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Abstract. The one-default models are widely applied in modeling financial
risk and price valuation of financial products such as credit default swap. In

this paper, we are interested essentially in the so-called natural model. This
model is expressed by a stochastic differential equation called ♮-equation in-
troduced in [5]; this equation displays the evolution of the defaultable market.
So, on the same model and with some assumptions, we will try to prove a

few properties of the stochastic flow generated by a ♮-equation but in a mul-
tidimensional case and with some modifications. This is the main motivation
of our research.

1. Introduction

In [5] a new class of random times has been introduced. Precisely, it is proved
that, for any continuous increasing process Λ null at the origin, for any continuous
non-negative local martingale N such that Zt = Nte

−Λt with 0 < Zt < 1, t > 0
denotes the default intensity, for any continuous local martingale Y , and for any
Lipschitz function f on R null at the origin, there exists a random variable τ such
that the family of conditional expectations Xu

t = Q[τ ≤ u|Ft], u > 0, t < ∞,
satisfies the following stochastic differential equation :

(♮u) :

 dXt = Xt

(
− e−Λt

1− Zt
dNt + f (Xt − (1− Zt))dYt

)
, t ∈ [u,∞),

Xu = x.

We call this setting a ♮-model, where the initial condition x can be any Fu-
measurable random variable.

We introduce the ♮-model in a multi-dimensional case. Let F be a continuous
Lipschitz mapping from Rd into itself and Y (t, ω) = (Y1(t, ω), ..., Yr(t, ω)) de-
note an r-dimensional continuous local martingale defined on a probability space
(Ω,F = (Ft)t≥0,P). We consider the stochastic differential equation (♮u) on Rd :
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(♮u) :

 dXt = Xt

(
− e−Λt

1− Zt
dNt +

d∑
i=1

r∑
j=1

F i
j (Xt − (1− Zt))dY

j
t

)
,

Xu = x,

for t ∈ [u,∞), 1 ≤ j ≤ r.
The property appears important in recent study of stochastic differential ge-

ometry, and has been studied by several authors, e.g. Elworthy [3], Malliavin [7],
Ikeda-Watanabe [4], Bismut [1]. We are inspired from the methods of proving the
results obtained in [6] by Hiroshi Kunita. The main result of this paper is to prove
the homeomorphism property of the stochastic flow generated by the stochastic
flow associated with the ♮-equation based on Hiroshi Kunita theory, but we impose
the following hypotheses:

Hypothesis 1.1. We keep the same naturel model, but we assume that all the
processes indicated in the ♮-equation (the multidimensional case) take real values.
Thus, we impose that the coefficients of this equation are Lipschitz continuous.

Hypothesis 1.2. We always assume the hypothesis mentioned in [5], which de-

noted that the stochastic integral

∫ t

u

e−Λs

1− Zs
dNs, u ≤ t < ∞, exists and defines a

local martingale. So called the hypothesis HY (C).

The paper is organized as follows. In section 2, we will prove the found theorems
and lemmas motivated by T.Yamada and S.Varadhan, which will appear in [6].
Section 3 presents the main results of this paper.

2. The Stochastic Flow of a Stochastic Differential Equation

This section is borrowed from [6].

2.1. Flow of homeomorphisms for the solution of SDE. In this subsection,
let G1(x), ..., Gr(x) be continuous mappings from Rd into itself and M1

t , ...,M
r
t

continuous semimartingales defined on a probability space (Ω,F,P;Ft). Here Ft,
0 ≤ t < ∞ is an increasing family of sub σ-fields of F such that ∧ε>0Ft+ε = Ft

holds for each t. Consider an Itô stochastic differential equation (SDE) on Rd:

dξt =
r∑

j=1

Gj(ξt)dM
j
t . (2.1)

A sample continuous Ft-adapted stochastic process ξt with values in Rd is called
a solution of (2.1), if it satisfies

ξt = ξ0 +

d∑
j=1

∫ t

0

Gj(ξs)dM
j
s , (2.2)

where the right hand side is the Itô integral.
Concerning the coefficients of the equation, we will assume in this section that

they are Lipschitz continuous, i.e., there is a positive constant L such that

|Gi
j(x)−Gi

j(y)| ≤ L|x− y|, ∀x, y ∈ Rd
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holds for all indices i, j, where Gi
j(x) is the i-th component of the vector function

Gj(x). Then for a given point x of Rd, the equation has a unique solution such
that ξ0(x) = x. We denote it by ξt(x) or ξt(x, ω). It is continuous in (t, x) a.s. In
fact, the following proposition is well known.

Proposition 2.1 ([9]). ξt(x, ω) is continuous in [0,∞) × Rd for almost all ω.

Furthermore, for any T > 0 and p ≥ 2, there is a positive constant K
(1)
p,T such that

E|ξt(x)− ξs(y)|p ≤ K
(1)
p,T

(
|x− y|p + |t− s|

p
2

)
(2.3)

holds for all x, y of Rd and t, s of [0, T ].

We thus think that for a fixed t, ξt(·, ω) is a continuous map from Rd into itself
for almost all ω. The purpose of this section is to prove that the map ξt(·, ω) is one
to one and onto, and that the inverse map ξ−1

t (·, ω) is also continuous. Namely
we will prove

Theorem 2.2. Suppose that G1, ..., Gr of equation (2.1) are Lipschitz continuous.
Then the solution map ξt(·, ω) is a homeomorphism of Rd for all t, a.s. in ω.

Before proving the theorem, we would like to mention a few remarks.

Remark 2.3. In the case of one dimensional SDE, Ogura and Yamada [8] have
shown the same result under a weaker condition, using a strong comparison the-
orem of solutions. In fact, if coefficients are Lipschitz continuous on any finite
interval (local Lipschitz) and if they are of linear growth, i.e., |Gj(x)| ≤ C(1+ |x|)
holds for all x with some positive C, then the solution ξt(·, ω) is a homeomorphism
a.s. for any t.

Remark 2.4. The (local) Lipschitz continuity of coefficients is crucial for the theo-
rem. Ogura and Yamada [8] have given an example of a one dimensional SDE with
α-Hölder continuous coefficients ( 12 < α < 1), which has a unique strong solution
but does not have the “one to one” property.

Remark 2.5. It is enough to prove the theorem in the case that M i
t , i = 1, ..., r,

satisfy the properties below: Let M j
t = Bj

t + Aj
t be the decomposition of semi-

martingale such that Bj
t is a continuous local martingale and Aj

t is a continuous

process of bounded variation. Let ⟨Bj⟩t be the quadratic variation of Bj
t . Then

for each j and all s < t,

Aj
t −Aj

s ≤ t− s , ⟨Bj⟩t − ⟨Bj⟩s ≤ t− s, ∀s < t (2.4)

In the following discussion, condition (2.4) is always assumed. We will first
show the ”one to one” property. Our approach is based on several elementary
inequalities.

Lemma 2.6. Let T > 0 and p be any real number. Then there is a positive

constant K
(2)
p,T such that ∀x, y ∈ Rd and ∀t ∈ [0, T ],

E|ξt(x)− ξs(y)|p ≤ K
(2)
p,T |x− y|p. (2.5)
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Proof. If x = y, the inequality is clearly satisfied for any positive constant K
(2)
p,T .

We shall assume x ̸= y. Let ε be an arbitrary positive number and σε = inf{t >
0; |ξt(x)− ξt(y)| < ε}. We shall apply Itô’s formula to f(z) = |z|p. Then we have
for t < σε,

|ξt(x)− ξt(y)|p − |x− y|p

=
∑
i,j

∫ t

0

∂f

∂zi
(ξs(x)− ξs(y))

(
Gi

j(ξs(x))−Gi
j(ξs(y))

)
dM j

s

+
1

2

∑
i,j,k,l

∫ t

0

∂2f

∂zi∂zj
(ξs(x)− ξs(y))

(
Gi

k(ξs(x))−Gi
k(ξs(y))

)
×
(
Gj

l (ξs(x))−Gj
l (ξs(y))

)
d⟨Mk,M l⟩s

= It + Jt.

Note
∂f

∂zi
= p|z|p−2zi and apply Lipschitz inequality. Then

∑
i

∣∣∣∣ ∂f∂zi (ξs(x)− ξs(y))
(
Gi

j(ξs(x))−Gi
j(ξs(y))

)∣∣∣∣ ≤ |p|
√
dL|ξs(x)− ξs(y)|p.

Therefore we have

|EIt∧σε | ≤ |p|r
√
dL

∫ t

0

E|ξs∧σε(x)− ξs∧σε(y)|pds.

Next, note that
∂2f

∂zi∂zj
= p|z|p−2δij + p(p− 2)|z|p−4zizj ,

where δij is the Kronecker’s delta. Then∣∣∣∣∑
i,j

∂2f

∂zi∂zj
(ξs(x)− ξs(y))(G

i
k(ξs(x))−Gi

k(ξs(y)))(G
i
l(ξs(x))−Gi

l(ξs(y)))

∣∣∣∣
≤ |p|(|p− 2|+ d)L2|ξs(x)− ξs(y)|p|.

Therefore

|EJt∧σε | ≤
1

2
r2|p|(|p− 2|+ d)L2

∫ t

0

E|ξs∧σε(x)− ξs∧σε(y)|pds.

Summing up these two inequalities, we obtain

E|ξt∧σε(x)− ξt∧σε(y)|p ≤ |x− y|p + Cp

∫ t

0

E|ξt∧σε(x)− ξt∧σε(y)|pds,

where Cp is a positive constant. By Grönwall’s inequality,

E|ξt∧σε(x)− ξt∧σε(y)|p ≤ K
(2)
p,T |x− y|p, ∀t ∈ [0, T ],

where K
(2)
p,T = exp(CpT ). Letting ε tend to 0, we have

E|ξt∧σ(x)− ξt∧σ(y)|p ≤ K
(2)
p,T |x− y|p,
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where σ is the first time t such that ξt(x) = ξt(y). However, we have σ = ∞
a.s., since otherwise the left hand side would be infinity if p < 0. The proof is
complete. □

The above lemma shows that if x ̸= y then ξt(x) ̸= ξt(y) holds a.s. for all t.
But it does not conclude that ξt(·, ω) is “one to one”, since the exceptional null
set Nx,y = {ω ; ξt(x) = ξt(y) for some t} depends on the pair (x, y). To overcome
this point, we shall prove the following lemma.

Lemma 2.7 (Varadhan). Set

ηt(x, y) =
1

|ξt(x)− ξt(y)|
. (2.6)

Then ηt(x, y) is continuous in [0,∞)× {(x, y) ∈ R2d|x ̸= y}.

Proof. Suppose p > 2(2d+ 1). We have

|ηt(x, y)−ηt′(x
′, y′)|p ≤ 2pηt(x, y)

pηt′(x
′, y′)p{|ξt(x)−ξt′(x

′)|p+ |ξt(y)−ξt′(y
′)|p}.

By Hölder’s inequality,

E|ηt(x, y)− ηt′(x
′, y′)|p

≤ 2p{E(ηt(x, y)4p)E(ηt′(x′, y′)4p)} 1
4

× {(E|ξt(x)− ξt′(x
′)|2p) 1

2 + (E|ξt(y)− ξt′(y
′)|2p) 1

2 }.

By Lemma 2.6 and Proposition 2.1, we have

E|ηt(x, y)− ηt′(x
′, y′)|p

≤ Cp,T |x− y|−p|x′ − y′|−p{|x− x′|p + |y − y′|p + 2|t− t′|
p
2 },

E|ηt(x, y)− ηt′(x
′, y′)|p ≤ Cp,T δ

−2p{|x− x′|p + |y − y′|p + 2|t− t′|
p
2 }, (2.7)

if |x − y| ≥ δ and |x′ − y′| ≥ δ, where Cp,T is a positive constant. Then by
Kolmogorov’s theorem, ηt(x, y) is continuous in [0, T ]×{(x, y); |x−y| ≥ δ}. Since T
and δ are arbitrary positive numbers, we get the assertion. The proof is complete.

□

The above lemma leads immediately to the “one to one” property of the map
ξt(·, ω) a.s. for all t. We shall consider next the onto property. We first establish

Lemma 2.8. Let T > 0 and let p be any real number. Then there is a positive

constant K
(3)
p,T such that

E(1 + |ξt(x)|2)p ≤ K
(3)
p,T (1 + |x|2)p, ∀x ∈ Rd, ∀t ∈ [0, T ]. (2.8)

Proof. We shall apply Itô’s formula to the function f(z) = (1 + |z|2)p. We have
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f(ξt(x))− f(x) =
∑
i,j

∫ t

0

∂f

∂zi
(ξs(x))G

i
j(ξs(x))dM

j
s

+
1

2

∑
i,j,k,l

∫ t

0

∂2f

∂zi∂zj
(ξs(x))G

i
k(ξs(x))G

j
l (ξs(y)) d⟨M

k,M l⟩s

= It + Jt.

Let K be a positive constant such that

|Gi
j(x)| ≤ K(1 + |x|2) 1

2 .

holds for all i and j. Then,∣∣∣∣∣∑
i

∂f

∂zi
(ξs(x))G

i
j(ξs(x))

∣∣∣∣∣ ≤ 2
√
d |p|K(1 + |ξs(x)|2)p.

Therefore,

|E It| ≤ 2r
√
d |p|K

∫ t

0

E(1 + |ξs(x)|2)pds.

Similarly,∣∣∣∣∣∣12
∑
i,j

∂2f

∂zi∂zj
(ξs(x))G

i
k(ξs(x))G

j
l (ξs(x))

∣∣∣∣∣∣ ≤ |p|(d+ 2|p− 1|)K2(1 + |ξs(x)|2)p,

so that

|E Jt| ≤ |p|r2(d+ 2|p− 1|)K2

∫ t

0

E(1 + |ξs(x)|2)pds.

Therefore we have

E(1 + |ξt(x)|2)p ≤ (1 + |x|2)p + const.

∫ t

0

E(1 + |ξs(x)|2)pds.

By Grönwall’s inequality, we get the inequality of the lemma. □

Remark 2.9. We have (1 + |x|2) ≤ (1 + |x|)2 ≤ 2(1 + |x|2). Therefore, inequality
(2.8) implies

E(1 + |ξt(x)|)2p ≤ 2|p|K
(3)
p,T (1 + |x|)2p. (2.9)

Now taking negative p in the above lemma, we see that |ξt(x)| tends to infin-
ity in probability as x tends sequencially to infinity. We shall prove a stronger
convergence. We claim

Lemma 2.10. Let Rd = Rd ∪ {∞} be the one point compactification of Rd. Set

ηt(x) =


1

1 + |ξt(x)|
, if x ∈ Rd,

0, if x = ∞.

Then ηt(x, ω) is a continuous map from [0,∞)× Rd into R a.s..
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Proof. Obviously ηt(x) is continuous in [0,∞) × Rd. Hence it is enough to prove
the continuity in the neighborhood of infinity. Suppose p > 2(2d+ 1). We have

|ηt(x)− ηs(y)|p ≤ ηt(x)
pηs(y)

p|ξt(x)− ξs(y)|p.

By Hölder’s inequality, Proposition 2.1 and lemma 2.8, we have

E|ηt(x)− ηs(y)|p ≤ (Eηt(x)4p)
1
4 (Eηs(y)4p)

1
4 (E|ξt(x)− ξs(y)|2p)

1
2

≤ Cp,T (1 + |x|)−p(1 + |y|)−p(|x− y|p + |t− s|
p
2 ),

if t, s ∈ [0, T ] and x, y ∈ Rd, where Cp,T is a positive constant. Set
1

x
=

(x−1
1 , ..., x−1

d ). Since

|x− y|
(1 + |x|)(1 + |y|)

≤
∣∣∣∣ 1x − 1

y

∣∣∣∣ ,
we get the inequality

E|ηt(x)− ηs(y)|p ≤ Cp,T

(∣∣∣∣ 1x − 1

y

∣∣∣∣p + |t− s|
p
2

)
.

Define

η̃t(x) =

{
ηt(

1

x
), if x ̸= 0,

0, if x = 0.

Then the above inequality implies

E|η̃t(x)− η̃s(y)|p ≤ Cp,T

(
|x− y|p + |t− s|

p
2

)
, x ̸= 0 , y ̸= 0.

In the case y = 0, we have

E|η̃t(x)|p ≤ Cp,T |x|p.

Therefore, η̃t(x) is continuous in [0,∞) × Rd by Kolmogorov’s theorem. This
proves that η̃t(x) is continuous in [0,∞)×neighborhood of infinity. □

Lemma 2.11. Define a stochastic process ξt on Rd = Rd ∪ {∞} by

ξt(x) =

{
ξt(x), if x ∈ Rd,
∞, if x = ∞.

Then ξt(x) is continuous in [0,∞)× Rd.

Proof. We have the proof by the previous lemma. Thus for each t > 0, the

map ξt(·, ω) is homotopic to the identity map on Rd, which is homeomorphic to

d-dimensional sphere Sd. Then ξt(·, ω) is an onto map of Rd by a well known
homotopic theory. □

Now the map ξt is a homeomorphism of Rd, since it is one to one, onto and
continuous. Since ∞ is the invariant point of the map ξt, we see that ξt is a
homeomorphism of Rd. This completes the proof of Theorem 2.2.
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3. Main Result

We now turn to the ♮ -equation in higher dimensions. Let (Λ1, ...,Λd) be a d-
dimensional continuous increasing process null at the origin, and a d-dimensional
continuous non-negative local martingale N such that Z = N e−Λ with 0 <
Z < 1, t > 0 and Z(t, ω) = (Z1(t, ω), ..., Zd(t, ω)) denotes the default inten-
sity. Let F be continuous, Lipschitz mapping from Rd into itself and Y (t, ω) =
(Y1(t, ω), ..., Yr(t, ω)) denote a r-dimensional continuous local martingale defined
on a probability space (Ω,F = (Ft)t≥0,P). We consider the ♮ -equation in multi-
dimensional case :

(♮u) :


dX1(t) = X1(t)

(
− e−Λ1(t)

1− Z1(t)
dN1(t) + F11dY1 + · · ·+ F1ddYr

)
,

...
...

...

dXd(t) = Xd(t)

(
− e−Λd(t)

1− Zd(t)
dNd(t) + Fr1dY1 + · · ·+ FrddYr

)
,

with X(u) = (x1, ..., xd)
T as the initial condition. Or, in matrix notation simply:

(♮u) :

 dXt = Xt

(
− e−Λt

1− Zt
dNt + F (Xt − (1− Zt))dYt

)
, t ∈ [u,∞),

Xu = x,

where X(t) = (X1(t), ..., Xd(t))
T
, − e−Λt

1− Zt
=

(
− e−Λ1(t)

1− Z1(t)
, ...,− e−Λd(t)

1− Zd(t)

)T

,

dN(t) = (dN1(t), ..., dNd(t))
T
, dY (t) = (dY1(t), ..., dYr(t))

T
, where T denotes the

transpose of a vector, and

F =


F11 . . . F1d

. . . . .

. . . . .

. . . . .
Fr1 . . . Frd

 .

Concerning coefficients of our equation, we will assume in this section that they
are Lipschitz continuous, i.e., there is a positive constant L̃ such that:

|F i
j (x)− F i

j (y)| ≤ L̃|x− y|, ∀x, y ∈ Rd, 1 ≤ i ≤ d, 1 ≤ j ≤ r,

holds for all indices i, j, where F i
j (x) is the i-th component of the vector function

Fj(x). Then for a given point x of Rd, the (♮u)-equation has a unique solution
such that Xu = x. We denote it as Xt(x) or Xt(x, ω). It is continuous in (t, x)
a.s. applying proposition 2.1 [9].

Xu
t (x) = x+

∫ t

u

Xs

(
− e−Λs

1− Zs

)
dNs +

∫ t

u

d∑
i=1

r∑
j=1

XsF
i
j (Xs − (1− Zs))dY

j
s .

We know that the quantity F i
j (Xs− (1−Zs)) is bounded because F is a Lipschitz

function, but we do not know a priori if the quantity

(
− e−Λs

1− Zs

)
is finite or not;
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we introduce the stopping time τn = inf{t, 1−Zt <
1
n}, therefore, we assume the

process X̃ instead of X:

dX̃t = X̃t

(
− e−Λt

1− Zt∧τn

dNt +
d∑

i=1

r∑
j=1

F i
j (X̃t − (1− Zt))dY

j
t

)
,

such as X̃t = Xt, ∀t ≤ τn, n ∈ N.

3.1. Proof of the one to one property. In this part we will apply lemma 2.6

to our model. So if x = y the inequality is clearly satisfied for any constant K̃
(2)
p,T .

We shall assume x ̸= y. Let ε̃ be an arbitrary positive number and:

σε̃ = inf{t > 0; |X̃u
t (x)− X̃u

t (y)| < ε̃}.

We denote At = X̃u
t (x)− X̃u

t (y), and we shall apply Itô’s formula to the function
f(z) = |z|p. Then we have for t < ε̃,

X̃u
t (x) = x+

∫ t

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs +

∫ t

u

d∑
i=1

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s ,

dX̃t = X̃t

(
− e−Λt

1− Zt∧τn

)
dNt +

d∑
i=1

r∑
j=1

X̃tF
i
j

(
X̃t − (1− Zt)

)
dY j

t ,

∣∣∣X̃u
t (x)− X̃u

t (y)
∣∣∣p − |x− y|p

=
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

t (x)− X̃u
t (y)

)
×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s

− X̃s(y)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(y)F

i
j

(
X̃s(y)− (1− Zs)

)
dY j

s

]
+

1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
k

(
X̃s(x)− (1− Zs)

)
dY k

s

− X̃s(y)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(y)F

i
k

(
X̃s(y)− (1− Zs)

)
dY k

s

]
×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

j
l

(
X̃s(x)− (1− Zs)

)
dY l

s

− X̃s(y)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(y)F

j
l

(
X̃s(y)− (1− Zs)

)
dY l

s

]
,
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t (x)− X̃u

t (y)
∣∣∣p − |x− y|p

=
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)− X̃u
s (y)

)

×

[(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
dNs

+
(
X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
− X̃s(y)F

i
j

(
X̃s(y)− (1− Zs)

))
dY j

s

]

+
1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)

×

[(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
dNs

+
(
X̃s(x)F

i
k

(
X̃s(x)− (1− Zs)

)
− X̃s(y)F

i
k

(
X̃s(y)− (1− Zs)

))
dY k

s

]

×

[(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
dNs

+
(
X̃s(x)F

j
l

(
X̃s(x)− (1− Zs)

)
− X̃s(y)F

j
l

(
X̃s(y)− (1− Zs)

))
dY l

s

]
= Ĩt + J̃t,

Ĩt =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)− X̃u
s (y)

)

×

[(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
dNs

+
(
X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
− X̃s(y)F

i
j

(
X̃s(y)− (1− Zs)

))
dY j

s

]
.

Noting

V i
j (X̃

x
s ) = X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
,

V i
j (X̃

y
s ) = X̃s(y)F

i
j

(
X̃s(y)− (1− Zs)

)
,

such that ∣∣∣V i
j (X̃

x
s )− V i

j (X̃
y
s )
∣∣∣ ≤ L̃

∣∣∣X̃x
s − X̃y

s

∣∣∣ ,
and

∂f

∂zi
= p|z|p−2zi,

we put
Ĩt = Ĩ1t + Ĩ2t ,
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such that

Ĩ1t =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)− X̃u
s (y)

)(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
dNs,

Ĩ2t =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)− X̃u
s (y)

)(
V i
j (X̃

x
s )− V i

j (X̃
y
s )
)
dY j

s .

For Ĩ1t , we have: ∑
i

∣∣∣∣ ∂f∂zi
(
X̃u

s (x)− X̃u
s (y)

)(
X̃s(x)− X̃s(y)

)∣∣∣∣
≤ |p||z|p−2|zi|

√
d
∣∣∣X̃s(x)− X̃s(y)

∣∣∣
≤ |p|

√
d
∣∣∣X̃s(x)− X̃s(y)

∣∣∣p .
Therefore,

Ĩ1t ≤ |p|
√
d

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds× ∫ t

u

− e−Λs

1− Zs∧τn

dNs.

Note that Qt =

∫ t

u

− e−Λs

1− Zs∧τn

dNs, it is a local martingale (the so called hypoth-

esis HY (C) [5]). So

Ĩ1t ≤ |p|r
√
d Qt

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds.

For Ĩ2t , we have ∑
i

∣∣∣∣ ∂f∂zi
(
X̃u

s (x)− X̃u
s (y)

)(
V i
j (X̃

x
s )− V i

j (X̃
y
s )
)∣∣∣∣

≤ |p||z|p−2|zi|
√
d L̃
∣∣∣X̃s(x)− X̃s(y)

∣∣∣
≤ |p|

√
d L̃
∣∣∣X̃s(x)− X̃s(y)

∣∣∣p .
Therefore,

Ĩ2t ≤ |p|
√
d r L̃

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds.

So, we have

Ĩt =Ĩ1t + Ĩ2t

≤|p|r
√
d Qt

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds+ |p|

√
d r L̃

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds

≤|p|r
√
d

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds (Qt + L̃).

Therefore, we have∣∣∣E Ĩt∧σε̃

∣∣∣ ≤ |p|r
√
d (Qt∧σε̃ + L̃)

∫ t

u

E
∣∣∣X̃s∧σε̃(x)− X̃s∧σε̃(y)

∣∣∣p ds. (3.1)



468 FATIMA BENZIADI AND ABDELDJABBAR KANDOUCI

Next,

J̃t =
1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
[(

X̃s(x)− X̃s(y)
)(

− e−Λs

1− Zs∧τn

)
dNs +

(
V i
k (X̃

x
s )− V i

k (X̃
y
s )
)
dY k

s

]
×
[(

X̃s(x)− X̃s(y)
)(

− e−Λs

1− Zs∧τn

)
dNs +

(
V j
l (X̃

x
s )− V j

l (X̃
y
s )
)
dY l

s

]
.

J̃t =
1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)

×

[(
X̃s(x)− X̃s(y)

)2(
− e−Λs

1− Zs∧τn

)2

dNsdNs +
(
V i
k (X̃

x
s )− V i

k (X̃
y
s )
)

×
(
V j
l (X̃

x
s )− V j

l (X̃
y
s )
)
dY k

s dY l
s +

(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
×
(
V j
l (X̃

x
s )− V j

l (X̃
y
s )
)
× dNs dY

l
s +

(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
×
(
V i
k (X̃

x
s )− V i

k (X̃
y
s )
)
dNs dY

k
s

]
.

Note that J̃t =
1

2

[
J̃1
t + J̃2

t + J̃3
t + J̃4

t

]
such that

J̃1
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
X̃s(x)− X̃s(y)

)2
×
(
− e−Λs

1− Zs∧τn

)2

dNsdNs,

J̃2
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
V i
k (X̃

x
s )− V i

k (X̃
y
s )
)

×
(
V j
l (X̃

x
s )− V j

l (X̃
y
s )
)
dY k

s dY l
s ,

J̃3
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
×
(
V j
l (X̃

x
s )− V j

l (X̃
y
s )
)
dNs dY

l
s ,

J̃4
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
X̃s(x)− X̃s(y)

)(
− e−Λs

1− Zs∧τn

)
×
(
V i
k (X̃

x
s )− V i

k (X̃
y
s )
)
dNs dY

k
s ,
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and note that
∂2f

∂zi∂zj
= p|z|p−2δij + p(p− 2)|z|p−4zizj ,

where δij is the Kronecker’s delta. Then for J̃1
t , we have∣∣∣∣∣∣

∑
i,j

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
X̃s(x)− X̃s(y)

)2∣∣∣∣∣∣
≤
∣∣∣∣(p|z|p−2δijd+ p(p− 2)|z|p−4zizj

) (
X̃s(x)− X̃s(y)

)2∣∣∣∣
≤ |p| (|p− 2|+ d)

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p .

Therefore,

J̃1
t ≤ |p| (|p− 2|+ d)

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds∫ t

u

(
− e−Λs

1− Zs∧τn

)2

dNsdNs.

The hypothesis HY (C) is always assumed, so

J̃1
t ≤ |p| (|p− 2|+ d) Q2

t

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds.

For J̃2
t , we have∣∣∣∣∣∣
∑
i,j

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
V i
k (X̃

x
s )− V i

k (X̃
y
s )
)(

V j
l (X̃

x
s )− V j

l (X̃
y
s )
)∣∣∣∣∣∣

≤
∣∣∣∣(p|z|p−2δijd+ p(p− 2)|z|p−4zizj

)
L̃2
(
X̃s(x)− X̃s(y)

)2∣∣∣∣ ,
J̃2
t ≤ |p| (|p− 2|+ d) L̃2

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p .

So

J̃2
t ≤ |p| (|p− 2|+ d) L̃2 r2

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds.

For J̃3
t , we have∣∣∣∣∣∣

∑
i,j

∂2f

∂zi∂zj

(
X̃u

s (x)− X̃u
s (y)

)
×
(
X̃s(x)− X̃s(y)

)(
V j
l (X̃

x
s )− V j

l (X̃
y
s )
)∣∣∣∣∣∣

≤
∣∣∣(p|z|p−2δijd+ p(p− 2)|z|p−4zizj

) (
X̃s(x)− X̃s(y)

)
L̃ r
(
X̃s(x)− X̃s(y)

)∣∣∣
≤ |p| (|p− 2|+ d) L̃ r

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p .

The hypothesis HY (C) is always assumed, so

J̃3
t ≤ |p| (|p− 2|+ d) L̃ r Qt

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds.
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For J̃4
t , we have also

J̃4
t ≤ |p| (|p− 2|+ d) L̃ r Qt

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds,

J̃t =
1

2

[
J̃1
t + J̃2

t + J̃3
t + J̃4

t

]
≤1

2

[
|p| (|p− 2|+ d) Q2

t

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds

+ |p| (|p− 2|+ d) L̃2 r2
∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds

+ 2|p| (|p− 2|+ d) L̃ r Qt

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds]

≤1

2

[
|p| (|p− 2|+ d)

∫ t

u

∣∣∣X̃s(x)− X̃s(y)
∣∣∣p ds(Q2

t + L̃2 r2 + 2L̃ r Qt

)]
.

Therefore,∣∣∣E J̃t∧σε̃

∣∣∣ ≤ 1

2
|p| (|p− 2|+ d)

(
Qt + r L̃

)2 ∫ t

u

E
∣∣∣X̃s∧σε̃

(x)− X̃s∧σε̃
(y)
∣∣∣p ds. (3.2)

Summing up these two inequalities 3.1 and 3.2, we obtain

E
∣∣∣X̃u

t∧σε̃
(x)− X̃u

t∧σε̃
(y)
∣∣∣p ≤ |x− y|p + C̃p

∫ t

u

E
∣∣∣X̃s∧σε̃(x)− X̃s∧σε̃(y)

∣∣∣p ds,
where C̃p is a positive constant.

By Grönwall’s inequality we have

E
∣∣∣X̃u

t∧σε̃
(x)− X̃u

t∧σε̃
(y)
∣∣∣p ≤ K(2)

p,u |x− y|p, u ≤ t ≤ ∞,

such that

K(2)
p,u |x− y|p = exp(C̃pu).

Letting ε̃ tend to 0, we have

E
∣∣∣X̃u

t∧σ(x)− X̃u
t∧σ(y)

∣∣∣p ≤ K(2)
p,u |x− y|p,

where σ is the first time such that X̃u
t (x) = X̃u

t (y). However, we have σ = ∞
a.s., since otherwise the left hand side would be infinity if p < 0. The proof is
complete.

The above lemma shows that if x ̸= y then X̃u
t (x) ̸= X̃u

t (y) holds a.s. for all t.

But it does not conclude that X̃t(., ω) is one to one, since the exceptional null set

Ñx,y = {ω; X̃u
t (x) = X̃u

t (y) for some t} depends on the pair (x, y). To overcome
this point, we shall apply lemma 2.7.

In this case, suppose p > 2(2d+ 1). We have

X̃u
t (x) = x+

∫ t

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs +

∫ t

u

d∑
i=1

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s ,
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X̃u
t′(x

′) = x′+

∫ t′

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs+

∫ t′

u

d∑
i=1

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s ,

X̃u
t (y) = y +

∫ t

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs +

∫ t

u

d∑
i=1

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s ,

X̃u
t′(y

′) = y′+

∫ t′

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs+

∫ t′

u

r∑
i=d

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s .

Put

η̃t(x, y) =
1

|X̃u
t (x)− X̃u

t (y)|
,

η̃t′(x
′, y′) =

1

|X̃u
t′(x

′)− X̃u
t′(y

′)|
.

So

|η̃t(x, y)− η̃t′(x
′, y′)|p

=

∣∣∣∣∣ 1

|X̃u
t (x)− X̃u

t (y)|
− 1

|X̃u
t′(x

′)− X̃u
t′(y

′)|

∣∣∣∣∣
p

≤ 2p
(

1

|X̃u
t (x)− X̃u

t (y)|

)p
(

1

|X̃u
t′(x

′)− X̃u
t′(y

′)|

)p

×
[
|X̃u

t (x)− X̃u
t′(x

′)|p + |X̃u
t (y)− X̃u

t′(y
′)|p
]
.

By Hölder’s inequality,

E |η̃t(x, y)− η̃t′(x
′, y′)|p

≤ 2p
(
E(η̃t(x, y)4p)E(η̃t′(x′, y′)4p)

) 1
4

×
[(

E|X̃u
t (x)− X̃u

t′(x
′)|2p

) 1
2

+
(
E|X̃u

t (y)− X̃u
t′(y

′)|2p
) 1

2

]
.

By lemma 2.6 and proposition 2.1, we have

E |η̃t(x, y)− η̃t′(x
′, y′)|p

≤ C̃p,T |x− y|−p|x′ − y′|−p
(
|x− x′|p + |y − y′|p + 2|t− t′|

p
2

)
≤ C̃p,T δ̃

−2p
(
|x− x′|p + |y − y′|p + 2|t− t′|

p
2

)
,

if |x − y| ≥ δ̃ and |x′ − y′| ≥ δ̃, where C̃p,T is a positive constant. Then by

Kolmogorov Theorem 2.2, η̃t(x, y) is continuous in [0, T ] × {(x, y)/|x − y| ≥ δ̃}.
Since T and δ̃ are arbitrary positive numbers, we get the assertion. The proof is
complete.

The above calculus leads immediately to the one to one property of the map
X̃u

t (., ω) a.s. for all t. We shall next consider the onto property.
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3.2. Proof of the onto property. In this part we will apply lemmas 2.8, 2.10,
and 2.11 to our model.

Let T > 0 and p any real number:

X̃u
t (x) = x+

∫ t

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs +

∫ t

u

d∑
i=1

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s ,

dX̃t = X̃t

(
− e−Λt

1− Zt∧τn

)
dNt +

d∑
i=1

r∑
j=1

X̃tF
i
j

(
X̃t − (1− Zt)

)
dY j

t .

We shall apply Itô’s formula to the function f(z) = (1 + |z|2)p. We have

f(X̃u
t (x))− f(x)

=
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)

×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s

]
+

1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)

×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
k

(
X̃s(x)− (1− Zs)

)
dY k

s

]
×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

j
l

(
X̃s(x)− (1− Zs)

)
dY l

s

]
,

f(X̃u
t (x))− f(x) = Ĩt + J̃t such that

Ĩt =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)

×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s

]
,

J̃t =
1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)

×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
k

(
X̃s(x)− (1− Zs)

)
dY k

s

]
×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

j
l

(
X̃s(x)− (1− Zs)

)
dY l

s

]
.

For Ĩt, we have

Ĩt =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)

×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s

]
,
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Ĩt =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)
× X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs

+
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)
× X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s .

Ĩt = Ĩ1t + Ĩ2t such that

Ĩ1t =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)
× X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs,

Ĩ2t =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)
× X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s .

For Ĩ1t , note
∂f

∂zi
= 2 p zi (1+|z|2)p−1 and the hypothesisHY (C) is always assumed,

so

Ĩ1t =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)
× X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs,

∑
i

∣∣∣∣ ∂f∂zi
(
X̃u

s (x)
)
× X̃s(x)

∣∣∣∣ ≤ 2|p||zi|(1 + |z|2)p−1
√
d|X̃s(x)|

≤ 2|p|
√
d
(
1 + |X̃s(x)|2

)p
.

Therefore,

Ĩ1t ≤ 2|p|
√
d r Qt

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.

For Ĩ2t , we have

Ĩ2t =
∑
i,j

∫ t

u

∂f

∂zi

(
X̃u

s (x)
)
× X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
dY j

s .

Note

Ṽ i
j (X̃

x
s ) = X̃s(x)F

i
j

(
X̃s(x)− (1− Zs)

)
.

Let K̃ be a positive constant such that

Ṽ i
j (X̃

x
s ) ≤ K̃

(
1 + |X̃s(x)|2

) 1
2

,

∑
i

∣∣∣∣ ∂f∂zi
(
X̃u

s (x)
)
× Ṽ i

j (X̃
x
s )

∣∣∣∣ ≤ 2 |p| |zi| (1 + |z|2)p−1
√
d K̃

(
1 + |X̃s(x)|2

) 1
2

≤ 2
√
d |p| K̃

(
1 + |X̃s(x)|2

)p
.

So

Ĩ2t ≤ 2
√
d |p| r K̃

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.
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Therefore,

Ĩt ≤2|p|
√
d r Qt

∫ t

u

(
1 + |X̃s(x)|2

)p
ds

+ 2
√
d |p| r K̃

∫ t

u

(
1 + |X̃s(x)|2

)p
ds

≤2|p|
√
d r (Qt + K̃)

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.

We have ∣∣∣E Ĩt

∣∣∣ ≤ 2|p|
√
d r (Qt + K̃)

∫ t

u

E
(
1 + |X̃s(x)|2

)p
ds. (3.3)

Next, for J̃t we have

J̃t =
1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)

×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

i
k

(
X̃s(x)− (1− Zs)

)
dY k

s

]
×
[
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
dNs + X̃s(x)F

j
l

(
X̃s(x)− (1− Zs)

)
dY l

s

]
.

Note

Ṽ i
k (X̃

x
s ) = X̃s(x)F

i
k

(
X̃s(x)− (1− Zs)

)
,

Ṽ j
l (X̃

x
s ) = X̃s(x)F

j
l

(
X̃s(x)− (1− Zs)

)
.

So

J̃t =
1

2

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)

×
[
X̃s(x)

2

(
− e−Λs

1− Zs∧τn

)2

dNsdNs + Ṽ i
k (X̃

x
s ) Ṽ

j
l (X̃

x
s ) dY

k
s dY l

s

+ X̃s(x)

(
− e−Λs

1− Zs∧τn

)
Ṽ j
l (X̃

x
s ) dNs dY

l
s

+ X̃s(x)

(
− e−Λs

1− Zs∧τn

)
Ṽ i
k (X̃

x
s )dNsdY

k
s

]
.

Note J̃t =
1

2

[
J̃1
t + J̃2

t + J̃3
t + J̃4

t

]
, such that

J̃1
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
X̃s(x)

2

(
− e−Λs

1− Zs∧τn

)2

dNsdNs,

J̃2
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
Ṽ i
k (X̃

x
s ) Ṽ

j
l (X̃

x
s ) dY

k
s dY l

s ,

J̃3
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
Ṽ j
l (X̃

x
s ) dNs dY

l
s ,
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J̃4
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
Ṽ i
k (X̃

x
s )dNsdY

k
s ,

and note that

∂2f

∂zi∂zj
= 2p (1 + |z|2)p−1δij + 4p (p− 1) zi zj (1 + |z|2)p−2,

where δij is the Kronecker delta, then for J̃1
t we have

J̃1
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
X̃s(x)

2

(
− e−Λs

1− Zs∧τn

)2

dNsdNs,

∑
i,j

∣∣∣∣ ∂2f

∂zi∂zj

(
X̃u

s (x)
)
X̃s(x)

2

∣∣∣∣
≤
∣∣∣(2p (1 + |z|2)p−1δij + 4p (p− 1) zi zj (1 + |z|2)p−2

)
X̃s(x)

2
∣∣∣

≤ 2|p| (2(p− 1) + d)
(
1 + |X̃s(x)|2

)p
.

Therefore,

J̃1
t ≤ 2|p| (2(p− 1) + d)

∫ t

u

(
1 + |X̃s(x)|2

)p
ds

∫ t

u

(
− e−Λs

1− Zs∧τn

)2

dNsdNs.

By hypothesis HY (C), we have

J̃1
t ≤ 2|p| (2(p− 1) + d)Q2

t

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.

For J̃2
t , we have

J̃2
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
Ṽ i
k (X̃

x
s ) Ṽ

j
l (X̃

x
s ) dY

k
s dY l

s ,

∑
i,j

∣∣∣∣ ∂2f

∂zi∂zj

(
X̃u

s (x)
)
Ṽ i
k (X̃

x
s ) Ṽ

j
l (X̃

x
s )

∣∣∣∣
≤ |
(
2p (1 + |z|2)p−1δij + 4p (p− 1) zi zj (1 + |z|2)p−2

)
× K̃2(1 + |X̃s(x)|2)|

≤ 2|p| (2(p− 1) + d) K̃2(1 + |X̃s(x)|2)p.

Therefore,

J̃2
t ≤ 2|p| (2(p− 1) + d) K̃2 r2

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.

For J̃3
t , we have

J̃3
t =

∑
i,j,k,l

∫ t

u

∂2f

∂zi∂zj

(
X̃u

s (x)
)
X̃s(x)

(
− e−Λs

1− Zs∧τn

)
Ṽ j
l (X̃

x
s ) dNs dY

l
s ,
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∑
i,j

∣∣∣∣ ∂2f

∂zi∂zj

(
X̃u

s (x)
)
Ṽ j
l (X̃

x
s )

∣∣∣∣
≤ |
(
2p (1 + |z|2)p−1δij + 4p(p− 1) zi zj (1 + |z|2)p−2

)
× K̃(1 + |X̃s(x)|2)

1
2 X̃s(x)|

≤ 2|p| (2(p− 1) + d) K̃(1 + |X̃s(x)|2)p.

The hypothesis HY (C) is always assumed, so

J̃3
t ≤ 2|p| (2(p− 1) + d) K̃ r Qt

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.

For J̃4
t , we have also

J̃4
t ≤ 2|p| (2(p− 1) + d) K̃ r Qt

∫ t

u

(
1 + |X̃s(x)|2

)p
ds.

Therefore,

J̃t =
1

2

[
J̃1
t + J̃2

t + J̃3
t + J̃4

t

]
≤1

2

[
2|p| (2(p− 1) + d)Q2

t

∫ t

u

(
1 + |X̃s(x)|2

)p
ds

+ 2|p| (2(p− 1) + d) K̃2 r2
∫ t

u

(
1 + |X̃s(x)|2

)p
ds

+ 4|p| (2(p− 1) + d) K̃ r Qt

∫ t

u

(
1 + |X̃s(x)|2

)p
ds

]
≤|p| (2(p− 1) + d)

∫ t

u

(
1 + |X̃s(x)|2

)p
ds
(
Q2

t + K̃2 r2 + 2 K̃ r Qt

)
.

So ∣∣∣E J̃t

∣∣∣ ≤ |p| (2(p− 1) + d)
(
Qt + r K̃

)2 ∫ t

u

E
(
1 + |X̃s(x)|2

)p
ds. (3.4)

Summing up these two inequalities (3.3) and (3.4), we obtain

E
(
1 + |X̃s(x)|2

)p
≤
(
1 + |x|2

)p
+ const×

∫ t

u

E
(
1 + |X̃s(x)|2

)p
ds.

By Grönwall’s inequality, we have

E
(
1 + |X̃s(x)|2

)p
≤
(
1 + |x|2

)p × exp
(
C̃p,u

)
,

such that

C̃p,u = const×
∫ t

u

E
(
1 + |X̃s(x)|2

)p
ds,

and

K̃3
p,u = exp

(
C̃p,u

)
.

So, we have the inequality of the lemma 2.8

E
(
1 + |X̃s(x)|2

)p
≤ K̃3

p,u

(
1 + |x|2

)p
.
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Now, taking negative p in the above calculus, we see that
∣∣X̃t(x)

∣∣ tends to
infinity in probability as x tends sequentially to infinity. We shall prove a stronger
convergence.

Let R̄d = Rd ∪ {∞} be the one point compactification of R. Set

X̃u
t (x) = x+

∫ t

u

X̃s

(
− e−Λs

1− Zs∧τn

)
dNs +

∫ t

u

d∑
i=1

r∑
j=1

X̃sF
i
j

(
X̃s − (1− Zs)

)
dY j

s ,

η̃t(x) =


1

1 +
∣∣∣X̃t(x)

∣∣∣ , if x ∈ Rd,

0, if x = ∞.

Evidently η̃t(x) is continuous in [0,∞)×Rd. Thus just to prove the continuity
in the vicinity of infinity. Suppose p > 2(2d+ 1). We have

|η̃t(x)− η̃s(y)|p ≤ η̃t(x)
pη̃s(y)

p
∣∣∣X̃t(x)− X̃s(y)

∣∣∣p .
By Hölder’s inequality, proposition 2.1 and lemma 2.8, we have

E |η̃t(x)− η̃s(y)|p ≤
(
E η̃t(x)

4p
) 1

4
(
E η̃s(y)

4p
) 1

4 (E|X̃t(x)− X̃s(y)|2p)
1
2

≤C̃p,T (1 + |x|)−p
(1 + |y|)−p

(
|x− y|p + |t− s|

p
2

)
,

if t, s ∈ [0, T ] and x, y ∈ Rd, where C̃p,T is a positive constant. Set

1

x
= (x−1

1 , x−1
2 , ..., x−1

d ).

Since
|x− y|

(1 + |x|)(1 + |y|)
≤
∣∣∣∣ 1x − 1

y

∣∣∣∣ ,
we get the inequality

E |η̃t(x)− η̃s(y)|p ≤ C̃p,T

(∣∣∣∣ 1x − 1

y

∣∣∣∣p + |t− s|
p
2

)
.

Define

η̄t(x) =

{
η̃t(

1
x ), if x ̸= 0,
0, if x = 0.

Then the above inequality implies

E|η̄t(x)− η̄s(y)|p ≤ C̃p,T

(
|x− y|p + |t− s|

p
2

)
, x ̸= 0, y ̸= 0.

In case y = 0, we have

E|η̄t(x)|p ≤ C̃p,T |x|p.
Therefore, η̄t(x) is continuous in [0,∞) × Rd by Kolmogorov’s theorem. This
proves that η̃t(x) is continuous in [0,∞)× neighborhood of infinity.

So, define a stochastic process X̄t on R̄d = Rd ∪ {∞} by

X̄t(x) =

{
X̃t(x), if x ∈ Rd,
∞, if x = ∞.
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Then X̄t(x) is continuous on [0,∞)×Rd by the previous lemma. Thus for each t >
0, the map X̄t(·, ω) is homotopic to the identity map on R̄d, which is homeomorphic
to d-dimensional sphere Sd. Then X̄t(·, ω) is an onto map of R̄d by the well known
homotopic theory. Now, the map X̄t is a homeomorphism of R̄d, since it is one to
one, onto and continuous. Since ∞ is the invariant point of the map X̄t, we see
that X̃t is a homeomorphism of Rd. This completes the proof of Theorem 2.2.
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