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INTRODUCTION

The term senescence is derived from a latin word
‘Senescere’ which means to grow old. It comprises
those processes that follow physiological maturity
which lead to the event of death of a whole plant,
organ or tissue at macroscopic level. At microscopic
level the process, however is continuous, since there
exists always a turnover of cell organelles at one or
other places of the whole body (Voleti et al., 2000, Van
Doorn and Woltering, 2008 and Yamada et al., 2009).
It is an integral part of the normal developmental
cycle of plants and can be viewed on a cell, tissue,
organ or organization level. It is the final event in the
life of many plant tissues and is highly regulated
process that involves structural, biochemical and
molecular changes that in many cases bear the
hallmarks of programmed cell death (Makrides and
Goldthwaite, 1981; Noh and Amasino, 1999;
Buchanan- Wollaston and Morris, 2000;
Mahagamasekera and David, 2001; Leverentz et al.,
2002; Wagstaff et al., 2003; Jones et al., 2005; Rogers,
2006; Xu et al., 2006; Hoeberichts et al., 2007; Yamada
et al., 2009, Shahri and Tahir, 2010a). Senescence
though a terminal developmental stage, can be
accelerated by an array of both biotic and abiotic
factors such as light, temperature, nutrients, ethylene,
pathogens and pollination etc. (Taverner et al., 1999;
Van Doorn and Woltering, 2005; Wagstaff et al., 2005;
Jones, 2008; Zhou et al., 2008; Shahri et al., 2009; Shahri
and Tahir, 2010b). It is a dynamic and closely
regulated developmental process which involves
highly coordinated changes in gene expression and
requires active gene transcription and protein
translation (Shahri and Tahir, 2010c, d). A genetically
controlled senescence programme allows for the
ordered degradation of organelles and
macromolecules with the remobilization of essential
nutrients (Hensel et al., 1993; Yamada et al., 2003;
Hoeberichts et al., 2005; Jones, 2008; Chapin and Jones,

2007; 2009). It is largely an oxidative process involving
a general degradation of cellular structures and the
mobilization of the products of degradation to other
parts of the plants or organs (Nichols and Ho, 1975;
Feller and Keist, 1986; Bieleski, 1995; Fischer et al.,
1998; Van Doorn and Woltering, 2008).

It is mainly characterized by cessation of
photosynthesis, disintegration of organelle structure,
intensive loss of chlorophyll and proteins,
upregulation of tonoplast localized cytochromes, a
drastic increase in lipid peroxidation, proteolytic
activity, protease gene expression, poly-
galactouronidase activity, nuclease activity, nuclear
degradation, vascuolar autophagy, membrane
leakage, disruption of cell membranes leading to
cellular decompartmentalization and loss of tissue
structure (Mahagamasekera and David, 2001;
Yamada et al., 2003, Hoeberichts et al., 2005; Rogers,
2006; Xu et al., 2006; Van Doorn and Woltering, 2008;
Shahri and Tahir, 2010c, d). The central senescence
process seems to begin in the nucleus with the
senescence of RNA’s which inturn, are used to make
certain proteins in the cytoplasm, ultimately resulting
in the alteration of plasma membrane and loss of
homeostatic ability (Nooden and Leopold, 1988;
Hoeberichts et al., 2005).

CHANGES OCCURRING DURING SENESCENCE

Water relations in cut flowers: Due to decrease in
water absorbtion and increase in water loss through
transpiration, the stem develops water deficit
conditions results in wilting of flowers. The decrease
in water uptake by the stem is mainly due to plugging
of xylem vessels caused by growth of microbes mainly
bacteria in the vase water or on the dipped portion of
stem. Exposure of cut flower to water stress condition,
for a short periods lead to the earlier appearance of
senescense. Water deficit conditions are reported to
cause physiological disorders in the cut stems such
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as stem break in gerbera and bent neck of rose (Halevy
and Mayak 1981; Balestra et al, 2005). Adverse water
relations are also reported to cause changes in
hormonal balance. During senescence, the rate of
water flux through vessels, tracheids and fibres get
reduced and tylose formation was often shown to
result in reduced water and oxygen availability for
the respiration causes imbalance in water relations of
flowers.

The rate of water uptake of a cut flower depends
on hydraulic conductance of the water conduits in
the stem, water potential difference between the vase
water and the cut flower tissue. Water potential of
cut flower tissue is affected by water loss due to
transpiration – presence of stomata ( Rose, Dianthus,
Gerbera, Lilium, Tulip, Orchids) by process leading
to cell enlargement, especially growth of the flower
petals during flower opening (at later stage sucrose,
reducing sugar or starch get reduced - osmotic
potential). Water supply to flower at later stages of
flower bud opening is inhibited by means of vascular
occlusion. It is induced by bacteria, air emboli and
tylose formation.

When harvested spikes of gladiolus are kept in
vase solution initially there is an increase in the fresh
weight of spikes due to increased solution uptake as
it required by spikes for opening of flowers. Then
decline is attributed to high rate of respiration and
also membrane leakage (Ezhilmathi et al., 2007). It has
been shown that negative water relation would lead
to the wilting of flowers.

Petal senescence and membrane integrity: A
consistent feature of senescence is the loss of
differential permeability of cell membranes. The
permeability and fluidity of biological membranes is
modified by variations in the composition and
structure of the lipid bilayer. Membrane deterioration
is an early and characteristic feature of plant
senescence, which leads to several structural and
functional changes. For example the ultra structural
changes including the vesiculation of vacuolar and
cytosolic compartments have been reported in
carnation petals. In daylily flowers, during senescence
the degeneration of vacuolar membrane of epidermal
cells was reported by Stead and van Doorn (1994).

Leverentz et al. (2002) revealed that in ethylene
insensitive Alstroemeria flower senescence, the loss
of membrane function was not related to lipoxygenase
activity. In the ethylene sensitive category,
lipoxygenase activity may promote senescence
through oxidative membrane damage as seen in rose
and carnation. However, in some ethylene sensitive

plants such as Phalaenopsis, the lipoxygenase seems
not to play any apparent role.

At the biochemical level, senescence is associated
with changes in membrane fluidity and leakage of
ions in several different flowers. The important
changes at the membrane, which include the decrease
in all classes of membrane phospholipids and increase
in neutral lipids, mainly due to increased action of
phospholipases and acyl hydrolases, have been
reported. Another important event that leads to loss
of membrane permeability is oxidation of membrane
lipids (lipid peroxidation) due to lipoxygenases in day
lily and carnations.

Since the cell is enclosed within a membrane it is
logical to assume that regulation of the cell
metabolism is to a large extent by changes in
membrane properties. There is deterioration in
membrane stability during flower senescence. The
first structural change often observed was
invagination of tonoplast, resulting in release of
various hydrolytic enzymes, followed by autolysis of
cell. Often, acid hydrolases such as acid phosphatase,
RNase and DNase were released. In those petals,
which contain plastids, gradual disappearance of
thylakoids followed by tubule presence with
invaginations has been observed. Often, the single
ribosome and vesiculation of endoplasmic reticulum
were the changes at cell organelles level noticed
during the early or middle part of senescence.

Changes in vascular morphology: In cut flowers,
increase in restriction of water movement through
stem segments predominantly located in the lower
most one centimeter of the stem was noticed (De
Stigter and Broekhuysen, 1986). Only a fraction of the
microbial cells enters through the vascular system
from the vase water and the rest remains attached to
the submerged cut surface of the stem, thus blocking
the uptake of water (Put et al, 1992). Vascular blockage
in the cut roses is due to the presence of bacteria and
these bacteria cause xylem cell wall degradation.

Bacteria-induced xylem blockage, particularly at
the stem-end region, is recognised as a major cause
of premature wilting in many species of cut flowers
and foliage (Put and Klop, 1990; De Witte and Van
Doorn, 1992). Many species of microorganisms
isolated from cut flower stems and vase water can
produce extracellular polysaccharides (EPS) that
manifest as capsules attached to the outer cell walls,
as slime released into the environment, or as both
(Sutherland, 1977; Put and Klop, 1990).

Changes in pigmentation: Colour fading and
discoloration is an important factor in determining
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display quality of cut flowers, and in many cases is
the major reason for the termination of vase life. For
example, it was found that all the cultivars of statice
(blue, pink, purple and lavender) contain a similar
amount of the same anthocyanin (Asen et al., 1973).
Therefore, measuring pigment content is not always
indicative of colour or colour changes. Only in a few
studies have colorimetric methods been used for
objective definition of the colour changes in cut
flowers (Biran et al., 1974a, b, c; Mattson and Widmer,
1971; Mayak and Dilley 1976; Parups, 1975a, b). The
major types of pigments contributing to the colour of
the flowers are carotenoids and anthocyanins. Only
a few studies have been carried out on the changes in
carotenoids in aging flowers. Flowers are hardly
mentioned in a review on pigment changes in
senescent and stored tissues (Chichester and
Nakayama, 1965).

The changes in carotenoid composition were
followed in Strelitzia reginae flowers during the
various developmental stages of the plastids from the
small colourless leucoplasts, through the green
chloroplast to increasingly large spindle shaped
chromoplast (Simpson et al. 1975). A decrease in total
carotenoid content was observed in senescing
chrysanthemum flowers (Stickland, 1972). An increase
in oxygenated carotenoids with age was found in
strelitzia (Simpson et al., 1975) and rose (Valadon and
Mummery, 1969) flowers. This was considered
(Goodwin, 1966; Valadon and Mummery, 1969) as a
sign of a degenerative and uncontrolled oxidative
process. However, the increase in oxygenated
carotenoids was observed even in maturing sepals
showing no sign of degeneration in their
ultrastructure (Simpson et al. 1975).

The pigment level stays stable in some flowers
and declines drastically in others, while in some
flowers a dramatic synthesis of anthocyanins is
evident. Little or no changes were found in flowers
of Lathyrus (Packet, 1966 a; Sakata and Uemoto, 1976)
and Digitalis (Stead and Moore, 1977). A decrease in
the anthocyanins content with age was found in
chrysanthemums (Stickland, 1972).

Some flowers fade and even turn white upon
aging. This was found to be due to decolorization by
an enzyme system with the properties of catecholase.
In the Masquerade rose the petals are orange- yellow
when freshly opened and turn deep red upon
senescing. More than a ten fold increase in
anthocyanin level was measured during that period
(Shisa and Takano, 1964). An increase in anthocyanin
formation with wilting is one of the most typical post

pollination phenomenon in Cymbidium orchids
(Arditti and Flick, 1976 and Arditti and Knauft, 1969).
The most important factor determining the colour
change in senescing petals seems to be a change in
the pH of the vacuole (Stewart et al., 1975). However,
only in a very few cases is the colour caused by a very
low (<3.0) or a very high (> 7.0) pH affecting the
anthocyanin.

In most flowers the decisive factor determining
the intensity of the colour and its blueing is the
copigmentation which is influenced to a great extent
by even slight changes in pH. The blueing of red
flowers with aging is a well- known phenomenon. A
concomitant increase in pH has been demonstrated
in Lathyrus (Packet, 1966a). The increase in pH was
attributed to the breakdown of proteins and the
release of free ammonia. Indeed, treatment of cut
flowers with solutions containing sugars, which
delayed proteolysis, delayed also the increase of the
pH and blueing.

It is interesting to note that the color and the pH
changes associated with aging may proceed at very
different rates in adjacent cells (Stewart et al., 1975).
This may indicate that contiguous cells may differ
from each other in the rate of proteolysis and aging.
In some flowers aging of petals is marked by
browning and blackening of the petals, which are
caused by oxidation of flavones, leucoanthocyanins,
other phenols and the accumulation of tannins
(Singleton, 1972).

Carbohydrate and other macromolecules: Petal
senescence is generally accompanied by a loss of dry
matter due to hydrolysis of macromolecules such as
starch, protein and nucleic acids and redistribution
of carbon and nitrogen compounds to other parts of
the flower. Carbohydrate status of the flower petals
is one of the factors, which ultimately determines their
longevity. There is a sharp decline in the carbohydrate
content during the final stage of flower development.
This drop in level of macromolecules (starch and cell
polysaccharides) occurred with the onset of
senescence.

Carbohydrate status of petals related to flower
opening, longevity of flowers (Coorts, 1973). Sugars
are an important energy source and structural
components. Sugar accumulation is a mechanism to
reduce petal water potential -promoting water influx
- cell enlargement and flower opening. Petal
senescence is accompanied by a loss of dry matter.
The opening of gladiolus florets was accompanied by
a substantial increase in fresh and dry weight and
carbohydrate concentration of the perianth. Loss of
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total cellular RNA resulted, throughout the aging
process (Woodson, 1987).

Sugars or carbohydrates increased the vase life
of cut flowers by reducing the sensitivity to ethylene
(Mayak and Dilley, 1976; Paulin, 1986). It has also been
suggested that maintenance of osmotic pressure
might be the reason for the delay in senescence. Paulin
(1986) reported that exogenous application of sugars
increase vase life by delaying proteolysis, promoting
protein and amide synthesis, maintaining osmotic
potential, delaying membrane integrity and
maintaining mitochondrial structure and function
(Halvey and Mayak, 1979).

Decrease in reducing sugars with senescence was
reported in carnation (Halvey and Mayak, 1979) and
daylily (Bieleski and Reid, 1992). Often, invertase was
shown to decrease with increasing age, which has
been linked with de novo synthesis of invertase
inhibitor (Halaba and Rudnicki, 1986), which makes
the oxidation products of sucrose available for
transport in carnation and Ipomea during wilting.

Protein metabolism: Protein synthesis and
degradation are the events of central importance
during petal senescence. Treatment of flowers with
compounds that inhibit protein synthesis, have been
found to delay the visible symptoms of petal
senescence, revealing that active protein synthesis is
required for the execution of cell death in plants.
Several genes related to protein synthesis have been
found to be differentially expressed during petal
senescence. The degradation of proteins and the
remobilization of aminoacids to developing tissues
is a prominent process during senescence. Protein
breakdown occurs in proteosomes, vacuoles,
mitochondria, nucleus and plastids but bulk
degradation mainly occurs in vacuoles.

Protein degradation during petal senescence has
been characterized in several plants, including the
monocotyledonous Alstroemeria (Wagstaff et al.,
2002) and Gladiolus (Azeez et al., 2007), and
dicotyledons such as carnation (Sugawara et al., 2002).
The data generally show a decrease in protein levels,
but in some species this decrease was much smaller
than in others.

The senescence of both climatric and non-climatric
flowers have been associated with a loss of protein
(Woodson, 1987).The protein content is reduced due
to little de novo synthesis and considerable protein
degradation. It is understood that free radicals attack
amino acid residues of proteins causing
conformational changes in proteins causing them to
be recognized by specific proteases for degradation.

Decrease in proteins which are involved in the
synthesis process has been reduced (Woodson, 1987),
clearly indicate that mRNA levels increased during
the process. Treatment with ethylene resulted in an
early increase in the transcript abundance of a
senescence-associated cysteine peptidases in the
petals, in an early rise in peptidase activity, and later
decrease in water-insoluble protein levels which
promote senescense of Dendrobium cv. Khao Sanan
(Ladawan Lerslerwonga et al., 2009).

Respiration: The rate of respiration in many
flowers rises to a maximum as flowers start to open,
followed by a gradual decline as flowers mature. Then
it increase dramatically over a relatively short period
and finally declines. This second peak in respiration
drift was considered to indicate the final senescence
stage. It was assumed to be analogous to the climatric
rise in respiration of many fruits (Larsen and Frolich,
1969). Respiration is usually taken as a good indicator
of the metabolic rate in fruits, vegetables and flowers.
The high respiration rates that prevail in most flowers
release large amounts of heat, consumption of
carbohydrate reserves and elevated transpiration
rates (Van Doorn, 2001). Indeed, it was found that
chemicals which delay the occurrence of the second
peak also extend longevity (Larsen and Frolich, 1969;
Mayak et al., 1978). A unique respiration pattern was
demonstrated in tropical orchid flowers (Hew et al.,
1978). A circadian rhythm in CO2 production started
as soon as flowers opened. The period between
amplitudes was about 24 hours and was not affected
by continuous darkness. The rhythm was observed
also in cut flowers but the amplitude of the rhythm
was dampened by the detachment and partially
boosted by external supply of sucrose.

The gradual decline in respiration in aging flowers
may be caused by short supply of readily respirable
substrates, mainly sugars. It was suggested that the
content of these substrates may indicate the potential
life of the flower at a specific temperature (Nichols,
1973). This is supported by observation of relationship
between potential keeping life and dry matter content
of the cut flower at the time of the harvest. The
respirable substrate pool is composed mainly of
sugars. The size of the pool is affected by the rate of
hydrolysis of starch and other polysaccharides (Ho
and Nichols, 1977) and translocation to the petals
(Nichols and Ho, 1975b) from one side, respiration
and translocation out of the flowers to other plant
parts from the other. This transport is promoted by
pollination and ethylene. Supplying cut flowers with
exogenous sugar maintains the pool of dry matter and
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respirable substrates, especially in petals, thus
promoting respiration and extending longevity
(Rogers, 1973).

Respiration rate is negatively correlated with
organ longevity in plant postharvest physiology
(Kader, 1985; Reid, 1985). In general, low respiration
rate has been related to increased flower longevity in
cut flowers (Kuc and Workman, 1964). Some
postharvest treatments increase cut flower longevity
as well as flower respiration. Exogenous sugar in vase
solutions increases flower respiration but extends
longevity in cut roses (Rosa L. sp.) (Marousky, 1969),
cut carnations (Dianthus caryophyllus L.) (Nichols,
1973) and cut gladiolus (Gladiolus xhortulanus Bailey)
(van der Merwe et al., 1986). Comparing spring to
summer production, Celikel and Karacali (1991)
showed that cut carnation flower longevity was best
for plants produced during the summer when flower
respiration rates were higher. Thus, flower respiration
is not always negatively correlated with flower
longevity or it is a specificity of the cut flower system,
where a substrate limitation may occur due to
detachment from the source organs.

Environmental stress and petal senescence: Petal
senescence rate in cut flowers is strongly dependent
on temperature and on environmental water stress
parameters (Halevy and Mayak, 1981). Ethylene is
involved in the response of flowers to different
stresses leading to a significant rise of the production.
In carnations water stress is accompained by
accumulation of ACC. Induced increase in the level
of endogenous ethylene has been observed to be
caused by stressogenic factors viz., mechanical
wounding, extreme temperature, water loss, drought,
diseases and pollination. Reactive oxygen species such
as superoxide radical, hydrogen peroxide and
hydroxyl radical have a role in lipid peroxidation,
membrane damage and consequently in leaf
senescence. Free radicals have been involved in
programmed cell death, both in animal and in plant
cells (Dhindsa et al. 1981). Plants possess a well
defined antioxidant defence mechanisms which
eliminate hazardous free radicals (Larson 1988).
Antioxidant protection involves compounds such as
carotenoids, ascorbic acid, a-tocopherol, glutathione,
phenolics and flavonoids (Schoner and Krause 1990)
and a battery of enzymatic systems including catalase
(CAT), superoxide dismutase (SOD), peroxidase
(POD), glutathione peroxidise (GPX), (glutathione-S-
transferase) GST and the Halliwell-Asada Pathway
(or the ascorbateglutathione cycle). The ascorbate-
glutathione cycle involves four enzymes: ascorbate

peroxidase (APX), dehydroascorbate reductase
(DHAR), monodehydroascorbate reductase
(MDHAR) and glutathione reductase (GR) enzymes
(Bowler et al. 1992; Halliwell 1987). It has been shown
that during leaf senescence, proteins, phospholipids
and pigments may be degraded by free radicals as
free radical scavenging declines (Prochazkova et al.
2001).

Florets/petals are the organs which primarily
determine the commercial longevity of flowers and
as a consequence it is beneficial to study the
physiological, biochemical, and genetic processes that
occur during floret senescence. Most of the early work
on flower senescence focused on ethylene sensitive
plants. Chrysanthemum is an ethylene insensitive
plant where lipid peroxidation and membrane
damage are involved in flower deterioration
(Chrysanthemum morifolium). Senescence can lead to
the loss of membrane stability due to the oxidation of
existing membrane components, lipid peroxidation
increases during senescence. It may directly, or
indirectly, via the formation of free radicals, be
involved in the last stages of senescence and cell death
in chrysanthemum florets. (Debasis Chakrabarty et
al., 2007).

Pollination regulation of flower senescence: The
development of orchid flowers is strictly regulated
by pollination that initiates alterations at various
organization levels eventually leading to floral
senescence. Pollination induces rapid senescence of
orchid flowers, thereby reducing their commercial
value (Ketsa and Rugkong, 1999). Hence, it becomes
imperative to trace out the events associated with
floral senescence and their possible manipulation in
order to prolong the life span of the orchid flowers.
The mechanisms underlying floral senescence are still
enigmatic. Senescence, when it does occur, may be
imperceptible for weeks, even after becoming
apparent, symptoms develop slowly. In orchids, little
is known as how various floral organs respond to
pollination at biochemical level and how these organs
relate to each other in pollinated flowers. Previous
studies in other plant species report an efflux of some
cellular constituents like vacuolar pigments and
electrolytes (Suttle and Kende, 1978; Celikel and Van
Doorn,1995), related to the loss of turgor and visible
wilting as a result of flower senescence. One of the
vital changes in senescing tissues involves the
appearance of oxidative damage (Thompson et al.,
1998) that has detrimental effects on tissues.

Pollination of flowers has been shown to induce
senescence (Lovell et al., 1987). It was observed in
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carnation that petal senescence occur between 2-3
days after pollination, whereas in unpollinated ones
it occurs on 6-7 days after pollination. The other parts
of the flowers such as style, ovaries, receptacles, etc.,
have been shown to induce the synthesis of ethylene
(Pech et al., 1987; Porat et al., 1994) however, not
necessarily due to fertilization since, flowers, which
have not pollinated with pollen tube still growing
with in the style, have shown increased ethylene
concentration suggesting that a transmissible factor
is involved in senescence.

Pollination regulates a syndrome of
developmental responses that contributes to
successful sexual reproduction in higher plants.
Pollination- regulated developmental events
collectively prepare the flower for fertilization and
embryogenesis while bringing about the loss of floral
organs that have completed their function in pollen
dispersal and reception. Components of this process
include changes in flower pigmentation, senescence
and abscission of floral organs, growth and
development of ovary and in certain cases, pollination
triggers ovule and female gametophyte development
in anticipation of fertilization.

Pollination regulated development is initiated by
the primary pollination event at the stigma surface,
but because developmental processes occur in distal
floral organs, the activity of inter organ signals that
amplify and transmit the primary pollination signal
to floral organs is implicated. Inter organ signalling
and signal amplification involves the regulation of
ethylene biosynthetic gene expression and inter organ
transport of hormones and their precursors. The
coordination of pollination- regulated flower
development including gametophyte, embryo and
ovary development, pollination signalling, the
molecular regulation of ethylene biosynthesis and inter
organ communication as reported by O’Neill., 1997.

Pollination of orchid flower induces a dramatic
increase in ethylene production, which subsequently
causes a rapid petal wilting, whereas the longevity of
intact unpollinated flowers may reach as long as
several months. (O’Neill., 1993). After pollination,
wilting began in 2 to 3 days in Aerides multiflora and 3
to 4 days in Rhyncostylis retusa. There was a higher
electrolyte leakage accompanied by a concomitant
increase in the levels of malondialdehyde (MDA),
indicators of oxidative damage in all the organs after
pollination. The flowers of Aerides multiflora showed
a greater electrolyte leakage, MDA and H2O2 contents
as compared to those of Rhyncostylis retusa (Attri et
al., 2008).

Plant growth regulators: Plant Growth
Regulators can delay and also accelerate the
senescence. Ethylene, Cytokinin and ABA- affect the
vase life of cut flower. Petal senescence in cut flowers
is delayed or inhibited by cytokinin or gibberellic acid.
Cytokinins can also delay petal senescence by
maintaining cellular integrity and proteins. In
climatric or ethylene sensitive flowers, senescence is
accompained by sudden, transient increase in
ethylene production and respiration of Ex -
Carnations, Petunia, Gypsophila and Orchids. But in
non-climatric flowers, Gladiolus, Tulip and Iris
generally no increase in ethylene production and
respiration during senescense were reported.

Role of cytokinins in petal senescence:
Cytokinins are known to defer leaf senescence
(Richmond and Lang, 1957) and improve the keeping
qualities of cut carnation (Heide and Oydvin, 1969;
Maclsan and Dedolph, 1962) and rose flowers.
MacLean and Dedolph (Mayak and Halevy, 1970)
reported a decrease in the respiration rate of
cytokinin-treated flowers and proposed that
cytokinins increase flower longevity as a result of this
reduction in respiration. However, Heide and Oydvin
(1969) found only small and inconsistent effects of
cytokinins on the respiration rate of cut carnation
flowers. They concluded that processes other than
respiration mediate the cytokinin retardation of
senescence. Mayak and Halevy, 1974 have shown that
kinetin increases net water uptake of expanding rose
petals and delays wilting of petals especially when
flowers are subjected to heat (28 C) and low relative
humidity (40-50%). Kinetin had no effect on protein
content of rose petals under these stressful conditions,
but kinetin retarded the increase in RNase activity
normally seen in rose flowers at the onset of
senescence. Kinetin is proposed to increase rose
flower longevity by improving water balance and
delaying senescence processes.

Cytokinins delay senescence in vegetative and
floral tissues (Van Staden et al., 1988). An inverse
relationship between cytokinin content and
senescence occurs in some flowers (Van Staden et al.,
1988). Cytokinin content in roses (Mayak et al., 1972),
carnation (Van Staden and Dimalla, 1980), and Cosmos
sulfureus (Saha et al., 1985) is greatest in young flowers
and decreases during corolla opening and
development. Rose varieties with longer vase lives
have been reported to contain more cytokinins than
those with shorter vase lives (Mayak and Halevy,
1970). Results from exogenous application of
cytokinins in vase solutions have been variable



Vol. 33, No. 1, January-March 2015 109

Senescence in cut flowers – A Review

(Weaver, 1972; Halevy and Mayak, 1981; Baker, 1983).
Cytokinin application delayed senescence in
carnations (Mac- Lean and Dedolph, 1962; Heide and
Oydvin, 1969; Mayak and Dilley, 1976; Mayak and
Kofranek, 1976; Upfold and Van Staden, 1990), roses
(Mayak and Halevy, 1970, 1974), Gerbera sp. (Van
Meeteren, 1979) but the response depended on the
type and concentration of cytokinin and the stage of
flower development. Interactions between cytokinins
and other hormones during senescence have been less
studied. Cytokinin applications to carnation flowers
delay senescence and are associated with reduced
ethylene biosynthesis and decreased sensitivity to
ethylene (Eisinger, 1977; Mor et al., 1983; Cook et al.,
1985). Study suggested that ethylene production
during petunia senescence promotes cytokinin
degradation and inactivation by O-glucosylation
(Taverner et al., 1999). The sensitivity of flowers to
ethylene increases as they mature, and this sensitivity
change also has a role in the initiation of senescence
(Nichols, 1968; Barden and Hanan, 1972; Mayak et al.,
1977; Halevy and Mayak, 1981; Woodson and Lawton,
1988).

Recently, thidiazuron (N’-phenyl-N’-1, 2, 3-
thiadiazol-5-ylurea, TDZ), a phenylurea derivative,
has been characterized as a highly efficacious type of
non-purine cytokinin with strong morphogenic
potency in a wide range of plant species (Murthy et
al., 1998; Mok et al., 2000). Like purine cytokinins, TDZ
has also been shown to be a potent inhibitor of leaf
senescence and flower abscission (Ferrante et al., 2002;
Sankhla et al., 2003). In addition, inclusion of 5–45_M
TDZ in vase water was found to reduce ethylene-
mediated flower abscission and senescence on phlox
and lupin stems, respectively (Sankhla et al., 2003,
2005). This treatment also stimulated opening of
additional flowerbuds on cut lupin and tuberose
stems (Sankhla et al., 2003; Uthairatanakij et al., 2007).
The mode by which TDZ treatment extends flower
longevity has not been determined, although it may
act by regulat- ing cytokinin and/or auxin activity
(Murthy et al., 1998; Mok et al., 2000). It is an
inexpensive and non-metabolized phenyl-urea
compound, has been shown to have a potent
cytokinin-like activity at 50-100 times lower
concentrations than BAP (Genkov and Iordanka,
1995).

Ferrante et al. (2002, 2003) have demonstrated that
TDZ dramatically retards chlorophyll degradation in
leaves of cut flowers of alstroemeria, tulips and
chrysanthemums. TDZ also was reported to reduce
flower abscission and the senescence of leaves and

flowers in cut inflorescences of phlox and lupins
(Sankhla et al., 2003, 2005). Although the exact mode
of action of TDZ is not well known, evidence suggests
that TDZ can modulate cytokinin biosynthesis and/
or metabolism, and may mimic the activity of auxin
(Murthy et al., 1998; Mok et al., 2000). It has been
hypothesized that the long-lived cytokinin effect
provided by TDZ treatment not only prevents leaf
yellowing, but also reduces ethylene sensitivity
(Ferrante et al., 2002; Sankhla et al., 2005).

Until recently, no genes involved in cytokinin
biosynthesis had been identified from plants
(Kakimoto, 2001; Takei et al., 2001; Zubko et al., 2002;
Sun et al., 2003). Plants with altered cytokinin content
have been generated by transformation with the
Agrobacterium tumefaciens cytokinin biosynthetic gene,
ipt (Medford et al., 1989). The ipt gene encodes
isopentenyl transferase, an enzyme that catalyzes the
condensation of dimethylallylpyrophosphate and 5’-
AMP to isopentenyladenosine (iPA) 5’-phosphate.
This is assumed to represent a rate-limiting step in
cytokinin biosynthesis because the introduction of the
ipt gene into plants results in increased accumulation
of many forms of cytokinins (Akiyoshi et al., 1984;
Barry et al., 1984; Morris, 1995). Very low increases in
endogenous cytokinin content of transgenic plants
have been associated with pleiotropic effects
including inhibition of root growth, stunted shoots,
reduced apical dominance, increased stem diameter,
and retarded leaf senescence (Schmulling et al., 1999).
An approach to target the expression of ipt to
senescing tissues with the promoter from SAG12, a
senescence-associated gene from Arabidopsis,
demonstrated a direct effect of cytokinins on plant
senescence (Gan and Amasino, 1995). Numerous
plants transformed with SAG12-IPT have significant
delays in leaf senescence (Gan and Amasino, 1995;
Jordi et al., 2000; Zhang et al., 2000; McCabe et al., 2001).

Role of Ethylene in petal senescence: Ethylene
is a primary plant hormone involved in the senescence
of cut carnation flowers (Abeles et al., 1992; Borochov
and Woodson, 1989; Reid and Wu, 1992). A large
amount of ethylene is synthesized several days after
full opening of the flower during natural senescence
(Manning, 1985; Peiser, 1986; Woodson et al., 1992),
or several hours after compatible pollination (Nichols,
1977; Larsen et al., 1995) or treatment with exogenous
ethylene (Borochov and Woodson, 1989; Wang and
Woodson, 1989). The increased ethylene production
accelerates in-rolling of petals resulting in wilting of
the flower. Ethylene is synthesized through the
following pathway: L-methionine-S-adenosyl-L-
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methionine , 1-aminocyclopropane- 1-carboxylate
(ACC) ethylene. ACC synthase and ACC oxidase
catalyse the last two reactions. So far, three genes
encoding ACC synthase (DC-ACS1, DC-ACS2, and
DC-ACS3) and one gene encoding ACC oxidase
(DCACO1) have been identified from carnation (Park
et al., 1992; Henskens et al., 1994; Jones and Woodson,
1999; Wang and Woodson, 1991). These genes are
regulated in a tissue-specic manner during flower
senescence; DCACO1 is expressed in both the
gynoecium and petals of carnation flowers that are
undergoing senescence, and DCACS1 is also
expressed in both the gynoecium and petals, but
mainly in the latter, whereas DC-ACS2 and DC-ACS3
occur in the gynoecium (Henskens et al., 1994; ten
Have and Woltering, 1997; Jones and Woodson, 1999).
In carnation flowers, it has been revealed that ethylene
is first produced from the pistil and the evolved
ethylene induces autocatalytic ethylene production
in petals, resulting in wilting of the petals, during the
natural senescence of carnation flowers (Ten Have and
Woltering, 1997; Shibuya et al., 2000). This observation
suggests the role of the gynoecium in controlling the
senescence of petals in the flowers. In the carnation
flowers, if the gynoecium could not produce a
sufficient amount of ethylene to induce ethylene
production in petals, the whole flower would not
suffer from ethylene-dependent wilting in their petals
and have a prolonged vase-life.

Carnation plants with such characteristics may be
present among cultivars or variants that have been
shown to have flowers with a prolonged vase-life. The
characterization of ethylene production in those
flowers should help to determine the role of the
gynoecium in the senescence of carnation flowers, and
to elucidate the regulation of genes for ethylene
biosynthesis in the gynoecium and petals during
senescence of the flower. In the early 1990s, carnation
cultivars and strains with unusual ethylene-related
behaviour were reported: cvs Killer (Serrano et al.,
1991), Sandra (Wu et al., 1991), Chinera (Reid and Wu,
1992), and Sandorosa (Mayak and Tirosoh, 1993), and
strains 87-37G-2, 81-2, and 799 (Brandt and Woodson,
1992).

Role of ABA in plant senescence: The plant
hormone abscisic acid (ABA) influences numerous
aspects of plant growth and development including
embryo maturation, seed dormancy, fruit ripening,
and water balance in response to environmental
stresses (Pandey et al. 2003/4, Purty et al. 2005).
Exogenous applications of ABA accelerate the
symptoms of flower senescence in carnation, rose and

daylily flowers (Mayak and Halevy 1972, Mayak and
Dilley 1976, Panavas et al. 1998). Endogenous content
of ABA increased during senescence in several flowers
(Panavas et al. 1998, Hunter et al. 2004) and this may
be due to water soaking or conversion of carotenoids
to ABA (Eze et al. 1986, Milborrow 2001). In some
flowers, ABA causes senescence through ethylene as
inhibitors of ethylene production or action,
preventing the response (Mayak and Dilley 1976,
Nowak and Veen 1982). In other flowers, e.g., daylilies,
ABA presumably induces senescence independently
of ethylene action, as the senescence of the flower is
known to be ethylene independent (Panavas et al.
1998). The interrelationship between ABA and other
flower components such as carotenoids and pigments
has been recently studied. In many organs, the
interaction between ABA and anthocyanins has been
clearly demonstrated. Exogenous applications of ABA
affect pigments biosynthesis in many plants, inducing
anthocyanins accumulation in strawberry fruits (Jiang
and Joyce 2003), in cut snapdragon flowers and grapes
(Sang et al. 1992, Jeong et al. 2004). The ABA content
during flower development has a well defined trend
that is common in many plant species such as squash
flowers, four o’clock flowers, daylily and daffodil
(Panavas et al. 1998, Hunter et al. 2004). The
applications of ABA increased anthocyanins
accumulation in flowers, fruits and seeds (Sang et al.
1992, Jiang and Joyce 2003, Jeong et al. 2004).

ABA may play an important role in the regulation
of flower senescence. In ethylene-dependant flowers
like carnation, exogenous ABA triggered endogenous
ABA production and flower senescence; however, the
effects of ABA might be mediated through an increase
in ethylene production resulted from ABA application
or through an activation of ethylene action (Onoue et
al., 2000). Thidiazuron treatment doubled the ABA
content but did not affect flower life, confirming the
secondary role of ABA during flower senescence of
petunia, another ethylene-dependant flower
(Ferrante, 2006). In contrast to its suspected secondary
role in ethylene-dependant flower senescence, ABA
might have a direct effect on the senescence of
ethylene-independent flowers. In cocoa (Aneja, 1999)
and daylily (Panavas, 1998), exogenous ABA, not
ethylene, accelerated flower senescence. Endogenous
ABA increased dramatically before any visible signs
of senescence, and continued to increase during petal
senescence in both these taxa. Treatment of fluridone,
an inhibitor of ABA biosynthesis, decreased ABA
levels and extended the longevity of cocoa flowers.
However, in daffodil, a flower that could respond to
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exogenous ethylene but whose natural senescence is
ethylene independent, exogenous ABA accelerated
flower senescence but such an effect is considered to
be mediated through stimulated ethylene production
as in ethylene-dependant flowers; ABA was not the
primary regulator of daffodil flower senescence since
the increase in senescence-associated genes
commenced before the rise in ABA content (Hunter,
2004).
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