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Abstract. In this paper, we consider the Lévy Laplacian acting on multi-
ple Wiener integrals by the stochastic process given as a difference of two

independent Lévy processes, and give a necessary and sufficient condition for
eigenfunctions of the Lévy Laplacian. Moreover we give a decomposition of
the L2-space on Lévy noise probability space by eigenspaces consisting of mul-
tiple Wiener integrals by the above process in terms of the Lévy Laplacian.

By this decomposition, we obtain an expression of the semigroup generated
by the Lévy Laplacian related to the semigroup generated by the number
operator.

1. Introduction

An infinite dimensional Laplacian was introduced by P. Lévy [7]. This Laplacian
was introduced into the framework of white noise analysis by T. Hida [1] and has
been studied by many authors from various aspects.

In the previous paper [2], we discussed the Lévy Laplacian

E[eirX(t)] = exp{tfX(r)}, r, t ∈ R,

fX(r) = iµr − σ2

2
r2 +

∫
|u|>0

(
eiru − 1− iru

1 + u2

)
1 + u2

u2
dβ(u),

where σ ≥ 0,µ ∈ R and β is a positive finite measure on R with β({0}) = σ2 and∫
R
|u|ndβ(u) < +∞ for all n ∈ N.
In this paper, we consider this Laplacian acting on multiple Wiener integrals by

the stochastic process given as a difference Ξ = {Ξ(t)|t ∈ R} of two independent
Lévy processes by the characteristic functions given as

E[eirΞ(t)] = exp{tfΞ(r)}, r, t ∈ R,

fΞ(r) = −σ2r2 +

∫
|u|>0

(
eiru + e−iru − 2

)
1 + u2

u2
dβ(u).
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and give a necessary and sufficient condition for U-transforms

U [In(f)], f ∈ L2
C(R, dt)⊗̂n as eigenfunctions of the Lévy Laplacian

(T1) β = σ2δ0

(T2) σ = 0, β = bδa + dδ−a for some a > 0, b ≥ 0 and d ≥ 0,

where In(f) is the multiple Wiener integral of order n. In this case, we have only
one condition for eigenfunction of the Lévy Laplacian in Proposition 4.1. It is
more clear than the result in my previous paper [2].

Moreover we give a decomposition by eigenspaces consisting of multiple Wiener
integrals by the above process in terms of the Lévy Laplacian as follows:

1) A decomposition (L2) =
∞⊕

n=0

Wn(0) holds if and only if (T1) holds.

2) A decomposition (L2) =
∞⊕

n=0

Wn

(
− na2

)
holds if and only if (T2) holds.

where Wn(λ), n ∈ N∪{0} are eigenspaces of the Lévy Laplacian. The second part
is more clear than the previous Theorem 4.4 in [2]. The decomposition implies
an interesting expression of the semigroup generated by the Lévy Laplacian on
(L2) as the semigroup generated by some kind of the number operator. In the last
section, we give the expression.

2. Preliminaries

Let E = S(R) be the Schwartz space of rapidly decreasing R-valued functions
on R and let E∗ be a dual space of E. The canonical bilinear form on E∗ × E is
denoted by ⟨·, ·⟩.

Let Lj = {Lj(t)|t ∈ R}, j = 1, 2 be independent Lévy processes on a probability
space (Ω,F , P ), of which the characteristic functions are given by

E[eirL
j(t)] = exp{th(r)}, r, t ∈ R, j = 1, 2

h(r) = iµr − σ2

2
r2 +

∫
|u|>0

(
eiru − 1− iru

1 + u2

)
1 + u2

u2
dβ(u),

where σ ≥ 0,µ ∈ R and β is a positive finite measure on R with β({0}) = σ2

and
∫
R
|u|ndβ(u) < +∞ for all n ∈ N. Define β0 by the positive measure on

R∗ = R− {0} given as

β0(E) =

∫
E

1 + u2

u2
dβ(u), E ∈ B(R∗).

Set Ξ(t) = L1(t)− L2(t), t ∈ R. Then the characteristic function of Ξ is given
by

E[eirΞ(t)] = exp{tfΞ(r)}, r, t ∈ R,

fΞ(r) = −σ2r2 +

∫
|u|>0

(
eiru + e−iru − 2

)
1 + u2

u2
dβ(u).
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Set C(ξ) = exp{
∫
R
fΞ(ξ(t))dt} , ξ ∈ E. Then by the Bochner-Minlos Theorem,

there exists a probability measure Λ on E∗ such that∫
E∗

ei⟨x,ξ⟩dΛ(x) = C(ξ), ξ ∈ E.

The stochastic process Ξ is represented by

• Ξ(t;x) = ⟨x, 1[0,t]⟩ if t ≥ 0,
• Ξ(t;x) = −⟨x, 1[t,0]⟩ if t < 0.

Let (L2) ≡ L2(E∗,Λ) be the Hilbert space of C-valued square-integrable func-
tions on (E∗,Λ). We denote the (L2)-norm by || · ||0. The U-transform U [φ] of
φ ∈ (L2) is defined by

U [φ](ξ) = C(ξ)−1

∫
E∗

ei⟨x,ξ⟩φ(x)dΛ(x), ξ ∈ E,

and the Wick product ⟨·, f1⟩ ⋄ · · · ⋄ ⟨·, fn⟩ of ⟨·, fj⟩, j = 1, · · · , n, is given by

U [⟨·, f1⟩ ⋄ · · · ⋄ ⟨·, fn⟩] = U [⟨·, f1⟩] · · · U [⟨·, fn⟩] , f1, · · · , fn ∈ E.

Fixing a finite interval T on R, we take an orthonormal basis {ζn}∞n=0 ⊂ E for
L2(T ) which is equally dense and uniformly bounded (see [5]). Let DL denote the
set of all φ ∈ (L2) such that the limit

∆̃LU [φ](ξ) ≡ lim
N→∞

1

N

N−1∑
n=0

(Uφ)′′(ξ)(ζn, ζn)

exists for each ξ ∈ E and a functional ∆̃LU [φ] is in U [(L2)]. The Lévy Laplacian
∆L on DL is defined by

∆Lφ = U−1∆̃LUφ, φ ∈ DL.

3. Multiple Wiener Integral

Let Bb(R
2
∗) be the class of all bounded Borel subsets ofR2

∗ = R2−{(t, 0)|t ∈ R}.
Define a measure ν on Bb(R

2
∗) by dν(t, u) = dβ0(u)dt. For each A ∈ Bb(R

2
∗),

N(A; ·) be a random variable on (E∗,B(E∗)) defined by

N(A;x) = |{(t, u) ∈ A : Ξ(t;x)− Ξ(t−;x) = u}|
and set N0(A;x) = N(A;x)− ν(A).

Let λ be a positive measure on B(R2) defined by

dλ(t, u) = (1 + u2)dβ(u)dt.

Define a (L2)-valued function M on {A ∈ B(R2) : λ(A) < +∞} by

M(A) = σ

∫
R

1A(t, 0)dB(t) +

∫
R2

∗

u1A(t, u)dN0(t, u),

where B = {B(t) : t ∈ R} is a one dimensional Wiener process, independent of the
system {N(A) : A ∈ Bb(R

2
∗)}. Then we can define the multiple Wiener integral of

order n with respect to M (see [6]). In notation, we write

In(f) =

∫
R2

· · ·
∫
R2

f(s1, · · · , sn)dM(s1) · · · dM(sn), f ∈ L2
C(R

2, λ)⊗̂n,
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where L2
C(R

2, λ)⊗̂n is the complexication of n fold symmetric tensor product of
L2(R2, λ).

Proposition 3.1. (see [6]). Let f ∈ L2
C(R, dt)⊗̂n be given, then

In(f) =

∫
R

· · ·
∫
R

f(s1, · · · , sn)dΞ(s1) · · · dΞ(sn).

Let

D0 =

{ ∞∑
n=0

In(fn) : fn ∈ L2
C(R, dt)⊗̂n for all n ∈ N ∪ {0}

and
∞∑

n=0

n!τn
∫
Rn

|fn(t)|2dt < +∞
}

where τ = 2
∫
R
(1 + u2)dβ(u), then the following theorem holds.

Theorem 3.2. (see [6]). D0 = (L2) if and only if β = cδa for some c > 0 and
a ∈ R.

4. Conditions for Eigenfunctions of the Lévy Laplacian.

Let Ff (ξ) = U [In(f)](ξ) with suppf ⊂ Tn. Then we have

Ff (ξ) =

∫
Rn

f(t1, · · · , tn)
n∏

j=1

G(ξ(tj))dt1 · · · dtn (4.1)

and we can calculate

∆̃LFf (ξ) = − n

|T |

∫
Rn

f(t1, · · · , tn)H(ξ(t1))
n∏

j=2

G(ξ(tj))dt1 · · · dtn, (4.2)

where

G(r) = 2iσ2r +

∫
|u|>0

(eiru − e−iru)
1 + u2

u
dβ(u),

H(r) =

∫
R

u(1 + u2)(eiru − e−iru)dβ(u).

Proposition 4.1. The functionals Ff for all f ∈ L2
C(R, dt)⊗̂n are eigenfunctions

of ∆̃L if and only if there exists C ∈ R such that the following equalities hold:

(P1) − n

|T |

∫
R

u2k(1 + u2)dβ(u) = C

∫
R

u2(k−1)(1 + u2)dβ(u), k ∈ N,

Proof. Let Ff be an eigenfunction of ∆̃L. Then there exists C ∈ R such that

∆̃LFf = CFf . By (4.1) and (4.2), we have

H(r)− CG(r) = 0 for all r ∈ R.
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We note that

G(r) = 2ir

{
σ2 +

∫
|u|>0

(1 + u2)dβ(u)

}
+2

∞∑
k=1

i2k+1

(2k + 1)!
r2k+1

∫
R

u2k(1 + u2)dβ(u)

= 2ir

∫
R

(1 + u2)dβ(u)

+2
∞∑
k=1

i2k+1

(2k + 1)!
r2k+1

∫
R

u2k(1 + u2)dβ(u)

(4.3)

and

H(r) = 2ir

∫
R

u2(1 + u2)dβ(u)

+2
∞∑
k=1

i2k+1

(2k + 1)!
r2k+1

∫
R

u2(k+1)(1 + u2)dβ(u).

(4.4)

By (4.2),(4.3) and (4.4), we have (P1). Conversely, if there exists C ∈ R such that

(P1) holds, then we can check ∆̃LFf = CFf by the above calculations (4.1), (4.2),
(4.3) and (4.4). �

Theorem 4.2. The functionals Ff for all f ∈ L2
C(R, dt)⊗̂n are eigenfunctions of

∆̃L if and only if either of the following equality holds:

(T1) β = σ2δ0

(T2) σ = 0, β = bδa + dδ−a for some a > 0, b ≥ 0 and d ≥ 0

Proof. If the functionals Ff for all f ∈ L2
C(R, dt)⊗̂n are eigenfunctions of ∆̃L, then

(P1) holds. Since∫
R

u2k

(
u2 +

|T |
n

C

)(
1 + u2

)
dβ(u) = 0 , k ∈ N

from (P1), we have ∫
R

u2

(
u2 +

|T |
n

C

)2(
1 + u2

)
dβ(u)

=

∫
R

u4

(
u2 +

|T |
n

C

)(
1 + u2

)
dβ(u)

+
|T |
n

C

∫
R

u2

(
u2 +

|T |
n

C

)(
1 + u2

)
dβ(u)

= 0. (4.5)

In the case of C ≥ 0, by (4.5) we have

β(R− {0}) = 0.
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Therefore β is expressed by

β = cδ0 , c ≥ 0.

Since β({0}) = σ2, we get

c =

∫
R

1{0}(u)dβ(u) = σ2.

Hence we have (T1). In the case of C < 0, by (4.5) we have

β(R− {0, a,−a}) = 0

where a =
√
− |T |C

n . This means that β is expressed by

β = cδ0 + bδa + dδ−a , b, c, d ≥ 0.

Since β({0}) = σ2, we get

c =

∫
R

1{0}(u)dβ(u) = σ2.

By (P1), we have

(b+ d)a2(1 + a2) = a2{σ4 + (b+ d)(1 + a2)}

and hence

σ = 0,

thus we have (T2). If β is given by the form (T1), we have

− n

|T |

∫
R

uk(1 + u2)dβ(u) = 0, k ∈ N.

Therefore (P1) holds for arbitrary constant C in case of σ = 0, and holds by
setting C = 0 if otherwise. By Proposition 4.1, the function Ff is an eigenfunction

of ∆̃L. If β is given by the form (T2), setting C = − n
|T |a

2, we have

C

∫
R

u2(k−1)(1 + u2)dβ(u) = − n

|T |
a2(b+ d)a2(k−1)(1 + a2)

= − n

|T |

∫
R

u2k(1 + u2)dβ(u),

where k ∈ N. Hence (P1) holds. By Proposition 4.1, the function Ff is an

eigenfunction of ∆̃L. �

Example 4.3. Standard Gaussian white noise measure

µ = 0 , β = σ2δ0.

By Theorem 4.2, the function Ff is an eigenfunction of ∆̃L with C = 0.

Example 4.4. Poisson white noise measure

µ =
1

2
, β =

1

2
δ1.

By Theorem 4.2, the function Ff is an eigenfunction of ∆̃L with C = − n
|T | .
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Example 4.5. Gamma white noise measure

µ =

∫ ∞

0

e−u

1 + u2
du , β(E) =

∫
E∩[0,+∞)

ue−u

1 + u2
du.

Since ∫
R

uk(1 + u2)dβ(u) = (2k)! (k ∈ N),

by Proposition 4.1, there exist f ∈ L2
C(R, dt)⊗̂n such that Ff is not an eigenfunc-

tion of ∆̃L.

5. Decomposition by Eigenspaces of (L2)

Let DL be the set of white noise distribution Φ ∈ (E)∗ such that lim
|T |→∞

|T |∆LΦ

exists in (E)∗. For any Φ ∈ DL, we define an operator ∆L by

∆LΦ = lim
|T |→∞

|T |∆LΦ.

We use the same notaition ∆L for the U-transform UΦ of Φ ∈ DL by ∆LUΦ =

U∆LΦ. If (T2) holds, we can calculate

∆LΦ = lim
|T |→∞

|T |∆LΦ = −na2, Φ ∈ DL.

Let K0 = C, Kn = {In(f)|f ∈ L2
C(R, dt)⊗̂n} for each n ∈ N. Set K =⊕∞

n=0 Kn. By Proposition 3.1, we can obtain the following Proposition.

Proposition 5.1. If (T1) or (T2) holds, then K = (L2).

Proposition 5.2. Let n ∈ N. Then any φ in Kn is an eigenfunction of ∆L if
and only if either of (T1) and (T2) holds.

Proof. By Theorem 4.2, all F in U [Kn] are eigenfunctions of ∆L with same eigen-
value if and only if (T1) or (T2) holds. Then, all φ in Kn are eigenfunctions of
∆L with same eigenvalue if and only if (T1) or (T2) holds. �

Let Wn(λ) = {φ ∈ Kn |∆Lφ = λφ} for any n ∈ N ∪ {0} and λ ∈ R. Then
Proposition 5.1 and Proposition 5.2 imply the following Theorem.

Theorem 5.3. We have the following assertions:

1) The decomposition (L2) =
⊕∞

n=0 Wn(0) holds if and only if (T1) holds.

2) The decomposition (L2) =
⊕∞

n=0 Wn

(
− na2

)
holds if and only if (T2)

holds.

6. A Semi-group Generated by the Lévy Laplacian

For each t ≥ 0, we consider an operator Gt on K is defined by

Gtφ =

∞∑
n=0

eCntφn

for φ =
∑∞

n=0 φn ∈ K, where Cn is defined by

• Cn = 0 if (T1) holds,
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• Cn = −na2 if (T2) holds.

Then we have the following Theorem.

Theorem 6.1. If (T1) or (T2) holds, then the family {Gt; t ≥ 0} is an equi-
continuous semigroup of class (C0) generated by ∆L as a continuous linear operator
densely defined on (L2).

Proof. By Proposition 5.1, (L2) = K holds. Let φ =
∑∞

n=0 φn ∈ K, for any t ≥ 0
the norm ∥Gtφ∥0 is estimated as follows:

∥Gtφ∥20 =
∞∑

n=0

∥eCntφn∥20

≤
∞∑

n=0

∥φn∥20

= ∥φ∥20.
Hence the family {Gt; t ≥ 0} is an equi-continuous in t. It is easily checked that
G0 = I,GtGs = Gt+s for each t, s ≥ 0. We can also estimate that

∥Gtφ−Gt0φ∥20 =
∞∑

n=0

|eCnt − eCnt0 |2∥φn∥20

≤ 4
∞∑

n=0

∥φn∥20

= 4∥φ∥20
for each t, t0 ≥ 0. Therefore, by the Lebesgue convergence theorem, we get that

lim
t→t0

Gtφ = Gt0φ in (L2)

for each t0 ≥ 0 and φ ∈ K. Thus the family {Gt; t ≥ 0} is an equi-continuous
semigroup of class (C0). We next prove that the infinitensional generator of the
semigroup is given by ∆L. Let

D = {φ ∈ K |∆Lφ exists in K}.
Since polynomial functionals of white noise are included in D, we can see that D
is dense in (L2). For φ =

∑∞
n=0 φn ∈ D, we have∥∥∥∥Gtφ− φ

t
−∆Lφ

∥∥∥∥2
0

=
∞∑

n=0

∥∥∥∥eCnt − 1

t
φn − Cnφn

∥∥∥∥2
0

.

By the mean value theorem, for any t > 0 there exists a constant θ ∈ (0, 1) such
that ∣∣∣∣eCnt − 1

t

∣∣∣∣ = Cne
Cntθ ≤ Cn.

Therefore we can estimate the following term:∥∥∥∥eCnt − 1

t
φn − Cnφn

∥∥∥∥2
0

=

∣∣∣∣eCnt − 1

t
− Cn

∣∣∣∣2∥φn∥20

≤ 4Cn∥φn∥20.
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By

lim
t→0

∣∣∣∣eCnt − 1

t
− Cn

∣∣∣∣ = 0

and the Lebesgue convergence theorem, we obtain

lim
t→0

∥∥∥∥Gtφ− φ

t
−∆Lφ

∥∥∥∥2
0

= 0.

Thus the proof is completed. �
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