the autocovariance
map of a second order weakly stationary k-mode quantum process on D if and only

if there exists a 2k × 2k Hermitian positive matrix-valued measure Φ on (D̂,F)
satisfying the following conditions:

(1) Φ(D̂) = K̃(0).

(2) K̃(a) =
∫
D̂
χ(a)Φ(dχ).

(3) Φ(S) + ı
2λ(S)J2k ≥ 0, ∀S ∈ F , where λ is the normalized Haar measure

of the compact group D̂. In particular, λ is absolutely continuous with
respect to TrΦ.
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(4) Φ(S−1) = Φ(S) = Φ(S)T , ∀S ∈ F .

Under the conditions (1)-(4) the underlying quantum process can be chosen to be
a strictly stationary k-mode quantum Gaussian process with mean zero.

Proof. Let K̃ be the autocovariance map of a weakly stationary k-mode process.
Define L by (4.1). By Proposition 4.1 the matrices [[L(as − ar)]], where r, s ∈
{1, 2, · · · , n}, are positive for all (a1, a2, · · · , an) ∈ SD. Hence for any vector
u ∈ C2k, the function

a 7→ ψu(a) = u†L(a)u (4.2)

is positive definite on the abelian group D in the sense of Bochner. By Bochner’s
theorem there exists a totally finite measure νu on F satisfying the relations

ψu(a) =

∫

D̂

χ(a) νu(dχ) ∀a ∈ D, (4.3)

ψu(0) = u†L(0)u

= u†
(
K̃(0) +

ı

2
J2k

)
u. (4.4)

By (4.2) the left hand side of (4.3) is a quadratic form in u for each fixed a in D.

By the bijective correspondence between totally finite measures on D̂ and their
Fourier transforms on D it follows that there exists a 2k × 2k Hermitian positive
matrix-valued measure Ψ on F such that

L(a) =

∫

D̂

χ(a)Ψ(dχ) ∀a ∈ D, (4.5)

L(0) = K̃(0) +
ı

2
J2k = Ψ(D̂) ≥ 0. (4.6)

Now define

φu(a) = u†K̃(a)u ∀a ∈ D and u ∈ C
2k.

By (4.1), K̃(a) = ReL(a), where the real part is taken entry-by-entry, and hence

[[K̃(as − ar)]] ≥ 0 for any (a1, a2, · · · , an) ∈ SD. In other words, φu is also a
positive definite function on D and by the same arguments as employed for L we
have the relations

K̃(a) =

∫

D̂

χ(a)Φ(dχ), (4.7)

K̃(0) = Φ(D̂), (4.8)

where Φ is again a 2k × 2k Hermitian positive matrix-valued measure on F .
By (4.1)

L(a)− K̃(a) =
ı

2
1{0}(a)J2k

=

[
ı

2

∫

D̂

χ(a)λ(dχ)

]
J2k ∀a ∈ D. (4.9)

Subtracting (4.7) from (4.5) and using (4.9) we have
∫

D̂

χ(a)(Ψ− Φ)(dχ) =

[
ı

2

∫

D̂

χ(a)λ(dχ)

]
J2k
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for all a ∈ D. Thus by uniqueness of Fourier transforms we have

Ψ(S)− Φ(S) =
ı

2
λ(S)J2k, ∀S ∈ F .

Thus

Φ(S) +
ı

2
λ(S)J2k ≥ 0, ∀S ∈ F . (4.10)

Now property (1) follows from (4.8), property (2) from (4.7), and property (3)
from (4.10). If TrΦ(S) = 0 then Φ(S) = 0, by positivity, and (4.10) implies

ı

2
λ(S)J2k ≥ 0

which is positive only if λ(S) = 0, as may be seen by taking the determinant. In
other words λ≪ TrΦ.

To prove property (4) of Φ we introduce the map τ : D̂ → D̂, τ(χ) = χ = χ−1

and observe that

K̃(a) =

∫

D̂

χ(a) Φ(dχ)

=

∫

D̂

χ(a)Φτ−1(dχ).

Since K̃(a) has real entries, property (2) implies

Φτ−1 = Φ,

or

Φ(S−1) = Φ(S) = Φ(S)T , ∀S ∈ F .

This completes the proof of necessity. To prove sufficiency consider a 2k × 2k
Hermitian positive matrix-valued measure Φ satisfying properties (3) and (4) of
the theorem. Define

K̃(a) =

∫

D̂

χ(a)Φ(dχ).

Then properties (2) and (1) hold. Property (3) implies that the function L(a), on
D defined by setting

L(a) = K̃(a) +
ı

2
1{0}(a)J2k

=

∫

D̂

χ(a)
(
Φ+

ı

2
λJ2k

)
(dχ)

satisfies the matrix inequalities [[L(as − ar)]] ≥ 0 for any sequence (a1, · · · , an) ∈

SD. By Proposition 4.1, K̃ is the autocovariance function of a second order weakly
stationary k-mode quantum process which, indeed, can be chosen to be a strictly
stationary Gaussian process of mean zero. �

Remark 4.3. As already described in the introduction, we call equation (2) in

Theorem 4.2 the spectral representation of the autocovariance map K̃ and say
that Φ is the Kolmogorov-Wiener-Masani (KWM) spectrum of the k-mode weakly
stationary quantum process. Theorem 4.2 enables us to construct a whole class of
examples of KWM spectra and hence autocovariance maps as follows. Choose and
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fix any Borel map χ 7→M(χ), on D̂ where M(χ) is a k-mode quantum covariance
matrix of order 2k, so that

M(χ) +
ı

2
J2k ≥ 0 for every χ ∈ D̂.

Assume that M(·) is integrable with respect to the normalised Haar measure λ on

D̂. Let Ψ be any totally finite positive Hermitian 2k × 2k matrix-valued measure

on (D̂,F) satisfying the conjugate symmetry condition Ψ(S−1) = Ψ(S) for any
Borel set S ∈ F . Define

Φ(S) =

∫

D̂

M(χ)λ(dχ) + Ψ(S), S ∈ F .

Then by Theorem 4.2, Φ is the KWM spectrum of a stationary quantum process

over D with autocovariance map K̃ given by equation (2) of the theorem.

Remark 4.4. The second part of property (3) of Φ in Theorem 4.2 implies that
λ(S) = 0 whenever TrΦ(S) = 0. In other words the KWM spectrum of a weakly
stationary k-mode quantum process over D cannot admit a gap of positive Haar

measure in D̂. For example, when D = Z and D̂ is identified with [0, 2π], the
KWM spectrum of a stationary k-mode quantum process over Z cannot admit an
interval gap.

Remark 4.5. In Theorem 4.2, express the KWM spectrum Φ as

Φ = [[φrs]], where r, s ∈ {1, 2, · · · , 2k},

and write

Φq = [[φ2i−1,2j−1]], where i, j ∈ {1, 2, · · · , k},

Φp = [[φ2i,2j ]], where i, j ∈ {1, 2, · · · , k}.

In the inductive limit C* probability space (B∞, ω) associated with the pro-
cess ̺ described in §2 the commuting family of position observables {qa r : a ∈
D, r ∈ {1, 2, · · · , k}} affiliated to B∞ execute a classical weakly stationary process
with spectrum Φq. A similar property holds for the family {pa r : a ∈ D, r ∈
{1, 2, · · · , k}}.

In the quantum Gaussian case this raises the question that under what condi-
tions on the spectrum Φ do these processes enjoy properties like ergodicity, weak
mixing, strong mixing etc. The results of G. Maruyama [6] suggest that a minimum
requirement would be the absence of atoms in the spectrum Φ.

Suppose Φ has no atoms. For arbitrary real scalars cr, where 1 ≤ r ≤ 2k,
consider the associated observables

Za =

2k∑

r=1

(c2r−1qar + c2rpar) ∀a ∈ D.

Then {Za : a ∈ D} executes a classical Gaussian process with values in the real

line and autocovariance function cT K̃(·)c with cT = (c1, c2, · · · , c2k) and spectrum

equal to cTΦ(·)c, a measure in D̂. Now let D = Z be the integer group. Then
Maruyama’s theorem implies that this scalar-valued process is, indeed, weakly
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mixing, and in particular ergodic. If lima→∞ cT K̃(a)c = 0, then this scalar-valued
process is also strongly mixing.

Remark 4.6. Following [9] one can introduce the observable

Na j =
1

2

(
q2a j + p2a j − 1

)
, where 1 ≤ j ≤ k,

which is the number of particles (photons) in the j-th mode at the site a. If the
underlying process ̺ is Gaussian with mean 0 then

〈Na j〉 =
1

2

{
φ2j−1,2j−1(D̂) + φ2j,2j(D̂)−

1

2

}
.

This is a consequence of property (1) of Φ in Theorem 4.2 and equation (3.4) from
Corollary 3.1 in [9].

This shows that the relationships between photon numbers and KWM spectrum
need a deeper exploration.

Theorem 4.2 can be strengthened as follows:

Theorem 4.7. Let D be a countable, discrete, additive abelian group with its

compact character group D̂ and let λ be the normalized Haar measure of D̂ on
its Borel σ-algebra F . Suppose Φ is a complex, totally finite 2k × 2k positive
matrix-valued measure on F . Then Φ is the KWM spectrum of a k-mode weakly
stationary quantum process ̺ over D if and only if Φ admits the representation

Φ(S) =

∫

S

F (χ)λ(dχ) + Ψ(S) ∀S ∈ F , (4.11)

where F is a 2k × 2k positive Hermitian matrix-valued Borel function satisfying
the matrix inequality

F (χ) +
ı

2
J2k ≥ 0 ∀χ ∈ D, (4.12)

and

S 7→ [[ψrs(S)]] (4.13)

is a 2k×2k positive matrix-valued measure on F with each ψrs being singular with
respect to λ.

In particular, F can be chosen to satisfy

detReF (χ) ≥
1

4k
∀χ ∈ D̂ (4.14)

and the absolutely continuous part of uTΦ(·)u is equivalent to λ for every nonzero
element u of C2k.

Proof. Let Φ = [[φrs]], with r, s ∈ {1, 2, · · · , 2k}, be the KWM spectrum of a k-
mode weakly stationary quantum process ̺ over D. By property (3) of Theorem
4.2 it follows that

[
φ2r−1,2r−1(S) φ2r−1,2r(S) +

ı
2λ(S)

φ2r,2r−1(S)−
ı
2λ(S) φ2r,2r(S)

]
≥ 0
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for any S ∈ F . Suppose φ2r−1,2r−1(S) = 0. Then positivity of Φ implies that
φ2r−1,2r(S) = φ2r,2r−1(S) = 0 and hence

[
0 ı

2λ(S)
− ı

2λ(S) φ2r,2r(S)

]
≥ 0.

Since the determinant of the left hand side in the inequality is nonnegative we
conclude that λ(S) = 0. In other words λ ≪ φ2r−1,2r−1. By the same argument
λ ≪ φ2r,2r. In other words λ is absolutely continuous with respect to every
diagonal entry of Φ.

Choose and fix an S0 ∈ F such that S0 = S−1
0 , λ(S0) = 1, the measure µrr

defined by setting

µrr(S) = φrr(S ∩ S0) ∀S ∈ F

is the part of φrr equivalent to λ and the measure ψrr defined by setting

ψrr(S) = φrr(S ∩ (D̂\S0)) ∀S ∈ F

is the part of φrr singular with respect to λ, so that

φrr = µrr + ψrr ∀r = 1, 2, · · · , 2k.

Now define

µrs(S) = φrs(S ∩ S0) and

ψrs(S) = φrs(S ∩ (D̂\S0)) ∀S ∈ F .

If λ(S) = 0 then µrr(S) = 0, so φrr(S ∩ S0) = 0, whence φrs(S ∩ S0) = 0 and
therefore µrs(S) = 0. In other words µrs ≪ λ. By definition all the measures ψrs

are singular with respect to λ and

φrs = µrs + ψrs ∀r, s ∈ {1, 2, · · · , 2k}.

Define frs to be the Radon Nykodym derivative of µrs with respect to λ and put

F (χ) = [[frs(χ)]] ∀r, s ∈ {1, 2, · · · , 2k}.

Now F is defined a.e. with respect to λ and

Φ(S) =

∫

S

F (χ)λ(dχ) + Ψ(S) ∀S ∈ F , (4.15)

where every entry ψrs of Ψ is singular with respect to λ. By the choice of S0 it
follows that ∫

S

F (χ)λ(dχ) +
ı

2
λ(S)J2k ≥ 0

for all S ⊂ S0, such that S ∈ F , so that
∫

S

(
F (χ) +

ı

2
J2k

)
λ(dχ) ≥ 0.

Thus

F (χ) +
ı

2
J2k ≥ 0, λ a.e., (4.16)

and also, by the symmetry of the Haar measure,

F (χ−1) +
ı

2
J2k ≥ 0, λ a.e.. (4.17)
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On the other hand

Φ(S−1) =

∫

S

F (χ−1)λ(dχ) + Ψ(S−1),

Φ(S) =

∫

S

F (χ)λ(dχ) + Ψ(S).

The conjugate symmetry of Φ, property (4) of Theorem 4.2, and the fact that
Ψ(S) = 0 if S ⊆ S0 = S−1

0 imply

F (χ−1) = F (χ), λ a.e.

Choosing F (χ) = 1
2I2k whenever this fails we may assume that F (χ−1) = F (χ)

for all χ. Now (4.16) and (4.17) imply that F can be altered on a set of λ-measure
zero so that

ReF (χ) =
F (χ) + F (χ−1)

2
≥ −

ı

2
J2k

holds for every χ. In other words F is a complex positive 2k × 2k matrix whose
real part is the quantum covariance matrix of position and momentum observables
in a k-mode state in L2(Rk). It follows from [8] that

det ReF (χ) ≥
1

4k
∀χ ∈ D̂

and the representation (4.11) holds.
The converse is already a part of Theorem 4.2. �

Remark 4.8. Suppose the quantum process ̺ of Theorem 4.7 is Gaussian and sym-
metric under the reflection transformation a 7→ −a in D. Then the autocovariance
function K of the process ̺ satisfies the condition K(a) = K(−a), a ∈ D and the
KWM spectrum Φ is real, i.e., Φ = Φ. Then (4.14) implies

∫

D̂

log detΦ(χ)λ(dχ) > −∞.

When D = Z is the integer group it follows from the Wiener Masani theorem, in
particular, that the position observables (qn 1, · · · , qnk) execute a purely indeter-
ministic shift invariant k-variate Gaussian process. So do the momentum observ-
ables (pn 1, · · · , pnk). It may be recalled that a d-variate, mean zero shift invariant
Gaussian process of random variables {ξn = (ξn 1, ξn 2, · · · , ξn d),−∞ < n < ∞}

defined on a probability space (Ω, F̃ , P ) is a purely indeterministic if, for any n,

n⋂

−∞

Hm = {0}

where Hm denotes the closed subspace spanned by the random variables
{ξr j , −∞ < r ≤ m, 1 ≤ j ≤ d} in L2(P ).
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