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ON THE NONLINEAR MECHANICAL BEHAVIOUR OF
CIRCULAR DIELECTRIC ELASTOMER FILMS
UNDER LARGE DEFORMATION
X. D. Wang1 and J. W. Zu2

ABSTRACT

This paper presents a comprehensive theoretical study of the large deflection of pre-strained circular dielectric
elastomer films with a rigid boundary subjected to electric and mechanical loads. Both material and geometric
nonlinearity of the films are included in the formulation of the problem and a set of nonlinear differential equations
are established. The resulting governing equations are solved numerically using an iteration process to study the
nonlinear response of the films. Special attention is focussed on the instability and the multi-mode behaviour of the
films under different electromechanical loads and pre-strain conditions. The conditions under which the films
become instable is discussed and the multi-modes of the films are presented for typical loading conditions.

1. INTRODUCTION

Dielectric elastomers are capable of generating large deformations by transforming electric energy directly into
mechanical energy. For this superior feature, dielectric elastomers are now being considered for use in the design of
new actuator systems, such as microrobots, micropumps, microvalves and prosthetic devices [Wissler and Mazza,
2005; Zhang et al., 2005; Pelrine et al., 2000a], to name a few. A recent application of dielectric elastomers is for
prosthetic blood pumps [Goulbourne et al., 2005]. Such a device is made from a circular dielectric elastomer
actuator consisting of a compliant capacitor, which is a thin passive elastomer film sandwiched between two compliant
electrodes. When an electric voltage is applied between the electrodes, an electrostatic field is generated and the
electrostatic force mechanically loads the polymer film. As a result, the film contracts in the direction of thickness
and expands in the plane of the film. Due to the complexity of high nonlinearity and electromechanically coupling,
understanding of the electromechanical behaviour of dielectric elastomer elements is limited. To facilitate the
design of dielectric elastomer actuators, it is important to develop suitable modelling techniques to deal with the
complicated properties of the actuators.

The mechanical behaviour of thin films subjecting to transverse loads has been extensively studied [Adkins and
Rivlin, 1952; Szyszkowski and Glockner, 1984; Duan et al., 2004; Komaragiri, 2005]. For dielectric elastomer thin
films, electromechanical coupling must be considered. The electromechanical coupling in a dielectric elastomer
element is mainly caused by the electrostatic Coulomb forces between electrodes [Jackson, 1962]. To focus on the
mechanism of electromechanical coupling due to electrostatic forces, the insignificant electrostrictive [Pelrine et
al., 1998; Wolfson and Pasachoff, 1999] and piezoelectric [Parton and Kudryavtsev, 1988, Wang, 1999; Wang and
Meguid, 2000; Giurgiutiu et al., 2002] effects should be ignored. Goulbourne et al. (2005) studied the large
deformation of circular dielectric elastomer films and presented the variation of deformation of the films with
applied electric and mechanical loads. Their work was focused on the stable deformation of the films and they
demonstrated that dielectric elastomer films can be effectively used as active elements. However, as mentioned by
Adkins and Rivlin (1952), a thin film subjected to an applied external pressure may experience a pressure drop with
increasing deformation, indicating the existence of instability.



Since dielectric elastomer actuators usually work under very large strain, the property of elastomer films is
governed by both material and geometric nonlinearities. Two important issues arise from such nonlinear problems.
First, since the elastomer films are almost incompressible [Wissler and Mazza, 2005], significant reduction of the
thickness will occur under large inplane deformation. This thickness reduction may result in a significant increase
in the Cauchy stresses along the films, which in turn will increase the deformation of films. For certain material
properties and loading conditions, a stable deformation may be established and for other cases this process may
continue until instability occurs. Since actuators of this type are working mostly under large deformation, the
condition under which instability occurs should be carefully investigated. Second, because of the material and
geometric nonlinearity, elastomer films subjected to a specific electromechanical load may reach equilibrium at
different final geometries and result in multiple deformation modes. This is another important issue for the evaluation
of the electromechanical behaviour of elastomer films under large deformation. Unfortunately, understanding of
the unstable behaviour of dielectric elastomer films under electromechanical loads is very limited at present.

To fully understand the nonlinear behaviour of dielectric elastomer films, this paper presents a comprehensive
study of dielectric elastomer films subjected to applied electric voltage and transverse pressure. Large rotation of
the films is included in the formulation of the problem and a set of differential equations are established. The
solution of these equations is obtained by using an iteration process. The instability and the multi-mode behaviour
are studied for circular dielectric elastomer films under different loading and prestrain conditions. The effects of
geometry, pre-strain and applied loads upon the stable nonlinear behaviour of the films are also studied. The condition
under which the films become unstable is discussed and the multi-modes of the films are presented for typical
loading conditions.

2. STATEMENT AND FORMULATION OF THE PROBLEM

Consider a circular dielectric elastomer film with initial thickness H and radius R0. A cylindrical coordinate system
(r, w) is used to describe the deformed geometry of the axis-symmetric problem, as shown in Figure 1 with r
representing the position of a point in the radial direction in the deformed geometry, and w representing the deflection
of the film at that point. The film is pre-stretched with a stretch ratio �0, and is fixed along a circular rigid boundary,
r = R0 �0. It is assumed that two electrodes are attached to the two surfaces of the film [Pelrine et al., 2000b],
respectively, and an electric voltage is applied across the electrodes. A pressure p is also applied, which is assumed
to be always perpendicular to the film, to simulate fluid pressure in dielectric elastomer pumps.

2.1. Material Property

The dielectric elastomer considered is assumed to be hyperelastic. The time dependance of the material property is
ignored and the material is assumed to be incompressible, isotropic and homogeneous in the undeformed
configuration. Three typical constitutive relations for hyperelastic materials by Mooney-Rivlin [1940], Ogden [1972]

Figure 1: Deformed Geometry of a Dielectric Film



and Yeoh [1993] can be used to describe the mechanical property of hyperelastic material. Theoretical and
experimental studies [Wissler and Mazza, 2005] indicate that for the simple uniaxial tension case all three models
agree very well with the experimental results for stretch ratios at least up to five. For the biaxial loading case Ogden
and Yeoh models also show consistent results for stretch ratios up to five, which are different from that of the
Mooney-Rivlin model. It has been suggested that Ogden model is suitable for dielectric elastomer materials [Wissler
and Mazza, 2005; Goulbourne et al., 2005]. In the current study, the Ogden’s model is used for simulating the
material property of dielectric elastomers.

In Ogden’s model, the strain energy function U is represented in terms of the principal stretch ratios, such that
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incompressible materials, the following relation also exists,
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The principle Cauchy stress t
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with p  being a hydrostatic pressure, which is arbitrary for the constitutive equation (3) and must be determined
from the boundary conditions.

For the currently considered dielectric elastomer film, the applied electric field will generate an electrostatic
pressure p

el
 across the electrodes attached to the two sides of it [Anderson, R. A., 1986; Pelrine et al., 1998],
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which results in a Cauchy stress in the thickness direction. If axial-3 is assumed parallel to the thickness direction,
this stress component can be expressed as
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From (3) and (5), the constitutive equations of the hyperelastic material can be expressed as,
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2.2. Formulation of the Dielectric Films

The dielectric elastomer films considered will usually undergo very large deflection. Under the assumption that the
thicknesses of the films are much smaller than the radii of the curvatures, the films can be simplified as membranes.

The final configuration of the middle surface of the film can be described as

w = w(r) (9)



where w is the deflection and r is the position of the point initially located at R, with

R = R(r) (10)

The stretch ratios of the membrane in the longitudinal, latitudinal and transverse directions are given by [Adkins
and Rivlin, 1952]
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with s being the meridian curve length in the deformed configuration. �1 can also be expressed in terms of w and r as
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The radii of curvatures of the membranes in the principle directions, �1 and �2, can be determined in terms of w
and r as
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The equilibrium equations of the membranes in the deformed geometry can be expressed in terms of the
longitudinal and latitude forces, N1 and N2, as
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where

N1 = h�1 = H�3�1;  N2 = h�2 = H�3�2 (17)

with h being the thickness of the deformed films,
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Substituting the constitutive equations (6) and (7), the geometric conditions (13) and (14) and (17), (18) into
equilibrium equations (15) and (16), the following governing equations can be obtained,
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In addition, the following boundary conditions must be satisfied,
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The nonlinear equations, (19) and (20), are difficult to solve even numerically. To overcome the difficulties, the
step-by-step integration of the equations will be performed and an iteration process will be used to solve the problem.
To complete the integration, the behaviour of the equations when r � 0 needs to be carefully evaluated. Since �2 =

r = R, when r � 0 it can be obtained that �2 � 1/R�(0). Because �1 = 
21 ( / ) /
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dw dr
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r = 0, �1 � 1 / R�(0) when r � 0. Therefore, �1 = �2 at r = 0.
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Based on these relations, the integration can be carried out and the following iteration process is used to get the
numerical solution. First the stretch ratio �1 at r = 0 (equals to �2) is assumed. Equations (19) and (20) can then be
integrated based on the boundary conditions at r = 0 from r = 0 to r = R0 �0 to give the distribution of �1(r), �2(r),
w(r) and R(r). The boundary condition R = R0 will then be checked at r = R0 �0 and a renewed value of the stretch
ratio �1 at r = 0 will be used in the next integration from r = 0 to r = R0 �0. This iteration process will be repeated
until a convergent result is achieved. It should be mentioned that the value of w at r = 0 can be arbitrarily selected
for the iteration since it will not affect the integration process. When the convergent solution is obtained the value
of w at r = R0 �0 is set to be zero and w values at other positions are shifted correspondingly to give the final solution
of the problem.

The solution is used to study the nonlinear behaviour of dielectric elastomer films. Attention will first be
focussed on the instability of the films under inplane electromechanical loading. The instability of the films under
large transverse deformation will then be discussed.

3. INSTABILITY OF THE FILMS UNDER INPLANE ELECTROMECHANICAL LOADS

Consider a dielectric elastomer film subjected to an applied voltage V across the electrodes attached to its two

surfaces. Forces are also applied along 1 and 2 directions, which result in initial stresses 0 0
1 2,� �  in the underformed



configuration. The stresses caused by these forces in the deformed configuration can be determined by using the
incompressible condition of the film as
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For the current incompressible film, with the increase of the stretch ratios �1 and �2 caused by the applied loads,
the thickness and the area of the cross-section will decrease to keep the volume unchanged. This will result in the
increase of the Cauchy stress components, �1, �2 and �3, even if the applied loads are kept to be constants. Obviously,
this will further increase the deformation and result in higher stress. It is, therefore, possible to result in an unstable
process, similar to the tensile instability in the simple tension of metals.

To study the deformation stability of the dielectric elastomer films, rewrite the constitutive relations (6), (7) and
(24) as
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and q being given by equation (4), representing the stress due to the applied electric voltage in the undeformed
geometry.

Case 1 Electric Instability with Constant Forces

When constant forces, which resulting in 0 0
1 2 ,� � � � �  are applied, �1 = �2 and
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Case 2 Tensile Instability with a Constant Voltage

Assuming that the applied forces are given by 0 0
1 2.� � � � �  It follows that �1 = �2, and
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These equations predict that the instability condition of the films under in-plane deformation depends on the material
property and the loading condition.

For case 1, if no force is applied, i.e. � = 0, then equation (29) becomes
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For hyperelastic materials governed by the Ordgen’s model, as described by (6) and (7), F��= (F= �1) approaches
�1 when �1 approaches infinity, assuming that �

j
 < �1 when j > 1. Therefore, the instability condition will be

satisfied if �1 < 4. For case 2, if no electric field is applied, equation (31) becomes
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Figure (2) shows the value of 
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� �  for different �1 based on the Ordgen’s model with only the first term

considered, i.e. mu
k
 = 0 in equations (6) and (7) for k > 1. It can be observed that for �1 values smaller than 4.0, the

instability due to the electric field, determined by (32), can always be achieved. For example, for �1 = 1, 2 and 3,
instability occurs at about �1 = 1:25. The tensile loads will not result in insability unless �1 < 1, which does not
represents reasonable material constants for existing dielectric elastomers.

4. THE PROPERTY OF THE MEMBRANE UNDER ELECTROMECHANICAL LOADS

For dielectric elastomer films subjected to applied external pressure and electric voltage, their nonlinear
response can be determined by solving equations (19) and (20) numerically using an iteration process as discussed
before.

The material used for the current dielectric film is an acrylic polymer, VHB 4910 (3M), which has the following
material constants [Wissler and Mazza, 2004],

�1 = 1:76,  �1 = 0:156Mpa (34)

Large Deformation of the Films

This subsection presents the effect of pertinent parameters upon the large deformation of the film under different
electromechanical loads.

Figure 3 shows the final shape of a dielectric film under different applied pressures with no electric voltage
being applied. The thickness and initial radius of the film are H = 1mm and R0 = 50mm. The film is pre-strained with
a stretch ratio �0 = 2.0. As expected, an increase in the deflection of the film with increasing pressure is observed.
A maximum deflection of 8cm at the centre of the film is achieved at a pressure of 2537pa. This pressure value
happens to be the critical pressure for this film, which will be discussed later. Figure 4 shows the results when an
electric field, resulting in an electric force q = 2000pa, is applied. The results in figure 4 are similar to that given in
figure 3 with p = 2167 being the critical pressure. But a higher deflection is observed for the same applied pressure.
The highest pressure at which the film will stay stable is reduced significantly due to the existence of the electric
field.



The displacement of the film in the radial direction under only the pressure is presented in figure 5. It is
interesting to see that the relation between the initial position of a point R and its final position r is almost linear for
most loading levels, except for the case where the pressure approaches the critical value. Similar property can be
observed when both electric voltage and pressure are applied, as shown in figure 6, with Q = 2000pa.

The distributions of the stretch ratio and the stress in the film are interesting to the understanding of the
deformation of the film. Figure 7 shows the stretch ratios of a film with a thickness of 5mm subjected to a pressure
of 15000pa. The corresponding results of the film subjected to an additional electric voltage with q = 8000pa is
given in figure 8. The initial stretch ratio of the film is assumed to be 1.2 in both cases. Maximum stretch ratios (�1

and �2) occur at r = 0 for all the loading cases. Figures 9 and 10 show the corresponding stresses and forces in the
film, with N1 and N2 representing the forces per unit length in the deformed geometry and H being the initial
thickness of the film. The difference between �1 and N1 = H is caused by the significant change of the thickness of
the film after deformation. This is also true for �2 and N2 = H. Similar to the stretch ratios, the maximum stresses
occur at r = 0, indicating that the centre of the film is the critical point governing the instability.

Electromechanical Instability

To evaluate the instability behaviour of the film under electromechanical loads, the relation between the initial
stretch ratio (�0) and the maximum stretch ratio at the centre of the film (�

m
) is studied for different loading levels.

For an applied pure pressure, this relation is depicted in figure 11 for the case where the thickness of the film is H
= 1mm. The corresponding result for the case where an additional electric load with q = 500pa applied is shown in
figure 12. The figures show that for a specific initial stretch ratio, �0, if the applied pressure is too high then no
corresponding �

m
 can be determined, i.e. no solution can be found. Therefore, for any given initial stretch ratio,

there exists a critical pressure at which the film will become unstable. This critical point can be determined by the
maximum of the �0 – �

m
 curve. The comparison between figures 11 and 12 show that the applied electric field

significantly changes the position of the maximum and, therefore, affects the instability of the film.

The critical pressure for different initial stretch ratios for this film is depicted in figure 13 for different electric
voltages to show the critical loading conditions at which the film will become unstable. It can be observed that the
applied electric field significantly reduces the level of the critical pressure.

Multi-mode Deformation of the Films

Another important and interesting phenomenon in the large deformation of dielectric elastomer films is the existence
of multiple deformation modes.

From figures 11 and 12 it can be seen that for a given initial stretch ratio �0, if the applied pressure is low
enough, it is possible to find two different �

m
, indicating that there exist at least two different deformations for the

applied pressure. In fact, more than two deformation modes can be found under some loading conditions. To clearly
explain this phenomenon, the relation between the initial stretch ratio �0 and the maximum stretch ratio in the film
�

m
 is depicted in figure 14 for �

m
 with values up to 40 for an applied pressure p = 3000pa. If an initial stretch ratio

�0 = 1.2 is applied, at least three different �
m
 values, i.e. three solutions, can be determined. The profiles of the film

under these three deformation modes are depicted in figure 15 with modes 1, 2 and 3 representing the modes from
the low �

m
 value to the high �

m
 value. Figure 16 shows the multiple deformation of the film when an electric voltage

and a pressure are applied with Q = 1000pa and p = 3000pa. The initial stretch is assumed to be 1.4. The second and
third modes are quite similar when both the pressure and the electric voltage are applied.

5. CONCLUSIONS

A theoretical study is provided to evaluate the nonlinear behaviour of a circular dielectric elastomer film subjected
to an applied pressure and an electric voltage across the electrodes attached to its two surfaces and a pressure load.
Nonlinear differential equations are established based on the deformed geometry, which includes the large rotation
of the film. Numerical simulation is conducted by using an iteration process to study the effect of the geometry, the
pre-strain and the applied loads upon the large deformation of the film. The results indicate that the pre-stretch ratio
of the film, the applied electric voltage and the applied pressure all have significant effect on the deformation of the
film. The film will become unstable when a critical condition is reached, which is determined by the pre-strain and



Figure 2: The Characteristic Function for Films Subjected
to a Voltage and Inplane Forces

Figure 3: The Deflection of Films under an Applied
Pressure

Figure 4: The Deflection of Films under Electromechanical
Loads

Figure 5: The Radial Deformation of Films under an
Applied Pressure

Figure 6: The Radial Deformation of Films under
Electromechanical Loads

Figure 7: The Distribution of Stretch Ratios in Films
under an Applied Pressure

Figure 6: The Radial Deformation of Films under
Electromechanical Loads



Figure 13: Critical Conditions for the Instable
Deformation of Films

Figure 8: The Distribution of Stretch Ratios in Films
under Electromechanical Loads

Figure 9: The Distribution of Stresses and Forces in Films
under an Applied Pressure

Figure 10: The Distribution of Stresses and Forces in Films
under Electrome-chanical Loads

Figure 11: The Variation of Initial Stretch Ratio with the
Maximum Stretch Ratio in Films Subjected to an

Applied Pressure

Figure 12: The Variation of Initial Stretch Ratio with the
Maximum Stretch Ratio in Films Subjected to

Electromechanical Loads



the applied voltage and pressure. In some loading cases, more than one solution may occur, resulting in multiple
deformation modes of the film. The existence of the instability of the film and the multiple deformation modes
indicates that in the design of electromechanical systems containing large deformation, detailed theoretical and
experimental studies are necessary to fully understand the nonlinear behaviour of the systems.
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