Vol. 11, No. 4 (2017) 457-478

HOMEOMORPHIC PROPERTY OF THE STOCHASTIC FLOW OF A NATURAL EQUATION IN MULTI-DIMENSIONAL CASE

FATIMA BENZIADI AND ABDELDJABBAR KANDOUCI*

Abstract

The one-default models are widely applied in modeling financial risk and price valuation of financial products such as credit default swap. In this paper, we are interested essentially in the so-called natural model. This model is expressed by a stochastic differential equation called b-equation introduced in [5]; this equation displays the evolution of the defaultable market. So, on the same model and with some assumptions, we will try to prove a few properties of the stochastic flow generated by a \mathfrak{b}-equation but in a multidimensional case and with some modifications. This is the main motivation of our research.

1. Introduction

In [5] a new class of random times has been introduced. Precisely, it is proved that, for any continuous increasing process Λ null at the origin, for any continuous non-negative local martingale N such that $Z_{t}=N_{t} e^{-\Lambda_{t}}$ with $0<Z_{t}<1, t>0$ denotes the default intensity, for any continuous local martingale Y, and for any Lipschitz function f on \mathbb{R} null at the origin, there exists a random variable τ such that the family of conditional expectations $X_{t}^{u}=\mathbb{Q}\left[\tau \leq u \mid \mathcal{F}_{t}\right], u>0, t<\infty$, satisfies the following stochastic differential equation :

$$
\left(\vdash_{u}\right):\left\{\begin{array}{l}
d X_{t}=X_{t}\left(-\frac{e^{-\Lambda_{t}}}{1-Z_{t}} d N_{t}+f\left(X_{t}-\left(1-Z_{t}\right)\right) d Y_{t}\right), \quad t \in[u, \infty) \\
X_{u}=x
\end{array}\right.
$$

We call this setting a \mathfrak{q}-model, where the initial condition x can be any $\mathcal{F}_{u^{-}}$ measurable random variable.

We introduce the \bigsqcup-model in a multi-dimensional case. Let F be a continuous Lipschitz mapping from \mathbb{R}^{d} into itself and $Y(t, \omega)=\left(Y_{1}(t, \omega), \ldots, Y_{r}(t, \omega)\right)$ denote an r-dimensional continuous local martingale defined on a probability space $\left(\Omega, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$. We consider the stochastic differential equation $\left(\vdash_{u}\right)$ on $\mathbb{R}^{d}:$

[^0]\[

\left(\mathrm{h}_{u}\right):\left\{$$
\begin{array}{l}
d X_{t}=X_{t}\left(-\frac{e^{-\Lambda_{t}}}{1-Z_{t}} d N_{t}+\sum_{i=1}^{d} \sum_{j=1}^{r} F_{j}^{i}\left(X_{t}-\left(1-Z_{t}\right)\right) d Y_{t}^{j}\right), \\
X_{u}=x,
\end{array}
$$\right.
\]

for $t \in[u, \infty), 1 \leq j \leq r$.
The property appears important in recent study of stochastic differential geometry, and has been studied by several authors, e.g. Elworthy [3], Malliavin [7], Ikeda-Watanabe [4], Bismut [1]. We are inspired from the methods of proving the results obtained in [6] by Hiroshi Kunita. The main result of this paper is to prove the homeomorphism property of the stochastic flow generated by the stochastic flow associated with the h-equation based on Hiroshi Kunita theory, but we impose the following hypotheses:

Hypothesis 1.1. We keep the same naturel model, but we assume that all the processes indicated in the q -equation (the multidimensional case) take real values. Thus, we impose that the coefficients of this equation are Lipschitz continuous.
Hypothesis 1.2. We always assume the hypothesis mentioned in [5], which denoted that the stochastic integral $\int_{u}^{t} \frac{e^{-\Lambda_{s}}}{1-Z_{s}} d N_{s}, u \leq t<\infty$, exists and defines a local martingale. So called the hypothesis $H_{Y}(C)$.

The paper is organized as follows. In section 2 , we will prove the found theorems and lemmas motivated by T.Yamada and S.Varadhan, which will appear in [6]. Section 3 presents the main results of this paper.

2. The Stochastic Flow of a Stochastic Differential Equation

This section is borrowed from [6].
2.1. Flow of homeomorphisms for the solution of SDE. In this subsection, let $G_{1}(x), \ldots, G_{r}(x)$ be continuous mappings from \mathbb{R}^{d} into itself and $M_{t}^{1}, \ldots, M_{t}^{r}$ continuous semimartingales defined on a probability space $\left(\Omega, \mathbb{F}, \mathbb{P} ; \mathbb{F}_{t}\right)$. Here \mathbb{F}_{t}, $0 \leq t<\infty$ is an increasing family of sub σ-fields of \mathbb{F} such that $\wedge_{\varepsilon>0} \mathbb{F}_{t+\varepsilon}=\mathbb{F}_{t}$ holds for each t. Consider an Itô stochastic differential equation (SDE) on \mathbb{R}^{d} :

$$
\begin{equation*}
d \xi_{t}=\sum_{j=1}^{r} G_{j}\left(\xi_{t}\right) d M_{t}^{j} . \tag{2.1}
\end{equation*}
$$

A sample continuous \mathbb{F}_{t}-adapted stochastic process ξ_{t} with values in \mathbb{R}^{d} is called a solution of (2.1), if it satisfies

$$
\begin{equation*}
\xi_{t}=\xi_{0}+\sum_{j=1}^{d} \int_{0}^{t} G_{j}\left(\xi_{s}\right) d M_{s}^{j}, \tag{2.2}
\end{equation*}
$$

where the right hand side is the Itô integral.
Concerning the coefficients of the equation, we will assume in this section that they are Lipschitz continuous, i.e., there is a positive constant L such that

$$
\left|G_{j}^{i}(x)-G_{j}^{i}(y)\right| \leq L|x-y|, \quad \forall x, y \in \mathbb{R}^{d}
$$

holds for all indices i, j, where $G_{j}^{i}(x)$ is the i-th component of the vector function $G_{j}(x)$. Then for a given point x of \mathbb{R}^{d}, the equation has a unique solution such that $\xi_{0}(x)=x$. We denote it by $\xi_{t}(x)$ or $\xi_{t}(x, \omega)$. It is continuous in (t, x) a.s. In fact, the following proposition is well known.

Proposition $2.1([9]) . \xi_{t}(x, \omega)$ is continuous in $[0, \infty) \times \mathbb{R}^{d}$ for almost all ω. Furthermore, for any $T>0$ and $p \geq 2$, there is a positive constant $K_{p, T}^{(1)}$ such that

$$
\begin{equation*}
\mathbb{E}\left|\xi_{t}(x)-\xi_{s}(y)\right|^{p} \leq K_{p, T}^{(1)}\left(|x-y|^{p}+|t-s|^{\frac{p}{2}}\right) \tag{2.3}
\end{equation*}
$$

holds for all x, y of \mathbb{R}^{d} and t,s of $[0, T]$.
We thus think that for a fixed $t, \xi_{t}(\cdot, \omega)$ is a continuous map from \mathbb{R}^{d} into itself for almost all ω. The purpose of this section is to prove that the map $\xi_{t}(\cdot, \omega)$ is one to one and onto, and that the inverse $\operatorname{map} \xi_{t}^{-1}(\cdot, \omega)$ is also continuous. Namely we will prove

Theorem 2.2. Suppose that G_{1}, \ldots, G_{r} of equation (2.1) are Lipschitz continuous. Then the solution map $\xi_{t}(\cdot, \omega)$ is a homeomorphism of \mathbb{R}^{d} for all t, a.s. in ω.

Before proving the theorem, we would like to mention a few remarks.
Remark 2.3. In the case of one dimensional SDE, Ogura and Yamada [8] have shown the same result under a weaker condition, using a strong comparison theorem of solutions. In fact, if coefficients are Lipschitz continuous on any finite interval (local Lipschitz) and if they are of linear growth, i.e., $\left|G_{j}(x)\right| \leq C(1+|x|)$ holds for all x with some positive C, then the solution $\xi_{t}(\cdot, \omega)$ is a homeomorphism a.s. for any t.

Remark 2.4. The (local) Lipschitz continuity of coefficients is crucial for the theorem. Ogura and Yamada [8] have given an example of a one dimensional SDE with α-Hölder continuous coefficients $\left(\frac{1}{2}<\alpha<1\right)$, which has a unique strong solution but does not have the "one to one" property.

Remark 2.5. It is enough to prove the theorem in the case that $M_{t}^{i}, i=1, \ldots, r$, satisfy the properties below: Let $M_{t}^{j}=B_{t}^{j}+A_{t}^{j}$ be the decomposition of semimartingale such that B_{t}^{j} is a continuous local martingale and A_{t}^{j} is a continuous process of bounded variation. Let $\left\langle B^{j}\right\rangle_{t}$ be the quadratic variation of B_{t}^{j}. Then for each j and all $s<t$,

$$
\begin{equation*}
A_{t}^{j}-A_{s}^{j} \leq t-s,\left\langle B^{j}\right\rangle_{t}-\left\langle B^{j}\right\rangle_{s} \leq t-s, \quad \forall s<t \tag{2.4}
\end{equation*}
$$

In the following discussion, condition (2.4) is always assumed. We will first show the "one to one" property. Our approach is based on several elementary inequalities.

Lemma 2.6. Let $T>0$ and p be any real number. Then there is a positive constant $K_{p, T}^{(2)}$ such that $\forall x, y \in \mathbb{R}^{d}$ and $\forall t \in[0, T]$,

$$
\begin{equation*}
\mathbb{E}\left|\xi_{t}(x)-\xi_{s}(y)\right|^{p} \leq K_{p, T}^{(2)}|x-y|^{p} \tag{2.5}
\end{equation*}
$$

Proof. If $x=y$, the inequality is clearly satisfied for any positive constant $K_{p, T}^{(2)}$. We shall assume $x \neq y$. Let ε be an arbitrary positive number and $\sigma_{\varepsilon}=\inf \{t>$ $\left.0 ;\left|\xi_{t}(x)-\xi_{t}(y)\right|<\varepsilon\right\}$. We shall apply Itô's formula to $f(z)=|z|^{p}$. Then we have for $t<\sigma_{\varepsilon}$,

$$
\begin{aligned}
& \left|\xi_{t}(x)-\xi_{t}(y)\right|^{p}-|x-y|^{p} \\
& =\sum_{i, j} \int_{0}^{t} \frac{\partial f}{\partial z_{i}}\left(\xi_{s}(x)-\xi_{s}(y)\right)\left(G_{j}^{i}\left(\xi_{s}(x)\right)-G_{j}^{i}\left(\xi_{s}(y)\right)\right) d M_{s}^{j} \\
& \quad+\frac{1}{2} \sum_{i, j, k, l} \int_{0}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\xi_{s}(x)-\xi_{s}(y)\right)\left(G_{k}^{i}\left(\xi_{s}(x)\right)-G_{k}^{i}\left(\xi_{s}(y)\right)\right) \\
& \quad \times\left(G_{l}^{j}\left(\xi_{s}(x)\right)-G_{l}^{j}\left(\xi_{s}(y)\right)\right) d\left\langle M^{k}, M^{l}\right\rangle_{s} \\
& =
\end{aligned}
$$

Note $\frac{\partial f}{\partial z_{i}}=p|z|^{p-2} z_{i}$ and apply Lipschitz inequality. Then

$$
\sum_{i}\left|\frac{\partial f}{\partial z_{i}}\left(\xi_{s}(x)-\xi_{s}(y)\right)\left(G_{j}^{i}\left(\xi_{s}(x)\right)-G_{j}^{i}\left(\xi_{s}(y)\right)\right)\right| \leq|p| \sqrt{d} L\left|\xi_{s}(x)-\xi_{s}(y)\right|^{p}
$$

Therefore we have

$$
\left|\mathbb{E} I_{t \wedge \sigma_{\varepsilon}}\right| \leq|p| r \sqrt{d} L \int_{0}^{t} \mathbb{E}\left|\xi_{s \wedge \sigma_{\varepsilon}}(x)-\xi_{s \wedge \sigma_{\varepsilon}}(y)\right|^{p} d s
$$

Next, note that

$$
\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}=p|z|^{p-2} \delta_{i j}+p(p-2)|z|^{p-4} z_{i} z_{j}
$$

where $\delta_{i j}$ is the Kronecker's delta. Then

$$
\begin{aligned}
& \left|\sum_{i, j} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\xi_{s}(x)-\xi_{s}(y)\right)\left(G_{k}^{i}\left(\xi_{s}(x)\right)-G_{k}^{i}\left(\xi_{s}(y)\right)\right)\left(G_{l}^{i}\left(\xi_{s}(x)\right)-G_{l}^{i}\left(\xi_{s}(y)\right)\right)\right| \\
& \leq|p|(|p-2|+d) L^{2}\left|\xi_{s}(x)-\xi_{s}(y)\right|^{p} \mid .
\end{aligned}
$$

Therefore

$$
\left|\mathbb{E} J_{t \wedge \sigma_{\varepsilon}}\right| \leq \frac{1}{2} r^{2}|p|(|p-2|+d) L^{2} \int_{0}^{t} \mathbb{E}\left|\xi_{s \wedge \sigma_{\varepsilon}}(x)-\xi_{s \wedge \sigma_{\varepsilon}}(y)\right|^{p} d s
$$

Summing up these two inequalities, we obtain

$$
\mathbb{E}\left|\xi_{t \wedge \sigma_{\varepsilon}}(x)-\xi_{t \wedge \sigma_{\varepsilon}}(y)\right|^{p} \leq|x-y|^{p}+C_{p} \int_{0}^{t} \mathbb{E}\left|\xi_{t \wedge \sigma_{\varepsilon}}(x)-\xi_{t \wedge \sigma_{\varepsilon}}(y)\right|^{p} d s
$$

where C_{p} is a positive constant. By Grönwall's inequality,

$$
\mathbb{E}\left|\xi_{t \wedge \sigma_{\varepsilon}}(x)-\xi_{t \wedge \sigma_{\varepsilon}}(y)\right|^{p} \leq K_{p, T}^{(2)}|x-y|^{p}, \quad \forall t \in[0, T],
$$

where $K_{p, T}^{(2)}=\exp \left(C_{p} T\right)$. Letting ε tend to 0 , we have

$$
\mathbb{E}\left|\xi_{t \wedge \sigma}(x)-\xi_{t \wedge \sigma}(y)\right|^{p} \leq K_{p, T}^{(2)}|x-y|^{p}
$$

where σ is the first time t such that $\xi_{t}(x)=\xi_{t}(y)$. However, we have $\sigma=\infty$ a.s., since otherwise the left hand side would be infinity if $p<0$. The proof is complete.

The above lemma shows that if $x \neq y$ then $\xi_{t}(x) \neq \xi_{t}(y)$ holds a.s. for all t. But it does not conclude that $\xi_{t}(\cdot, \omega)$ is "one to one", since the exceptional null set $N_{x, y}=\left\{\omega ; \xi_{t}(x)=\xi_{t}(y)\right.$ for some t$\}$ depends on the pair (x, y). To overcome this point, we shall prove the following lemma.

Lemma 2.7 (Varadhan). Set

$$
\begin{equation*}
\eta_{t}(x, y)=\frac{1}{\left|\xi_{t}(x)-\xi_{t}(y)\right|} \tag{2.6}
\end{equation*}
$$

Then $\eta_{t}(x, y)$ is continuous in $[0, \infty) \times\left\{(x, y) \in \mathbb{R}^{2 d} \mid x \neq y\right\}$.
Proof. Suppose $p>2(2 d+1)$. We have
$\left|\eta_{t}(x, y)-\eta_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \leq 2^{p} \eta_{t}(x, y)^{p} \eta_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)^{p}\left\{\left|\xi_{t}(x)-\xi_{t^{\prime}}\left(x^{\prime}\right)\right|^{p}+\left|\xi_{t}(y)-\xi_{t^{\prime}}\left(y^{\prime}\right)\right|^{p}\right\}$.
By Hölder's inequality,

$$
\begin{aligned}
& \mathbb{E}\left|\eta_{t}(x, y)-\eta_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \\
& \leq 2^{p}\left\{\mathbb{E}\left(\eta_{t}(x, y)^{4 p}\right) \mathbb{E}\left(\eta_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)^{4 p}\right)\right\}^{\frac{1}{4}} \\
& \quad \times\left\{\left(\mathbb{E}\left|\xi_{t}(x)-\xi_{t^{\prime}}\left(x^{\prime}\right)\right|^{2 p}\right)^{\frac{1}{2}}+\left(\mathbb{E}\left|\xi_{t}(y)-\xi_{t^{\prime}}\left(y^{\prime}\right)\right|^{2 p}\right)^{\frac{1}{2}}\right\}
\end{aligned}
$$

By Lemma 2.6 and Proposition 2.1, we have

$$
\begin{array}{r}
\mathbb{E}\left|\eta_{t}(x, y)-\eta_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \\
\leq C_{p, T}|x-y|^{-p}\left|x^{\prime}-y^{\prime}\right|^{-p}\left\{\left|x-x^{\prime}\right|^{p}+\left|y-y^{\prime}\right|^{p}+2\left|t-t^{\prime}\right|^{\frac{p}{2}}\right\} \\
\mathbb{E}\left|\eta_{t}(x, y)-\eta_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \leq C_{p, T} \delta^{-2 p}\left\{\left|x-x^{\prime}\right|^{p}+\left|y-y^{\prime}\right|^{p}+2\left|t-t^{\prime}\right|^{\frac{p}{2}}\right\} \tag{2.7}
\end{array}
$$

if $|x-y| \geq \delta$ and $\left|x^{\prime}-y^{\prime}\right| \geq \delta$, where $C_{p, T}$ is a positive constant. Then by Kolmogorov's theorem, $\eta_{t}(x, y)$ is continuous in $[0, T] \times\{(x, y) ;|x-y| \geq \delta\}$. Since T and δ are arbitrary positive numbers, we get the assertion. The proof is complete.

The above lemma leads immediately to the "one to one" property of the map $\xi_{t}(\cdot, \omega)$ a.s. for all t. We shall consider next the onto property. We first establish

Lemma 2.8. Let $T>0$ and let p be any real number. Then there is a positive constant $K_{p, T}^{(3)}$ such that

$$
\begin{equation*}
\mathbb{E}\left(1+\left|\xi_{t}(x)\right|^{2}\right)^{p} \leq K_{p, T}^{(3)}\left(1+|x|^{2}\right)^{p}, \quad \forall x \in \mathbb{R}^{d}, \quad \forall t \in[0, T] \tag{2.8}
\end{equation*}
$$

Proof. We shall apply Itô's formula to the function $f(z)=\left(1+|z|^{2}\right)^{p}$. We have

$$
\begin{aligned}
f\left(\xi_{t}(x)\right)-f(x)= & \sum_{i, j} \int_{0}^{t} \frac{\partial f}{\partial z_{i}}\left(\xi_{s}(x)\right) G_{j}^{i}\left(\xi_{s}(x)\right) d M_{s}^{j} \\
& +\frac{1}{2} \sum_{i, j, k, l} \int_{0}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\xi_{s}(x)\right) G_{k}^{i}\left(\xi_{s}(x)\right) G_{l}^{j}\left(\xi_{s}(y)\right) d\left\langle M^{k}, M^{l}\right\rangle_{s} \\
= & I_{t}+J_{t} .
\end{aligned}
$$

Let K be a positive constant such that

$$
\left|G_{j}^{i}(x)\right| \leq K\left(1+|x|^{2}\right)^{\frac{1}{2}} .
$$

holds for all i and j. Then,

$$
\left|\sum_{i} \frac{\partial f}{\partial z_{i}}\left(\xi_{s}(x)\right) G_{j}^{i}\left(\xi_{s}(x)\right)\right| \leq 2 \sqrt{d}|p| K\left(1+\left|\xi_{s}(x)\right|^{2}\right)^{p} .
$$

Therefore,

$$
\left|\mathbb{E} I_{t}\right| \leq 2 r \sqrt{d}|p| K \int_{0}^{t} \mathbb{E}\left(1+\left|\xi_{s}(x)\right|^{2}\right)^{p} d s .
$$

Similarly,

$$
\left|\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\xi_{s}(x)\right) G_{k}^{i}\left(\xi_{s}(x)\right) G_{l}^{j}\left(\xi_{s}(x)\right)\right| \leq|p|(d+2|p-1|) K^{2}\left(1+\left|\xi_{s}(x)\right|^{2}\right)^{p},
$$

so that

$$
\left|\mathbb{E} J_{t}\right| \leq|p| r^{2}(d+2|p-1|) K^{2} \int_{0}^{t} \mathbb{E}\left(1+\left|\xi_{s}(x)\right|^{2}\right)^{p} d s
$$

Therefore we have

$$
\mathbb{E}\left(1+\left|\xi_{t}(x)\right|^{2}\right)^{p} \leq\left(1+|x|^{2}\right)^{p}+\text { const. } \int_{0}^{t} \mathbb{E}\left(1+\left|\xi_{s}(x)\right|^{2}\right)^{p} d s .
$$

By Grönwall's inequality, we get the inequality of the lemma.
Remark 2.9. We have $\left(1+|x|^{2}\right) \leq(1+|x|)^{2} \leq 2\left(1+|x|^{2}\right)$. Therefore, inequality (2.8) implies

$$
\begin{equation*}
\mathbb{E}\left(1+\left|\xi_{t}(x)\right|\right)^{2 p} \leq 2^{|p|} K_{p, T}^{(3)}(1+|x|)^{2 p} . \tag{2.9}
\end{equation*}
$$

Now taking negative p in the above lemma, we see that $\left|\xi_{t}(x)\right|$ tends to infinity in probability as x tends sequencially to infinity. We shall prove a stronger convergence. We claim
Lemma 2.10. Let $\overline{\mathbb{R}^{d}}=\mathbb{R}^{d} \cup\{\infty\}$ be the one point compactification of \mathbb{R}^{d}. Set

$$
\eta_{t}(x)= \begin{cases}\frac{1}{1+\left|\xi_{t}(x)\right|}, & \text { if } x \in \mathbb{R}^{d}, \\ 0, & \text { if } x=\infty\end{cases}
$$

Then $\eta_{t}(x, \omega)$ is a continuous map from $[0, \infty) \times \overline{\mathbb{R}^{d}}$ into \mathbb{R} a.s..

Proof. Obviously $\eta_{t}(x)$ is continuous in $[0, \infty) \times \mathbb{R}^{d}$. Hence it is enough to prove the continuity in the neighborhood of infinity. Suppose $p>2(2 d+1)$. We have

$$
\left|\eta_{t}(x)-\eta_{s}(y)\right|^{p} \leq \eta_{t}(x)^{p} \eta_{s}(y)^{p}\left|\xi_{t}(x)-\xi_{s}(y)\right|^{p}
$$

By Hölder's inequality, Proposition 2.1 and lemma 2.8, we have

$$
\begin{aligned}
\mathbb{E}\left|\eta_{t}(x)-\eta_{s}(y)\right|^{p} & \leq\left(\mathbb{E} \eta_{t}(x)^{4 p}\right)^{\frac{1}{4}}\left(\mathbb{E} \eta_{s}(y)^{4 p}\right)^{\frac{1}{4}}\left(\mathbb{E}\left|\xi_{t}(x)-\xi_{s}(y)\right|^{2 p}\right)^{\frac{1}{2}} \\
& \leq C_{p, T}(1+|x|)^{-p}(1+|y|)^{-p}\left(|x-y|^{p}+|t-s|^{\frac{p}{2}}\right)
\end{aligned}
$$

if $t, s \in[0, T]$ and $x, y \in \mathbb{R}^{d}$, where $C_{p, T}$ is a positive constant. Set $\frac{1}{x}=$ $\left(x_{1}^{-1}, \ldots, x_{d}^{-1}\right)$. Since

$$
\frac{|x-y|}{(1+|x|)(1+|y|)} \leq\left|\frac{1}{x}-\frac{1}{y}\right|,
$$

we get the inequality

$$
\mathbb{E}\left|\eta_{t}(x)-\eta_{s}(y)\right|^{p} \leq C_{p, T}\left(\left|\frac{1}{x}-\frac{1}{y}\right|^{p}+|t-s|^{\frac{p}{2}}\right)
$$

Define

$$
\widetilde{\eta}_{t}(x)= \begin{cases}\eta_{t}\left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Then the above inequality implies

$$
\mathbb{E}\left|\widetilde{\eta}_{t}(x)-\widetilde{\eta}_{s}(y)\right|^{p} \leq C_{p, T}\left(|x-y|^{p}+|t-s|^{\frac{p}{2}}\right), \quad x \neq 0, y \neq 0
$$

In the case $y=0$, we have

$$
\mathbb{E}\left|\widetilde{\eta}_{t}(x)\right|^{p} \leq C_{p, T}|x|^{p} .
$$

Therefore, $\widetilde{\eta}_{t}(x)$ is continuous in $[0, \infty) \times \mathbb{R}^{d}$ by Kolmogorov's theorem. This proves that $\widetilde{\eta}_{t}(x)$ is continuous in $[0, \infty) \times$ neighborhood of infinity.

Lemma 2.11. Define a stochastic process $\bar{\xi}_{t}$ on $\overline{\mathbb{R}^{d}}=\mathbb{R}^{d} \cup\{\infty\}$ by

$$
\bar{\xi}_{t}(x)= \begin{cases}\xi_{t}(x), & \text { if } x \in \mathbb{R}^{d} \\ \infty, & \text { if } x=\infty\end{cases}
$$

Then $\bar{\xi}_{t}(x)$ is continuous in $[0, \infty) \times \overline{\mathbb{R}^{d}}$.
Proof. We have the proof by the previous lemma. Thus for each $t>0$, the $\operatorname{map} \bar{\xi}_{t}(\cdot, \omega)$ is homotopic to the identity map on $\overline{\mathbb{R}^{d}}$, which is homeomorphic to d-dimensional sphere \mathcal{S}^{d}. Then $\bar{\xi}_{t}(\cdot, \omega)$ is an onto map of $\overline{\mathbb{R}^{d}}$ by a well known homotopic theory.

Now the map $\bar{\xi}_{t}$ is a homeomorphism of $\overline{\mathbb{R}^{d}}$, since it is one to one, onto and continuous. Since ∞ is the invariant point of the map $\bar{\xi}_{t}$, we see that ξ_{t} is a homeomorphism of \mathbb{R}^{d}. This completes the proof of Theorem 2.2.

3. Main Result

We now turn to the \square-equation in higher dimensions. Let $\left(\Lambda_{1}, \ldots, \Lambda_{d}\right)$ be a d dimensional continuous increasing process null at the origin, and a d-dimensional continuous non-negative local martingale N such that $Z=N e^{-\Lambda}$ with $0<$ $Z<1, t>0$ and $Z(t, \omega)=\left(Z_{1}(t, \omega), \ldots, Z_{d}(t, \omega)\right)$ denotes the default intensity. Let F be continuous, Lipschitz mapping from \mathbb{R}^{d} into itself and $Y(t, \omega)=$ $\left(Y_{1}(t, \omega), \ldots, Y_{r}(t, \omega)\right)$ denote a r-dimensional continuous local martingale defined on a probability space $\left(\Omega, \mathbb{F}=\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$. We consider the \bigsqcup-equation in multidimensional case :

$$
\left(\vdash_{u}\right):\left\{\begin{array}{cc}
d X_{1}(t)= & X_{1}(t)\left(-\frac{e^{-\Lambda_{1}(t)}}{1-Z_{1}(t)} d N_{1}(t)+F_{11} d Y_{1}+\cdots+F_{1 d} d Y_{r}\right), \\
\vdots & \vdots \\
d X_{d}(t)= & X_{d}(t)\left(-\frac{e^{-\Lambda_{d}(t)}}{1-Z_{d}(t)} d N_{d}(t)+F_{r 1} d Y_{1}+\cdots+F_{r d} d Y_{r}\right),
\end{array}\right.
$$

with $X(u)=\left(x_{1}, \ldots, x_{d}\right)^{T}$ as the initial condition. Or, in matrix notation simply:

$$
\left(\natural_{u}\right):\left\{\begin{array}{l}
d X_{t}=X_{t}\left(-\frac{e^{-\Lambda_{t}}}{1-Z_{t}} d N_{t}+F\left(X_{t}-\left(1-Z_{t}\right)\right) d Y_{t}\right), \quad t \in[u, \infty), \\
X_{u}=x,
\end{array}\right.
$$

where $X(t)=\left(X_{1}(t), \ldots, X_{d}(t)\right)^{\mathbf{T}},-\frac{e^{-\Lambda_{t}}}{1-Z_{t}}=\left(-\frac{e^{-\Lambda_{1}}(t)}{1-Z_{1}(t)}, \ldots,-\frac{e^{-\Lambda_{d}(t)}}{1-Z_{d}(t)}\right)^{\mathbf{T}}$, $d N(t)=\left(d N_{1}(t), \ldots, d N_{d}(t)\right)^{\mathbf{T}}, d Y(t)=\left(d Y_{1}(t), \ldots, d Y_{r}(t)\right)^{\mathbf{T}}$, where \mathbf{T} denotes the transpose of a vector, and

$$
F=\left(\begin{array}{ccccc}
F_{11} & \cdot & \cdot & \cdot & F_{1 d} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
F_{r 1} & \cdot & \cdot & \cdot & F_{r d}
\end{array}\right)
$$

Concerning coefficients of our equation, we will assume in this section that they are Lipschitz continuous, i.e., there is a positive constant \tilde{L} such that:

$$
\left|F_{j}^{i}(x)-F_{j}^{i}(y)\right| \leq \tilde{L}|x-y|, \quad \forall x, y \in \mathbb{R}^{d}, 1 \leq i \leq d, 1 \leq j \leq r
$$

holds for all indices i, j, where $F_{j}^{i}(x)$ is the i-th component of the vector function $F_{j}(x)$. Then for a given point x of \mathbb{R}^{d}, the $\left(\vdash_{u}\right)$-equation has a unique solution such that $X_{u}=x$. We denote it as $X_{t}(x)$ or $X_{t}(x, \omega)$. It is continuous in (t, x) a.s. applying proposition 2.1 [9].

$$
X_{t}^{u}(x)=x+\int_{u}^{t} X_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s}}\right) d N_{s}+\int_{u}^{t} \sum_{i=1}^{d} \sum_{j=1}^{r} X_{s} F_{j}^{i}\left(X_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j}
$$

We know that the quantity $F_{j}^{i}\left(X_{s}-\left(1-Z_{s}\right)\right)$ is bounded because F is a Lipschitz function, but we do not know a priori if the quantity $\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s}}\right)$ is finite or not;
we introduce the stopping time $\tau_{n}=\inf \left\{t, 1-Z_{t}<\frac{1}{n}\right\}$, therefore, we assume the process \tilde{X} instead of X :

$$
d \tilde{X}_{t}=\tilde{X}_{t}\left(-\frac{e^{-\Lambda_{t}}}{1-Z_{t \wedge \tau_{n}}} d N_{t}+\sum_{i=1}^{d} \sum_{j=1}^{r} F_{j}^{i}\left(\tilde{X}_{t}-\left(1-Z_{t}\right)\right) d Y_{t}^{j}\right)
$$

such as $\tilde{X}_{t}=X_{t}, \forall t \leq \tau_{n}, n \in \mathbb{N}$.
3.1. Proof of the one to one property. In this part we will apply lemma 2.6 to our model. So if $x=y$ the inequality is clearly satisfied for any constant $\tilde{K}_{p, T}^{(2)}$. We shall assume $x \neq y$. Let $\tilde{\varepsilon}$ be an arbitrary positive number and:

$$
\sigma_{\tilde{\varepsilon}}=\inf \left\{t>0 ;\left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)\right|<\tilde{\varepsilon}\right\}
$$

We denote $A_{t}=\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)$, and we shall apply Itô's formula to the function $f(z)=|z|^{p}$. Then we have for $t<\tilde{\varepsilon}$,

$$
\begin{aligned}
& \tilde{X}_{t}^{u}(x)= x+\int_{u}^{t} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t} \sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j} \\
& d \tilde{X}_{t}= \tilde{X}_{t}\left(-\frac{e^{-\Lambda_{t}}}{1-Z_{t \wedge \tau_{n}}}\right) d N_{t}+\sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{t} F_{j}^{i}\left(\tilde{X}_{t}-\left(1-Z_{t}\right)\right) d Y_{t}^{j} \\
& \mid \tilde{X}_{t}^{u}(x)-\left.\tilde{X}_{t}^{u}(y)\right|^{p}-|x-y|^{p} \\
&=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)\right) \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j}\right.} \\
&\left.-\tilde{X}_{s}(y)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(y) F_{j}^{i}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right) d Y_{s}^{j}\right] \\
&+\frac{1}{2} \sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{k}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{k}\right.} \\
&\left.\quad-\tilde{X}_{s}(y)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(y) F_{k}^{i}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right) d Y_{s}^{k}\right] \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{l}^{j}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{l}\right.} \\
&\left.\quad-\tilde{X}_{s}(y)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(y) F_{l}^{j}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right) d Y_{s}^{l}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)\right|^{p}-|x-y|^{p} \\
& =\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \\
& \times\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}\right. \\
& \left.+\left(\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right)-\tilde{X}_{s}(y) F_{j}^{i}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right)\right) d Y_{s}^{j}\right] \\
& +\frac{1}{2} \sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \\
& \times\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \uparrow \tau_{n}}}\right) d N_{s}\right. \\
& \left.+\left(\tilde{X}_{s}(x) F_{k}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right)-\tilde{X}_{s}(y) F_{k}^{i}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right)\right) d Y_{s}^{k}\right] \\
& \times\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}\right. \\
& \left.+\left(\tilde{X}_{s}(x) F_{l}^{j}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right)-\tilde{X}_{s}(y) F_{l}^{j}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right)\right) d Y_{s}^{l}\right] \\
& =\tilde{I}_{t}+\tilde{J}_{t}, \\
& \tilde{I}_{t}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \\
& \times\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}\right. \\
& \left.+\left(\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right)-\tilde{X}_{s}(y) F_{j}^{i}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right)\right) d Y_{s}^{j}\right] .
\end{aligned}
$$

Noting

$$
\begin{aligned}
& V_{j}^{i}\left(\tilde{X}_{s}^{x}\right)=\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right), \\
& V_{j}^{i}\left(\tilde{X}_{s}^{y}\right)=\tilde{X}_{s}(y) F_{j}^{i}\left(\tilde{X}_{s}(y)-\left(1-Z_{s}\right)\right),
\end{aligned}
$$

such that

$$
\left|V_{j}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{j}^{i}\left(\tilde{X}_{s}^{y}\right)\right| \leq \tilde{L}\left|\tilde{X}_{s}^{x}-\tilde{X}_{s}^{y}\right|,
$$

and

$$
\frac{\partial f}{\partial z_{i}}=p|z|^{p-2} z_{i},
$$

we put

$$
\tilde{I}_{t}=\tilde{I}_{t}^{1}+\tilde{I}_{t}^{2}
$$

such that

$$
\begin{gathered}
\tilde{I}_{t}^{1}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right)\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s} \\
\tilde{I}_{t}^{2}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right)\left(V_{j}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{j}^{i}\left(\tilde{X}_{s}^{y}\right)\right) d Y_{s}^{j}
\end{gathered}
$$

For \tilde{I}_{t}^{1}, we have:

$$
\begin{aligned}
& \sum_{i}\left|\frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right)\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\right| \\
& \leq|p||z|^{p-2}\left|z_{i}\right| \sqrt{d}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right| \\
& \leq|p| \sqrt{d}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} .
\end{aligned}
$$

Therefore,

$$
\tilde{I}_{t}^{1} \leq|p| \sqrt{d} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s \times \int_{u}^{t}-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}} d N_{s}
$$

Note that $Q_{t}=\int_{u}^{t}-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}} d N_{s}$, it is a local martingale (the so called hypothesis $H_{Y}(C)$ [5]). So

$$
\tilde{I}_{t}^{1} \leq|p| r \sqrt{d} Q_{t} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s
$$

For \tilde{I}_{t}^{2}, we have

$$
\begin{aligned}
& \sum_{i}\left|\frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right)\left(V_{j}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{j}^{i}\left(\tilde{X}_{s}^{y}\right)\right)\right| \\
& \leq|p||z|^{p-2}\left|z_{i}\right| \sqrt{d} \tilde{L}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right| \\
& \leq|p| \sqrt{d} \tilde{L}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p}
\end{aligned}
$$

Therefore,

$$
\tilde{I}_{t}^{2} \leq|p| \sqrt{d} r \tilde{L} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s
$$

So, we have

$$
\begin{aligned}
\tilde{I}_{t} & =\tilde{I}_{t}^{1}+\tilde{I}_{t}^{2} \\
& \leq|p| r \sqrt{d} Q_{t} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s+|p| \sqrt{d} r \tilde{L} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s \\
& \leq|p| r \sqrt{d} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s\left(Q_{t}+\tilde{L}\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\left|\mathbb{E} \tilde{I}_{t \wedge \sigma_{\tilde{\varepsilon}}}\right| \leq|p| r \sqrt{d}\left(Q_{t \wedge \sigma_{\tilde{\varepsilon}}}+\tilde{L}\right) \int_{u}^{t} \mathbb{E}\left|\tilde{X}_{s \wedge \sigma_{\tilde{\varepsilon}}}(x)-\tilde{X}_{s \wedge \sigma_{\tilde{\varepsilon}}}(y)\right|^{p} d s \tag{3.1}
\end{equation*}
$$

Next,

$$
\begin{aligned}
\tilde{J}_{t}=\frac{1}{2} \sum_{i, j, k, l} & \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \\
\times & {\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\left(V_{k}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{k}^{i}\left(\tilde{X}_{s}^{y}\right)\right) d Y_{s}^{k}\right] } \\
\times & {\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right) d Y_{s}^{l}\right] . } \\
\tilde{J}_{t}=\frac{1}{2} \sum_{i, j, k, l} & \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \\
& \times\left[\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)^{2}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s}+\left(V_{k}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{k}^{i}\left(\tilde{X}_{s}^{y}\right)\right)\right. \\
& \times\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right) d Y_{s}^{k} d Y_{s}^{l}+\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \\
& \times\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right) \times d N_{s} d Y_{s}^{l}+\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \\
& \left.\times\left(V_{k}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{k}^{i}\left(\tilde{X}_{s}^{y}\right)\right) d N_{s} d Y_{s}^{k}\right] .
\end{aligned}
$$

Note that $\tilde{J}_{t}=\frac{1}{2}\left[\tilde{J}_{t}^{1}+\tilde{J}_{t}^{2}+\tilde{J}_{t}^{3}+\tilde{J}_{t}^{4}\right]$ such that

$$
\begin{gathered}
\tilde{J}_{t}^{1}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)^{2} \\
\times\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s}, \\
\tilde{J}_{t}^{2}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(V_{k}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{k}^{i}\left(\tilde{X}_{s}^{y}\right)\right) \\
\times\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right) d Y_{s}^{k} d Y_{s}^{l}, \\
\tilde{J}_{t}^{3}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \\
\times\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right) d N_{s} d Y_{s}^{l}, \\
\tilde{J}_{t}^{4}=\sum_{i, j, k, l} \\
\\
\quad \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \\
\end{gathered}
$$

and note that

$$
\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}=p|z|^{p-2} \delta_{i j}+p(p-2)|z|^{p-4} z_{i} z_{j}
$$

where $\delta_{i j}$ is the Kronecker's delta. Then for \tilde{J}_{t}^{1}, we have

$$
\begin{aligned}
& \left|\sum_{i, j} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)^{2}\right| \\
& \leq\left|\left(p|z|^{p-2} \delta_{i j} d+p(p-2)|z|^{p-4} z_{i} z_{j}\right)\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)^{2}\right| \\
& \leq|p|(|p-2|+d)\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p}
\end{aligned}
$$

Therefore,

$$
\tilde{J}_{t}^{1} \leq|p|(|p-2|+d) \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s \int_{u}^{t}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s}
$$

The hypothesis $H_{Y}(C)$ is always assumed, so

$$
\tilde{J}_{t}^{1} \leq|p|(|p-2|+d) Q_{t}^{2} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s
$$

For \widetilde{J}_{t}^{2}, we have

$$
\begin{gathered}
\left|\sum_{i, j} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(V_{k}^{i}\left(\tilde{X}_{s}^{x}\right)-V_{k}^{i}\left(\tilde{X}_{s}^{y}\right)\right)\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right)\right| \\
\leq\left|\left(p|z|^{p-2} \delta_{i j} d+p(p-2)|z|^{p-4} z_{i} z_{j}\right) \tilde{L}^{2}\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)^{2}\right| \\
\tilde{J}_{t}^{2} \leq|p|(|p-2|+d) \tilde{L}^{2}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p}
\end{gathered}
$$

So

$$
\tilde{J}_{t}^{2} \leq|p|(|p-2|+d) \tilde{L}^{2} r^{2} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s
$$

For \tilde{J}_{t}^{3}, we have

$$
\begin{aligned}
& \left|\sum_{i, j} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)-\tilde{X}_{s}^{u}(y)\right) \times\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\left(V_{l}^{j}\left(\tilde{X}_{s}^{x}\right)-V_{l}^{j}\left(\tilde{X}_{s}^{y}\right)\right)\right| \\
& \leq\left|\left(p|z|^{p-2} \delta_{i j} d+p(p-2)|z|^{p-4} z_{i} z_{j}\right)\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right) \tilde{L} r\left(\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right)\right| \\
& \leq|p|(|p-2|+d) \tilde{L} r\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p}
\end{aligned}
$$

The hypothesis $H_{Y}(C)$ is always assumed, so

$$
\tilde{J}_{t}^{3} \leq|p|(|p-2|+d) \tilde{L} r Q_{t} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s
$$

For \tilde{J}_{t}^{4}, we have also

$$
\begin{aligned}
& \tilde{J}_{t}^{4} \leq|p|(|p-2|+d) \tilde{L} r Q_{t} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s \\
& \tilde{J}_{t}=\frac{1}{2}\left[\tilde{J}_{t}^{1}+\tilde{J}_{t}^{2}+\tilde{J}_{t}^{3}+\tilde{J}_{t}^{4}\right] \\
& \leq \frac{1}{2}\left[|p|(|p-2|+d) Q_{t}^{2} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s\right. \\
& \quad+|p|(|p-2|+d) \tilde{L}^{2} r^{2} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s \\
& \left.\quad+2|p|(|p-2|+d) \tilde{L} r Q_{t} \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s\right] \\
& \leq \frac{1}{2}\left[|p|(|p-2|+d) \int_{u}^{t}\left|\tilde{X}_{s}(x)-\tilde{X}_{s}(y)\right|^{p} d s\left(Q_{t}^{2}+\tilde{L}^{2} r^{2}+2 \tilde{L} r Q_{t}\right)\right] .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left|\mathbb{E} \tilde{J}_{t \wedge \sigma_{\tilde{\varepsilon}}}\right| \leq \frac{1}{2}|p|(|p-2|+d)\left(Q_{t}+r \tilde{L}\right)^{2} \int_{u}^{t} \mathbb{E}\left|\tilde{X}_{s \wedge \sigma_{\tilde{\varepsilon}}}(x)-\tilde{X}_{s \wedge \sigma_{\tilde{\varepsilon}}}(y)\right|^{p} d s \tag{3.2}
\end{equation*}
$$

Summing up these two inequalities 3.1 and 3.2 , we obtain

$$
\mathbb{E}\left|\tilde{X}_{t \wedge \sigma_{\tilde{\varepsilon}}}^{u}(x)-\tilde{X}_{t \wedge \sigma_{\tilde{\varepsilon}}}^{u}(y)\right|^{p} \leq|x-y|^{p}+\tilde{C}_{p} \int_{u}^{t} \mathbb{E}\left|\tilde{X}_{s \wedge \sigma_{\tilde{\varepsilon}}}(x)-\tilde{X}_{s \wedge \sigma_{\tilde{\varepsilon}}}(y)\right|^{p} d s
$$

where \tilde{C}_{p} is a positive constant.
By Grönwall's inequality we have

$$
\mathbb{E}\left|\tilde{X}_{t \wedge \sigma_{\tilde{\varepsilon}}}^{u}(x)-\tilde{X}_{t \wedge \sigma_{\tilde{\varepsilon}}}^{u}(y)\right|^{p} \leq K_{p, u}^{(2)}|x-y|^{p}, \quad u \leq t \leq \infty
$$

such that

$$
K_{p, u}^{(2)}|x-y|^{p}=\exp \left(\tilde{C}_{p} u\right)
$$

Letting $\tilde{\varepsilon}$ tend to 0 , we have

$$
\mathbb{E}\left|\tilde{X}_{t \wedge \sigma}^{u}(x)-\tilde{X}_{t \wedge \sigma}^{u}(y)\right|^{p} \leq K_{p, u}^{(2)}|x-y|^{p}
$$

where σ is the first time such that $\tilde{X}_{t}^{u}(x)=\tilde{X}_{t}^{u}(y)$. However, we have $\sigma=\infty$ a.s., since otherwise the left hand side would be infinity if $p<0$. The proof is complete.

The above lemma shows that if $x \neq y$ then $\tilde{X}_{t}^{u}(x) \neq \tilde{X}_{t}^{u}(y)$ holds a.s. for all t. But it does not conclude that $\tilde{X}_{t}(., \omega)$ is one to one, since the exceptional null set $\tilde{N}_{x, y}=\left\{\omega ; \tilde{X}_{t}^{u}(x)=\tilde{X}_{t}^{u}(y)\right.$ for somet $\}$ depends on the pair (x, y). To overcome this point, we shall apply lemma 2.7 .

In this case, suppose $p>2(2 d+1)$. We have

$$
\tilde{X}_{t}^{u}(x)=x+\int_{u}^{t} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t} \sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j}
$$

$$
\begin{aligned}
& \tilde{X}_{t^{\prime}}^{u}\left(x^{\prime}\right)=x^{\prime}+\int_{u}^{t^{\prime}} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t^{\prime}} \sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j} \\
& \tilde{X}_{t}^{u}(y)=y+\int_{u}^{t} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t} \sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j} \\
& \tilde{X}_{t^{\prime}}^{u}\left(y^{\prime}\right)=y^{\prime}+\int_{u}^{t^{\prime}} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t^{\prime}} \sum_{i=d}^{r} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j}
\end{aligned}
$$

Put

$$
\begin{aligned}
\tilde{\eta}_{t}(x, y) & =\frac{1}{\left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)\right|} \\
\tilde{\eta}_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right) & =\frac{1}{\left|\tilde{X}_{t^{\prime}}^{u}\left(x^{\prime}\right)-\tilde{X}_{t^{\prime}}^{u}\left(y^{\prime}\right)\right|}
\end{aligned}
$$

So

$$
\begin{aligned}
& \left|\tilde{\eta}_{t}(x, y)-\tilde{\eta}_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \\
& =\left|\frac{1}{\left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)\right|}-\frac{1}{\left|\tilde{X}_{t^{\prime}}^{u}\left(x^{\prime}\right)-\tilde{X}_{t^{\prime}}^{u}\left(y^{\prime}\right)\right|}\right|^{p} \\
& \leq 2^{p}\left(\frac{1}{\left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t}^{u}(y)\right|}\right)^{p}\left(\frac{1}{\left|\tilde{X}_{t^{\prime}}^{u}\left(x^{\prime}\right)-\tilde{X}_{t^{\prime}}^{u}\left(y^{\prime}\right)\right|}\right)^{p} \\
& \\
& \quad \times\left[\left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t^{\prime}}^{u}\left(x^{\prime}\right)\right|^{p}+\left|\tilde{X}_{t}^{u}(y)-\tilde{X}_{t^{\prime}}^{u}\left(y^{\prime}\right)\right|^{p}\right]
\end{aligned}
$$

By Hölder's inequality,

$$
\begin{aligned}
& \mathbb{E}\left|\tilde{\eta}_{t}(x, y)-\tilde{\eta}_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \\
& \leq 2^{p}\left(\mathbb{E}\left(\tilde{\eta}_{t}(x, y)^{4 p}\right) \mathbb{E}\left(\tilde{\eta}_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)^{4 p}\right)\right)^{\frac{1}{4}} \\
& \quad \times\left[\left(\mathbb{E}\left|\tilde{X}_{t}^{u}(x)-\tilde{X}_{t^{\prime}}^{u}\left(x^{\prime}\right)\right|^{2 p}\right)^{\frac{1}{2}}+\left(\mathbb{E}\left|\tilde{X}_{t}^{u}(y)-\tilde{X}_{t^{\prime}}^{u}\left(y^{\prime}\right)\right|^{2 p}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

By lemma 2.6 and proposition 2.1, we have

$$
\begin{aligned}
& \mathbb{E}\left|\tilde{\eta}_{t}(x, y)-\tilde{\eta}_{t^{\prime}}\left(x^{\prime}, y^{\prime}\right)\right|^{p} \\
& \leq \tilde{C}_{p, T}|x-y|^{-p}\left|x^{\prime}-y^{\prime}\right|^{-p}\left(\left|x-x^{\prime}\right|^{p}+\left|y-y^{\prime}\right|^{p}+2\left|t-t^{\prime}\right|^{\frac{p}{2}}\right) \\
& \leq \tilde{C}_{p, T} \tilde{\delta}^{-2 p}\left(\left|x-x^{\prime}\right|^{p}+\left|y-y^{\prime}\right|^{p}+2\left|t-t^{\prime}\right|^{\frac{p}{2}}\right)
\end{aligned}
$$

if $|x-y| \geq \tilde{\delta}$ and $\left|x^{\prime}-y^{\prime}\right| \geq \tilde{\delta}$, where $\tilde{C}_{p, T}$ is a positive constant. Then by Kolmogorov Theorem 2.2, $\tilde{\eta}_{t}(x, y)$ is continuous in $[0, T] \times\{(x, y) /|x-y| \geq \tilde{\delta}\}$. Since T and $\tilde{\delta}$ are arbitrary positive numbers, we get the assertion. The proof is complete.

The above calculus leads immediately to the one to one property of the map $\tilde{X}_{t}^{u}(., \omega)$ a.s. for all t . We shall next consider the onto property.
3.2. Proof of the onto property. In this part we will apply lemmas 2.8, 2.10, and 2.11 to our model.

Let $T>0$ and p any real number:

$$
\begin{gathered}
\tilde{X}_{t}^{u}(x)=x+\int_{u}^{t} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t} \sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j} \\
d \tilde{X}_{t}=\tilde{X}_{t}\left(-\frac{e^{-\Lambda_{t}}}{1-Z_{t \wedge \tau_{n}}}\right) d N_{t}+\sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{t} F_{j}^{i}\left(\tilde{X}_{t}-\left(1-Z_{t}\right)\right) d Y_{t}^{j}
\end{gathered}
$$

We shall apply Itô's formula to the function $f(z)=\left(1+|z|^{2}\right)^{p}$. We have

$$
\begin{aligned}
& f\left(\tilde{X}_{t}^{u}(x)\right)-f(x) \\
&=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j}\right] } \\
&+\frac{1}{2} \sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{k}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{k}\right] } \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{l}^{j}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{l}\right] } \\
&\left.\tilde{X}_{t}^{u}(x)\right)-f(x)=\tilde{I}_{t}+\tilde{J}_{t} \operatorname{such~that~}^{\sum_{i}} \sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j}\right], } \\
& \tilde{J}_{t}=\frac{1}{2} \sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{k}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{k}\right] } \\
& \times {\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{l}^{j}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{l}\right] . }
\end{aligned}
$$

For \tilde{I}_{t}, we have

$$
\begin{aligned}
\tilde{I}_{t}=\sum_{i, j} & \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \\
& \times\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j}\right]
\end{aligned}
$$

$$
\begin{aligned}
\tilde{I}_{t}= & \sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s} \\
& +\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j} .
\end{aligned}
$$

$\tilde{I}_{t}=\tilde{I}_{t}^{1}+\tilde{I}_{t}^{2}$ such that

$$
\begin{gathered}
\tilde{I}_{t}^{1}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}, \\
\tilde{I}_{t}^{2}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j} .
\end{gathered}
$$

For \tilde{I}_{t}^{1}, note $\frac{\partial f}{\partial z_{i}}=2 p z_{i}\left(1+|z|^{2}\right)^{p-1}$ and the hypothesis $H_{Y}(C)$ is always assumed,
so so

$$
\begin{aligned}
\tilde{I}_{t}^{1}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) & \times \tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s} \\
\sum_{i}\left|\frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{X}_{s}(x)\right| & \leq 2|p|\left|z_{i}\right|\left(1+|z|^{2}\right)^{p-1} \sqrt{d}\left|\tilde{X}_{s}(x)\right| \\
& \leq 2|p| \sqrt{d}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} .
\end{aligned}
$$

Therefore,

$$
\tilde{I}_{t}^{1} \leq 2|p| \sqrt{d} r Q_{t} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s
$$

For \tilde{I}_{t}^{2}, we have

$$
\tilde{I}_{t}^{2}=\sum_{i, j} \int_{u}^{t} \frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{j}
$$

Note

$$
\tilde{V}_{j}^{i}\left(\tilde{X}_{s}^{x}\right)=\tilde{X}_{s}(x) F_{j}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) .
$$

Let \tilde{K} be a positive constant such that

$$
\begin{aligned}
\tilde{V}_{j}^{i}\left(\tilde{X}_{s}^{x}\right) & \leq \tilde{K}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{\frac{1}{2}} \\
\sum_{i}\left|\frac{\partial f}{\partial z_{i}}\left(\tilde{X}_{s}^{u}(x)\right) \times \tilde{V}_{j}^{i}\left(\tilde{X}_{s}^{x}\right)\right| & \leq 2|p|\left|z_{i}\right|\left(1+|z|^{2}\right)^{p-1} \sqrt{d} \tilde{K}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{\frac{1}{2}} \\
& \leq 2 \sqrt{d}|p| \tilde{K}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} .
\end{aligned}
$$

So

$$
\tilde{I}_{t}^{2} \leq 2 \sqrt{d}|p| r \tilde{K} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s .
$$

Therefore,

$$
\begin{aligned}
& \tilde{I}_{t} \leq 2|p| \sqrt{d} r Q_{t} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s \\
&+2 \sqrt{d}|p| r \tilde{K} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s \\
& \quad \leq 2|p| \sqrt{d} r\left(Q_{t}+\tilde{K}\right) \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s .
\end{aligned}
$$

We have

$$
\begin{equation*}
\left|\mathbb{E} \tilde{I}_{t}\right| \leq 2|p| \sqrt{d} r\left(Q_{t}+\tilde{K}\right) \int_{u}^{t} \mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s . \tag{3.3}
\end{equation*}
$$

Next, for \tilde{J}_{t} we have

$$
\begin{aligned}
\tilde{J}_{t}=\frac{1}{2} \sum_{i, j, k, l} & \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \\
& \times\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{k}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{k}\right] \\
& \times\left[\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\tilde{X}_{s}(x) F_{l}^{j}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) d Y_{s}^{l}\right] .
\end{aligned}
$$

Note

$$
\begin{aligned}
& \tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right)=\tilde{X}_{s}(x) F_{k}^{i}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right), \\
& \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right)=\tilde{X}_{s}(x) F_{l}^{j}\left(\tilde{X}_{s}(x)-\left(1-Z_{s}\right)\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
\tilde{J}_{t}=\frac{1}{2} \sum_{i, j, k, l} & \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \\
\times & {\left[\tilde{X}_{s}(x)^{2}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s}+\tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right) d Y_{s}^{k} d Y_{s}^{l}\right.} \\
& +\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right) d N_{s} d Y_{s}^{l} \\
& \left.+\tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right) d N_{s} d Y_{s}^{k}\right]
\end{aligned}
$$

Note $\tilde{J}_{t}=\frac{1}{2}\left[\tilde{J}_{t}^{1}+\tilde{J}_{t}^{2}+\tilde{J}_{t}^{3}+\tilde{J}_{t}^{4}\right]$, such that

$$
\begin{gathered}
\tilde{J}_{t}^{1}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{X}_{s}(x)^{2}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s} \\
\tilde{J}_{t}^{2}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right) d Y_{s}^{k} d Y_{s}^{l} \\
\tilde{J}_{t}^{3}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right) d N_{s} d Y_{s}^{l}
\end{gathered}
$$

$$
\tilde{J}_{t}^{4}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right) d N_{s} d Y_{s}^{k}
$$

and note that

$$
\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}=2 p\left(1+|z|^{2}\right)^{p-1} \delta_{i j}+4 p(p-1) z_{i} z_{j}\left(1+|z|^{2}\right)^{p-2}
$$

where $\delta_{i j}$ is the Kronecker delta, then for \tilde{J}_{t}^{1} we have

$$
\begin{aligned}
& \tilde{J}_{t}^{1}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{X}_{s}(x)^{2}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s} \\
& \quad \sum_{i, j}\left|\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{X}_{s}(x)^{2}\right| \\
& \quad \leq\left|\left(2 p\left(1+|z|^{2}\right)^{p-1} \delta_{i j}+4 p(p-1) z_{i} z_{j}\left(1+|z|^{2}\right)^{p-2}\right) \tilde{X}_{s}(x)^{2}\right| \\
& \quad \leq 2|p|(2(p-1)+d)\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p}
\end{aligned}
$$

Therefore,

$$
\tilde{J}_{t}^{1} \leq 2|p|(2(p-1)+d) \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s \int_{u}^{t}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right)^{2} d N_{s} d N_{s}
$$

By hypothesis $H_{Y}(C)$, we have

$$
\tilde{J}_{t}^{1} \leq 2|p|(2(p-1)+d) Q_{t}^{2} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s
$$

For \widetilde{J}_{t}^{2}, we have

$$
\begin{gathered}
\tilde{J}_{t}^{2}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right) d Y_{s}^{k} d Y_{s}^{l} \\
\sum_{i, j}\left|\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{V}_{k}^{i}\left(\tilde{X}_{s}^{x}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right)\right| \\
\leq\left|\left(2 p\left(1+|z|^{2}\right)^{p-1} \delta_{i j}+4 p(p-1) z_{i} z_{j}\left(1+|z|^{2}\right)^{p-2}\right) \times \tilde{K}^{2}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)\right| \\
\leq 2|p|(2(p-1)+d) \tilde{K}^{2}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} .
\end{gathered}
$$

Therefore,

$$
\tilde{J}_{t}^{2} \leq 2|p|(2(p-1)+d) \tilde{K}^{2} r^{2} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s
$$

For \tilde{J}_{t}^{3}, we have

$$
\tilde{J}_{t}^{3}=\sum_{i, j, k, l} \int_{u}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{X}_{s}(x)\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right) d N_{s} d Y_{s}^{l}
$$

$$
\begin{aligned}
& \sum_{i, j}\left|\frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(\tilde{X}_{s}^{u}(x)\right) \tilde{V}_{l}^{j}\left(\tilde{X}_{s}^{x}\right)\right| \\
& \leq\left|\left(2 p\left(1+|z|^{2}\right)^{p-1} \delta_{i j}+4 p(p-1) z_{i} z_{j}\left(1+|z|^{2}\right)^{p-2}\right) \times \tilde{K}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{\frac{1}{2}} \tilde{X}_{s}(x)\right| \\
& \leq 2|p|(2(p-1)+d) \tilde{K}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} .
\end{aligned}
$$

The hypothesis $H_{Y}(C)$ is always assumed, so

$$
\tilde{J}_{t}^{3} \leq 2|p|(2(p-1)+d) \tilde{K} r Q_{t} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s .
$$

For \tilde{J}_{t}^{4}, we have also

$$
\tilde{J}_{t}^{4} \leq 2|p|(2(p-1)+d) \tilde{K} r Q_{t} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s
$$

Therefore,

$$
\begin{aligned}
& \tilde{J}_{t}= \frac{1}{2}\left[\tilde{J}_{t}^{1}+\tilde{J}_{t}^{2}+\tilde{J}_{t}^{3}+\tilde{J}_{t}^{4}\right] \\
& \leq \frac{1}{2}\left[2|p|(2(p-1)+d) Q_{t}^{2} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s\right. \\
&+2|p|(2(p-1)+d) \tilde{K}^{2} r^{2} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s \\
&\left.+4|p|(2(p-1)+d) \tilde{K} r Q_{t} \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s\right] \\
& \leq|p|(2(p-1)+d) \int_{u}^{t}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s\left(Q_{t}^{2}+\tilde{K}^{2} r^{2}+2 \tilde{K} r Q_{t}\right) .
\end{aligned}
$$

So

$$
\begin{equation*}
\left|\mathbb{E} \tilde{J}_{t}\right| \leq|p|(2(p-1)+d)\left(Q_{t}+r \tilde{K}\right)^{2} \int_{u}^{t} \mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s \tag{3.4}
\end{equation*}
$$

Summing up these two inequalities (3.3) and (3.4), we obtain

$$
\mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} \leq\left(1+|x|^{2}\right)^{p}+\text { const } \times \int_{u}^{t} \mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s .
$$

By Grönwall's inequality, we have

$$
\mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} \leq\left(1+|x|^{2}\right)^{p} \times \exp \left(\tilde{C}_{p, u}\right),
$$

such that

$$
\tilde{C}_{p, u}=\text { const } \times \int_{u}^{t} \mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} d s,
$$

and

$$
\tilde{K}_{p, u}^{3}=\exp \left(\tilde{C}_{p, u}\right) .
$$

So, we have the inequality of the lemma 2.8

$$
\mathbb{E}\left(1+\left|\tilde{X}_{s}(x)\right|^{2}\right)^{p} \leq \tilde{K}_{p, u}^{3}\left(1+|x|^{2}\right)^{p} .
$$

Now, taking negative p in the above calculus, we see that $\left|\tilde{X}_{t}(x)\right|$ tends to infinity in probability as x tends sequentially to infinity. We shall prove a stronger convergence.

Let $\overline{\mathbb{R}}^{d}=\mathbb{R}^{d} \cup\{\infty\}$ be the one point compactification of \mathbb{R}. Set

$$
\begin{gathered}
\tilde{X}_{t}^{u}(x)=x+\int_{u}^{t} \tilde{X}_{s}\left(-\frac{e^{-\Lambda_{s}}}{1-Z_{s \wedge \tau_{n}}}\right) d N_{s}+\int_{u}^{t} \sum_{i=1}^{d} \sum_{j=1}^{r} \tilde{X}_{s} F_{j}^{i}\left(\tilde{X}_{s}-\left(1-Z_{s}\right)\right) d Y_{s}^{j} \\
\tilde{\eta}_{t}(x)= \begin{cases}\frac{1}{1+\left|\tilde{X}_{t}(x)\right|}, & \text { if } x \in \mathbb{R}^{d} \\
0, & \text { if } x=\infty\end{cases}
\end{gathered}
$$

Evidently $\tilde{\eta}_{t}(x)$ is continuous in $[0, \infty) \times \mathbb{R}^{d}$. Thus just to prove the continuity in the vicinity of infinity. Suppose $p>2(2 d+1)$. We have

$$
\left|\tilde{\eta}_{t}(x)-\tilde{\eta}_{s}(y)\right|^{p} \leq \tilde{\eta}_{t}(x)^{p} \tilde{\eta}_{s}(y)^{p}\left|\tilde{X}_{t}(x)-\tilde{X}_{s}(y)\right|^{p}
$$

By Hölder's inequality, proposition 2.1 and lemma 2.8, we have

$$
\begin{aligned}
\mathbb{E}\left|\tilde{\eta}_{t}(x)-\tilde{\eta}_{s}(y)\right|^{p} & \leq\left(\mathbb{E} \tilde{\eta}_{t}(x)^{4 p}\right)^{\frac{1}{4}}\left(\mathbb{E} \tilde{\eta}_{s}(y)^{4 p}\right)^{\frac{1}{4}}\left(\mathbb{E}\left|\tilde{X}_{t}(x)-\tilde{X}_{s}(y)\right|^{2 p}\right)^{\frac{1}{2}} \\
& \leq \tilde{C}_{p, T}(1+|x|)^{-p}(1+|y|)^{-p}\left(|x-y|^{p}+|t-s|^{\frac{p}{2}}\right)
\end{aligned}
$$

if $t, s \in[0, T]$ and $x, y \in \mathbb{R}^{d}$, where $\tilde{C}_{p, T}$ is a positive constant. Set

$$
\frac{1}{x}=\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{d}^{-1}\right)
$$

Since

$$
\frac{|x-y|}{(1+|x|)(1+|y|)} \leq\left|\frac{1}{x}-\frac{1}{y}\right|
$$

we get the inequality

$$
\mathbb{E}\left|\tilde{\eta}_{t}(x)-\tilde{\eta}_{s}(y)\right|^{p} \leq \tilde{C}_{p, T}\left(\left|\frac{1}{x}-\frac{1}{y}\right|^{p}+|t-s|^{\frac{p}{2}}\right)
$$

Define

$$
\bar{\eta}_{t}(x)=\left\{\begin{array}{cl}
\tilde{\eta}_{t}\left(\frac{1}{x}\right), & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Then the above inequality implies

$$
\mathbb{E}\left|\bar{\eta}_{t}(x)-\bar{\eta}_{s}(y)\right|^{p} \leq \tilde{C}_{p, T}\left(|x-y|^{p}+|t-s|^{\frac{p}{2}}\right), x \neq 0, y \neq 0
$$

In case $y=0$, we have

$$
\mathbb{E}\left|\bar{\eta}_{t}(x)\right|^{p} \leq \tilde{C}_{p, T}|x|^{p}
$$

Therefore, $\bar{\eta}_{t}(x)$ is continuous in $[0, \infty) \times \mathbb{R}^{d}$ by Kolmogorov's theorem. This proves that $\tilde{\eta}_{t}(x)$ is continuous in $[0, \infty) \times$ neighborhood of infinity.

So, define a stochastic process \bar{X}_{t} on $\overline{\mathbb{R}}^{d}=\mathbb{R}^{d} \cup\{\infty\}$ by

$$
\bar{X}_{t}(x)= \begin{cases}\tilde{X}_{t}(x), & \text { if } x \in \mathbb{R}^{d} \\ \infty, & \text { if } x=\infty\end{cases}
$$

Then $\bar{X}_{t}(x)$ is continuous on $[0, \infty) \times \mathbb{R}^{d}$ by the previous lemma. Thus for each $t>$ 0 , the map $\bar{X}_{t}(\cdot, \omega)$ is homotopic to the identity map on $\overline{\mathbb{R}}^{d}$, which is homeomorphic to d-dimensional sphere S^{d}. Then $\bar{X}_{t}(\cdot, \omega)$ is an onto map of $\overline{\mathbb{R}}^{d}$ by the well known homotopic theory. Now, the map \bar{X}_{t} is a homeomorphism of $\overline{\mathbb{R}}^{d}$, since it is one to one, onto and continuous. Since ∞ is the invariant point of the map \bar{X}_{t}, we see that \tilde{X}_{t} is a homeomorphism of \mathbb{R}^{d}. This completes the proof of Theorem 2.2.

References

1. Bismut, J. M.: Flots stochastiques et formula de Itô-Stratonovich généralisée, C.R. Acad. Sci. Paris, t. 290 (10 mars 1980).
2. Blagoveschenskii, J. N. and Freidlin M. I.: Some properties of diffusion processes depending on a parameter, DAN 138 (1961), Soviet Math. 2 (1961), 633-636.
3. Elworthy, K. D.: Stochastic dynamical systems and their flows, stochastic analysis ed. by A.Friedman and M. Pinsky, 79-95, Academic press, New York, 1978
4. Ikeda, N. and Watanabe, S. : Stochastic Differential Equations and Diffusion Processes, forthcoming book.
5. Jeanblanc, M. and Song, S.: Random times with given survival probability and their \mathbb{F} martingale decomposition formula, Stochastic Processes And their Applications 121(20102011).
6. Kunita, H.: On the decomposition of solutions of stochastic differential equations. Proc. Durham Conf. Stoch. Integrals, Lecture Notes in Math. No. 851, Springer, Amsterdam (1981), pp. 213-255
7. Malliavin, P.: Stochastic calculus of variation and hypoelliptic operators, Kyoto, Conference, 1976, Wiley 1978, 195-263.
8. Ogura, Y. and Yamada, T.: On the strong comparison theorem of solutions of stochastic differential equations, to appear.
9. Stroock, D. W. and Varadhan, S. R. S. : Multidimensional Diffusion Processes, 1979, Springer-Verlag, New York.

Fatima Benziadi: Department of Mathematics, Tahar Moulay University PO.Box 138 En-Nasr, 20000 Saida, Algeria

E-mail address: fatimabenziadi2@gmail.com
Abdeldjabbar Kandouci: Department of Mathematics, Tahar Moulay University PO.Box 138 En-Nasr, 20000 Saida, Algeria

E-mail address: kandouci1974@yahoo.fr

[^0]: Received 2017-8-7; Communicated by A. I. Stan.
 2010 Mathematics Subject Classification. Primary 60G17; Secondary 60H05.
 Key words and phrases. Credit risk, stochastic flow, stochastic differential geometry, diffeomorphism.

 * This research is supported by The Laboratory of Stochastic Models, Statistics and Applications, Tahar Moulay University PO.Box 138 En-Nasr, 20000 Saida, Algeria.

