

Response of photosynthetic pigments and stomatal parameters of Bamboo seedlings to elevated carbon dioxide concentration

H. Choudhury, P. Kaliła^{*}, Ranjan Das^{*}, R. K. Goswami, M. K. Sarma, S. Das^{**} and Tulika Medhi^{***}

ABSTRACT: The photosynthetic pigments and stomatal parameters of bamboo seedlings viz. Bambusa tulda, B. nutans, B. balcooa and Dendrocalamus hamiltonii were evaluated under elevated carbon dioxide concentration inside OTC during 2012-13. The results revealed that the chlorophyll-a content, chlorophyll-b content, total chlorophyll content, chlorophyll a:b ratio, chlorophyll stability index, carotenoid content, photosynthetic rate and total dry weight of bamboo seedlings were significantly increased but stomatal frequency, stomatal index and stomatal pore area were significantly decreased with the increase in atmospheric CO₂ concentration from 380 ppm to 750 ppm in all four bamboo species tested. During the study the D. hamiltonii was found to be the best performer while B. tulda produced the poorest performance. The interaction effect of CO₂ concentration and bamboo species were also found significant during the study.

Key words: Chlorophyll content, Dendrocalamus hamiltonii, photosynthetic rate and stomatal frequency

Carbon dioxide in the atmosphere has been increasing steadily since pre-industrial times from 280 ppm to 395 ppm in 2013 (Annonymous, 3013) and according to IPCC it may reach 550-750 ppm in 2050 (Anonymous, 2007). The recent trend of climate change is considered to be primarily because of increasing atmospheric CO₂ concentration. Therefore, screening out of a crop plant that performs better in such CO₂ enrichment and thus can trap more CO₂ from the atmosphere may provide useful information for an effective climate mitigation strategy. Efforts to thoroughly study the role of plants in climate change mitigation are increasing and it is obvious that bigger the plant, the more CO₂ it absorbs. Bamboo is known for its high ability to capture and sequester atmospheric carbon in a similar way that trees do (Lou et al., 2010). Bamboos as C₃ plants have the potentiality to increase net primary productivity at CO₂ enriched atmosphere (Korner et al., 2007). The bamboo (Fargesia *rufa* Yi) significantly increases the net photosynthetic rate, carbohydrates content like sucrose, sugar, starch and non-structural carbohydrates and decreases stomatal conductance at CO, environment (Li et al., 2013). Therefore, the present study was carried out to evaluate the variation in photosynthetic pigments and stomatal parameters in seedlings of four most important bamboo species at elevated level of carbon dioxide concentration.

MATERIALS AND METHODS

The study was conducted during 2012-13 in Open Top Chamber (OTC) of Assam Agricultural University, Jorhat, Assam. The experimental design was FCRD with three replications. Four concentrations of CO₂ were selected viz. C_1 : Ambient, C_2 : 380 ppm, C_3 : 550 ppm and C_4 : 750 ppm. The average atmospheric CO₂ concentration at the experimental site was 380 ppm and based on IPCC prediction the CO₂ concentrations were maintained at 380, 550 and 750 ppm inside the OTC. One year old uniform sized bamboo seedlings of Bambusa tulda (S_1) , B. nutans (S_2) , B. balcooa (S_3) and Dendrocalamus hamiltonii (S_{A}) were collected from the Rain Forest Research Institute, Jorhat and planted in earthen pots (Choudhury et al., 2015). On 1st August, 2012 seedlings were grouped into four sets containing three randomly selected seedlings of each species to get twelve seedlings per set. One set of seedlings was kept in an open place and considered as C_1 (ambient)

* Department of Crop Physiology, AAU, Jorahat-785013, Assam, E-mail: hemenchou67@gmail.com ** SCSCA, Dhubri

^{***} National Seed Project, AAU, Jorahat-785013, Assam

seedlings. Likewise other three sets were kept inside three different OTCs and were considered as C_{γ} , C_{γ} and C₄ seedlings. The concentrations of CO₂ in OTCs were maintained accordingly through out the period of study (six months) with computerized control unit of OTC. The evaluations were made after six month of treatment exposure in second week of January, 2013. Observation were taken at ten representative third leaves from the tip of main stem or branches of each bamboo seedling and the average values were recorded. Parameters were evaluated following standard methods viz. Chlorophyll content (Hiscox and Israelstam, 1979), CSI (Chetty et al., 2002) carotenoid content (Hartmut and Claus, 2001), stomatal frequency & stomatal index (Royer, 2001) and stomatal pore area (Pompelli et al., 2010). The photosynthetic rates of bamboo leaf were measured with the help of Portable Photosynthetic System, Model PP System 2, USA. The seedlings were carefully uprooted on 19th January, 2013 washed repeatedly to remove all debris and were then oven dried at 70°C till the constant weight and then their weights were measured with electronic balance and the average value was considered as the dry weight of a seedling.

RESULTS AND DISCUSSION

The result revealed that at the onset of expiriment CO₂ concentration produced no significant effect on seedling height and seedling girth of bamboo species however, they varied significantly in different species (Table 1). The S₁ (Bambusa tulda) maintained the tallest seedling followed by S₄ (Dendrocalamus hamiltonii) and S₂ (Bambusa nutans) and the shortest seedlings were found in S₂ (*Bambusa balcooa*). The seedling girth was highest in S₄ followed by S₃ and S₂ and it was lowest in S_1 . Likewise, there was a gradual but significant increment in chlorophyll-a, chlorophyll-b, total chlorophyll and carotenoid content while reduction in chlorophyll a:b ratio in leaf of bamboo seedlings with the increase in CO₂ concentration from 380 ppm to 750 ppm in all four bamboo species tested. The highest chlorophyll-a (2.12 mgg⁻¹ fw), chlorophyll-b (1.13 mgg⁻¹ fw), total chlorophyll content (3.25 mgg⁻¹ fw) and carotenoid content (0.5506 mgg⁻¹ fw) of bamboo leaf were found at 750 ppm CO, concentration followed 550 bv ppm. On the other hand the lowest chlorophyll-a (1.77 mgg⁻¹ fw), chlorophyll-b (0.82 mgg⁻¹ fw), total chlorophyll content (2.59 mgg⁻¹ fw) and carotenoid content (0.5081mgg⁻¹ fw) were recorded at 380 ppm CO₂ concentration followed by control. Among the

species, S₄ maintained significant superiority in terms of chlorophyll-a, chlorophyll-b, total chlorophyll and carotenoid content of leaf over other three species at all the concentration of CO₂. At 750 ppm CO₂ concentration S₄ maintained the highest chlorophylla (2.34 mgg⁻¹ fw), chlorophyll-b (1.20 mgg⁻¹ fw), total chlorophyll (3.54 mgg⁻¹ fw) and carotenoid (0.5706 mgg⁻¹ fw) content followed by S_3 , S_2 while S_1 maintained the lowest chlorophyll-a (1.93 mgg⁻¹ fw), chlorophyll-b (1.08 mgg-1 fw), total chlorophyll content (3.01 mgg⁻¹ fw) and carotenoid (0.5349 mgg⁻¹ fw) content at the same CO₂ concentration. The highest chlorophyll a:b ratio of bamboo leaf (2.41) was found in control seedling followed by 380 ppm (2.15), 750 ppm (1.88) and the lowest chlorophyll a:b ratio (1.86) was found at 550 ppm CO₂ concentration. Among the species S₄ maintained the significant superiority over other bamboo species with highest chlorophyll a:b ratio (2.53) in leaf at control.

Similarly, the higher photosynthetic rates were recorded in bamboo seedlings exposed to CO, enrichment (Table 2). The observed higher photosynthetic pigments content in bamboo exposed to CO₂ enrichment could be due to internal adjustment of the photosynthetic tissues to trap more CO, from the external environment to keep the photosynthetic rate higher at such modified environment. Again, higher chlorophyll a:b ratio might help the S₄ species to maintain superiority over other species by carrying out photosynthesis and dry matter accumulation more efficiently, as the higher ratio indicates relatively more primary photosynthetic pigment (chlorophyll-a) than secondary pigments (chlorophyll-b and others). Again, the chlorophyll synthesising genes might be activated by CO₂ enrichment to keep pace with the increased level of photosynthetic rate. Being a C_3 plant, the rate of photosynthesis in bamboo increases with the increase in CO₂ concentration and to support this higher rate the synthesis of photosynthetic pigments might also increase. Carotenoid might support to harness maximum light energy to convert more amount of CO_2 in to sugar in CO_2 rich environment. The higher carotenoid content might also help to protect the photosynthetic apparatus from photo-oxidation and thereby increased the observed rate of photosynthesis. Li et al. (2013) also registered higher chlorophyll content in dwarf bamboo (Fargesia rufa Yi) exposed to elevated CO₂ concentration. Many earlier workers reported that because of the physiological adustment like higher photosynthetic rates, carbon gain and water relations specially in CO₂ enriched environment bamboo could perform dominant role in global climate change mitigation strategies (Davina *et al.*, 2013 and Grombone-Guaratini *et al.*, 2013).

The highest 41.01% chlorophyll stability index (CSI) was found in bamboo seedling grown in open condition (control). Although, inside the OTC, the CSI significantly increased with the increase in CO₂ concentration from 380 ppm to 750 ppm in all four bamboo species (Table 1). So, the highest 40.77% CSI was recorded with 750 ppm followed by 550 ppm (40.18%) and the lowest CSI (39.33%) was recorded at 380 ppm. A significant interaction effect of CO₂ concentration and species was also recorded. During the investigation 10-15% less light intensity was observed inside the OTC than outside open areas. Therefore, seedlings grown in OTC received less light intensities compared to seedlings grown in open field (control). Probably for this reason, seedlings inside OTC were relatively tender, susceptible to heat hence the CSI of such seedlings were found to be lower than seedlings grown under full sunlight (control).

The study also revealed that with the increase in CO₂ concentration there was significant reduction in stomatal parameters *viz*. stomatal frequency, stomatal

index, pore area of single stomata and per cent pore area of bamboo leaf (Table 2). The higher number of stomata (263.15 mm⁻²), stomatal index (17.77%), pore area of single stomata (680.81 µm²) and per cent pore area of bamboo leaf (18.10%) were recorded at 380 ppm CO₂ and the values of these traits were lowest (203.01 mm⁻², 14.01%, 512.80 μm² and 10.54% respectively) at 750 ppm followed by 550 ppm CO₂ concentration with the average values of stomatal frequency (210.73 mm⁻²), stomatal index (14.98%), pore area of single stomata (520.72 µm²) and per cent pore area of bamboo leaf (11.10%). Among the species S₄ produced the highest number of stomata (301.27 mm⁻²), stomatal index (21.97%), pore area of single stomata (806.85 μ m²) and stomatal pore area (24.31%) in bamboo leaf at 380 ppm CO₂. In contrast S₁ maintained the lowest number of stomata (181.19 mm ²), stomatal index (11.65%), pore area of single stomata $(417.14 \ \mu m^2)$ and stomatal pore area (7.56%) of bamboo leaf at 750 ppm CO₂. A significant interaction effect was also noticed in these aspects. This decrease in stomatal parameters of bamboo leaf at higher CO₂ concentration may help the plant to retain more water in leaf without hampering the gaseous exchange and

CO ₂ Concentration	Bamboo species		ght and girth of treatments girth (cm)	Chl-a (mgg ⁻¹ fw)	Chl-b (mgg ⁻¹ fw)	Total Chl (mgg ⁻¹ fw)	Chl-a:Chl-b ratio	CSI (%)	Carotenoid (mgg ⁻¹ fw)
Control	S,	130.67	3.02	1.77	0.75	2.52	2.36	41.65	0.5034
	S_1 S_2 S_3 S_4	95.37	3.22	1.83	0.77	2.60	2.38	43.19	0.5117
	S_{3}^{2}	56.42	4.51	1.85	0.78	2.63	2.37	41.57	0.5128
	S	126.87	5.27	2.05	0.81	2.86	2.53	37.62	0.5237
	Mean	102.33	4.01	1.88	0.78	2.65	2.41	41.01	0.5129
380 ppm		131.24	3.01	1.65	0.80	2.45	2.06	40.87	0.4995
	S_2^{1}	94.73	3.20	1.69	0.81	2.50	2.09	40.93	0.5016
	S_1 S_2 S_3 S_4	56.32	4.50	1.77	0.82	2.59	2.16	40.15	0.5119
	S,	127.87	5.25	1.95	0.86	2.81	2.27	35.36	0.5193
	Mean	102.54	3.99	1.77	0.82	2.59	2.15	39.33	0.5081
550 ppm	S_1	129.73	3.04	1.88	1.06	2.94	1.77	41.05	0.5231
	S_1 S_2 S_3 S_4	96.86	3.29	1.95	1.08	3.03	1.81	42.33	0.5337
	S ₃	54.73	4.60	2.11	1.10	3.21	1.92	40.87	0.5461
	S_{4}^{3}	126.96	5.14	2.27	1.18	3.45	1.92	36.45	0.5517
	Mean	102.07	4.02	2.05	1.11	3.16	1.86	40.18	0.5387
750 ppm	S_1	130.52	3.05	1.93	1.08	3.01	1.79	41.48	0.5349
	S_1 S_2 S_3 S_4	95.89	3.32	2.00	1.09	3.09	1.83	42.97	0.5382
	S ₃	57.35	4.54	2.20	1.14	3.34	1.93	41.35	0.5588
	S_4	127.89	5.26	2.34	1.20	3.54	1.95	37.28	0.5706
	Mean	102.91	4.04	2.12	1.13	3.25	1.88	40.77	0.5506
CD 0.05	Conc.	NS	NS	0.03	0.01	0.04	0.03	0.24	0.0040
	Species	0.88	0.19	0.03	0.01	0.04	0.03	0.24	0.0040
	Interaction	NS	NS	0.07	0.02	0.08	0.05	0.49	0.0081
CD 0.01	Conc.	NS	NS	0.04	0.02	0.05	0.03	0.32	0.0053
	Species	1.16	0.25	0.04	0.02	0.05	0.03	0.32	0.0053
	Interaction	NS	NS	0.09	0.03	0.11	0.07	0.64	0.0106

 Table 1

 Seedling height, girth, chlorophyll-a, chlorophyll-b, total chlorophyll content, Chl-a:Chl-b ratio, chlorophyll stability index (CSI) and carotenoid content in leaves of different bamboo seedlings at various CO, concentration levels

seedlings at various CO ₂ concentration levels							D 11.
CO ₂ Concentration	Bamboo species	Stomatal frequency	Stomatal index (%)	Stomatal pore area		Photosynthetic rate $(\mu mole CO_2 m^{-2}S^{-1})$	Dry weight of seedling (kg)
		(No mm ⁻²)		Single stomata	Per cent pore	-	
				(μm^2)	area		
Control	S,	229.33	14.74	597.28	13.70	12.85	0.2526
	$egin{array}{c} S_1 \ S_2 \ S_3 \ S_4 \end{array}$	243.67	15.36	643.52	15.68	13.06	0.2451
	S ₃	261.53	17.29	650.27	17.01	15.35	0.4428
	S_4	296.48	21.21	796.31	23.61	17.21	0.4622
	Mean	257.75	17.15	671.85	17.50	14.62	0.3507
380 ppm	S_1	235.16	15.06	610.26	14.35	12.61	0.2254
	$egin{array}{c} \mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_4 \end{array}$	246.55	15.89	648.64	15.99	12.75	0.2084
	5 <u>3</u>	269.61	18.14	657.48	17.73	15.02	0.3752
	S_{4}	301.27	21.97	806.85	24.31	16.56	0.4059
	Mean	263.15	17.77	680.81	18.10	14.24	0.3038
550 ppm	S ₁	187.42	12.28	434.15	8.14	13.21	0.4497
	$egin{array}{c} S_1 \ S_2 \ S_3 \ S_4 \end{array}$	198.29	13.14	501.23	9.94	14.33	0.4355
	5 <u>3</u>	211.37	15.21	549.16	11.61	16.05	0.7374
	S_4	245.83	19.29	598.35	14.71	18.39	0.7558
	Mean	210.73	14.98	520.72	11.10	15.50	0.5946
750 ppm	S_1	181.19	11.65	417.14	7.56	13.17	0.4800
	S,	186.23	12.18	498.27	9.28	14.29	0.4696
	5 <u>3</u>	208.28	14.36	543.67	11.32	15.98	0.7527
	$egin{array}{c} \mathbf{S}_1 \ \mathbf{S}_2 \ \mathbf{S}_3 \ \mathbf{S}_4 \end{array}$	236.32	17.85	592.12	13.99	18.35	0.7716
	Mean	203.01	14.01	512.80	10.54	15.45	0.6185
CD 0.05	Conc.	2.33	0.13	18.19	0.85	0.22	0.0274
	Species	2.33	0.13	18.19	0.85	0.22	0.0274
	Interaction	4.67	0.25	36.37	1.70	0.44	0.0547
CD 0.01	Conc.	3.07	0.16	23.90	1.12	0.29	0.0360
	Species	3.07	0.16	23.90	1.12	0.29	0.0360
	Interaction	6.13	0.33	47.80	2.24	0.57	0.0719

Table 2
Stomatal frequency, stomatal index, stomatal pore area, photosynthetic rate and dry weight of bamboo
seedlings at various CO concentration levels

photosynthetic rate. This suggests that whatever amount of CO_2 entered the leaf with partially open stomata at such elevated CO_2 concentrations was sufficient to keep the photosynthetic rate high. Therefore, the bamboo seedlings may opt to reduce water loss by partially closing the stomata because at that situation water may be the liming factor rather than CO_2 . Grombone-Guaratini *et al.* (2013) ; Li *et al.* (2013) and Thokchom & Yadava (2015) also reported that high CO_2 concentration lowered stomatal conductance and increased water use efficiency of bamboo.

The photosynthetic rate of bamboo seedlings significantly increased when CO_2 concentration increased from 380 ppm to 550 ppm but beyond that (750 ppm) the photosynthetic rate reduced however, it was non-significant. The highest photosynthetic rate (15.50 µmole CO_2 m⁻² S⁻¹) was noticed at 550 ppm CO_2 followed by 750 ppm (15.45µmole CO_2 m⁻² S⁻¹) while the same was lowest (14.24 µmole CO_2 m⁻² S⁻¹) at 380 ppm. Again S₄ maintained the highest photosynthetic rate (18.39 µmole CO_2 m⁻² S⁻¹) at 550 ppm CO_2 concentration while the same was lowest in S₁ (13.21)

 μ mole CO₂ m⁻² S⁻¹). A significant interaction effect of CO₂ concentration and bamboo species was also noticed. The higher photosynthetic rate with CO₂ enrichment might be due to internal adjustment mechanism of photosynthesising tissues of bamboo leaf to trap more CO₂ from the modified external environment and to fix them photosynthetically at a faster rate. It is expected that being C₃ plants, the bamboo seedlings increased the rate of photosynthesis at elevated CO₂ concentration. Similarly, De Souza et al. (2008) found that sugarcane grown in OTC with 720 ppm CO₂ had 30% more photosynthesis, 17% more plant height, 40% more biomass accumulation and 29% more sucrose content compared to sugarcane grown with 370 ppm CO₂. Sugarcane grown at 720 ppm CO₂ showed up regulation of 22 genes. These genes were mainly related to photosynthesis and development of the plant like genes for PSI reaction centre subunit N, PSII protein K, G-6-P dehydrogenase, glutamate tRNA ligase, auxin independent growth promoter, sugar transporter (De Souza et al., 2008).

The slight reduction in photosynthetic rate of bamboo leaf at 750 ppm CO_2 might be because of

down regulation of photosynthetic genes due to feedback inhibition mechanism at such a higher CO concentration which might not have achieved at 550 ppm CO₂ concentration. Pandurangam et al. (2006) also found that the content of main photosynthetic enzyme Rubisco was reduced in wheat leaf exposed to CO_2 enrichment (650 ± 50 ppm). Grombone-Guaratini et al. (2013), Korner et al. (2007), Li et al. (2013) and Zhihong et al. (2011) also observed that the net photosynthetic rate in bamboo increased with increased CO₂ concentrations. In our study the highest dry weight of bamboo seedling (0.6185 kg) was found at 750 ppm CO₂ concentration followed by 550 ppm (0.5946 kg) while the same was lowest (0.3038 kg) at 380 ppm CO_2 . Again S₄ produced the heaviest bamboo seedlings (0.7716 kg) and S₂ produced the lightest seedlings (0.4696 kg) at 750 ppm. In earlier communication we reported that CO₂ enrichment increased the leaf weight, branch weight, main stem weight, rhizome weight and total above ground biomass of bamboo seedlings (Choudhury et al., 2015). Therefore, with higher photosynthetic rate, efficient partitioning and accumulation of dry matter in the different parts of bamboo seedling finally led to the observed heavier seedlings with CO₂ enrichment. The Dendrocalamus hamiltonii is found to be the most prominent one among the species studied. The study finally, reveals a positive influence of CO, enrichment on photosynthetic pigments and stomatal parameters of bamboo seedlings. This positive respond of all four bamboo species to CO₂ enrichment certifies bamboo as an efficient crop plant that could be recommended for an effective climate mitigation strategy.

REFERENCES

- Anonymous (2007), Fourth Climate Action Report to the UN Framework Convention on Climate Change: Projected Greenhouse Gas Emissions. U.S. Department of State, Washington, DC, USA. http://www.state.gov/oes/ris/car4/ 90324. html.
- Anonymous (2013), Annual Mean Carbon Dioxide Data. Earth System Research Laboratory (ESRL), National Oceanic & Atmospheric Administration (NOAA), US Department of Commerce. Retrieved on 10th May, 2014.
- Chetty, M. B., Kalpana, M. and Hiremath, S. M. (2002), Pineapple of drought resistance. *In* : Physiological approaches for enhancing productivity potential under drought condition. Edited by Chetty, M.B.; Hiremath, S.M. and Kalpana, M. M/S Saraswati Printers, Dharwad : 55-66.
- Choudhury, H., Kalita, P., Das, R., Goswami, R.K., Saikia, L., Sarma, M.K. and Medhi, T. (2015), Response of

Bamboo seedlings to the elevated carbon dioxide concentration. *Int. J. Trop. Agri.* 33(3): 2245-2250.

- Davina, V.G.; Smedt, S.D.; Valcke, G.P. and Samson, R. (2013), Seasonal, Diurnal and Vertical Variation of Chlorophyll Fluorescence on *Phyllostachys humilis* in Ireland. www.plosone.org/.../info%3Adoi%2F10.1371% 2Fjournal.pone.0072145 Retrieved on August 15, 2013.
- De Souza, A.P.; Gaspar, M.; Silva, E.A.D.; Ulian, E.C.; Waclawovsky, A.J.; Nishiyama, M.Y.J.R.; Santos, R.V.D.; Teixeira, M.M.; Soza, G.M. and Buckeridge, M.S. (2008), Elevated CO₂ increases photosynthesis, biomass and productivity and modifies gene expression in sugarcane. *Pl. Cell Environ.* 31: 1116-1127.
- Grombone-Guaratini, M.T.; Gaspar, M.; Oliveira, V.F.; Torres, M.A.M.G.; Nascimento, A. and Aidar, M.P.M. (2013), Atmospheric CO₂ enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian Atlantic Forest. *Newzealand J. Bot.* 51(4): 275-285.
- Hartmut, K. L. and Claus, B. (2001), Chlorophylls and Carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry. F4.31-F4.3.8.
- Hiscox, J.D. and Israelstam, G.F. (1979), A method for extraction of chlorophyll from leaf tissue without maceration. *Canadian J. Bot.* 57: 1332-1334.
- Korner, C.; Morgan, J. and Norby, R.J. (2007), CO₂ Fertilization: When, where, how much? Terrestrial ecosystems in a chnaging world. Canadell, J.G.; Pataki, D.E. and Pitelka, L.F. (eds.) Springer, Berlin : 9-21.
- Li, Y.; Zhang, Y.; Zhang, X.; Korpelainen, H.; Berninger, F. and Li, C. (2013), Effects of elevated CO₂ and temperature on photosynthesis and leaf traits of an understory dwarf bamboo in subalpine forest zone, China. *Physiol. Plant.* 148(2): 261-272.
- Lou,Y.; Li,Y.; Kathler, B.; Giles, H. and Zhou, G. (2010), Bamboo and climate change mitigation : a comperative analysis of carbon sequestration. International Network for Bamboo and Rattan, Technical Report No. 27 : 20-27.
- Pandurangam, V.; Sharma, P.N.; Sreekanth, B. and Ghildiyal, M.C. (2006), Photosynthetic acclimatation to elevated CO_2 in relation to Rubisco gene expression in three C_3 species. *Indian J. Expt. Biol.* 44: 408-415.
- Pompelli, M.F.; Martins, S.C.V.; Celin, E.F.; Ventrella, M.C. and DaMatta, F.M. (2010), What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? Braz. J. Biol. 70(4): 237-240.
- Royer, D.L. (2001), Stomatal density and Stomatal Index as indicators of Paleoatmospheric CO₂ concentration. *Rev. Palaeobotany Palynol.* 114: 1-28.

- Thokchom, A. and Yadava, P. S. (2015), Bamboo and its role in climate change. Current Science. 108 (5): 762-763.
- Zhihong, C.; Guomo, Z.; Guosheng, W.; Peikun, J.; Shunyao, Z.; Hua, Q. and Minghung, W. (2011), Bamboo in

subtropical China: efficiency of solar conversion into biomass and carbon sequestration. *www.bamboocarboncredits.com.* Retrieved on 10th May, 2013.