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ABSTRACT

A security system, named the Detection and Protection System, is employed to detect insider attacks which are
mimicked at SC (System call) level by using mining techniques. Analyzing system calls (SCs) generated by commands
at the system level can identify these commands, with which attacks were detected accurately, and attack patterns
are the features of attack. The IIDPS (Internal Intrusion Detection and Protection System) creates users’ personal
profiles to keep track of users’ usage habits as their forensic features and determines whether a valid login user is
the account holder or not by comparing user’s current computer usage nature with the patterns collected in the
account holder’s personal profile.
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I. INTRODUCTION

Security has been a prime aspect to be taken care of in the computer domain. The most difficult attack to
detect is insider attacks among pharming attack; distributed denial-of-service (DDoS), eavesdropping attack,
and spear-phishing attack [1] because firewalls and intrusion detection systems (IDSs) usually defend
against outside attacks. But the insider attacks is a greater threat where security is concerned [2]. Currently,
most systems check user ID and password as a login pattern. However, attackers may install Trojans to
manipulate victims’ login patterns or issue a large scale of trials with the assistance of a dictionary to
acquire users’ password when successful, they may then login to the system, access users’ private files, or
modify or destroy system settings. Most current host-based security systems and network-based IDSs can
discover a known intrusion in a real-time manner.

Interruption in real time manner can be supervised by [3]. Currently, most host-based security systems
[4] and network-based IDS [5] employ the same. Intrusion detection systems monitor network and system
activities to prevent attacks and malicious activities that can come from within a network. Typically, intrusion
detection system will notify the network administrator when suspicious activity is initiated. In some cases,
the intrusion detection systems can take action when problems are detected such as barring a user or IP
address from accessing the system. Since a large number of OS-level system calls were generated, mining
malevolent behaviors from them and identifying possible intruders remains a major engineering challenge.
Computer forensics science, based on a security event [6], view computer systems as crime scenes, identify,
recover, analyze and present opinions the on respective basis. Attackers spread computer viruses, malicious
codes and also conduct DDoS attacks [7].

Hence, the designed system, the Internal Intrusion Detection and Protection System (IIDPS) detects
probable intruder behaviors launched at the system level. An intrusion detection system (IDS) is a device
or software application that observers network or system activities for malicious activities or policy violations
and produces electronic reports to a management station. The forensic features of the user, defined by the
system call pattern they follow are recorded for references of the identity of the user were determined from
the user’s computing history. After identifying user’s usage habits, the corresponding SCs are analyzed to
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enhance the accuracy of attack detection. The IIDPS guarantees better average detection accuracy. The
following sections describe the system framework and algorithms required for implementation.

II. IIDPS

(A) System Framework

The system structure consists of SC monitor and filter, as a loadable module in a kernel of the system which
collects SCs submitted to the kernel and store them in the format of {u_id, p_id, SC}, where u_id is the user
id, p_id is the process id and SC is the system call generated. Two algorithms are implemented to build a
user habit file and to detect an internal intruder. The mining server analyzes the user log data with data
mining techniques to identify user’s computer usage habits and further recorded in the user’s user profile.
The Detection server compares user patterns with the SC patterns collected in attacker profile, and those in
user profiles respectively detect malicious behaviors and identify the attacker in real time. Also, a local
computational grid is required to store user log files, user profiles, and attacker profiles.

The detection server and the mining server are implemented on the local computational grid to enhance
IIDPS’s detection accuracy and removal capability.

Figure 1: System framework. [15]

(B) SC Monitor and Filter

A System Call is an edge between a user application and services provided by the kernel. A lot of SCs was
generated during the execution of a task. It is hard for a system to monitor all SCs at the same time,
particularly when many users are running their programs. Therefore, we should filter out some commonly
used safe SCs that do not affect the profiles to handle this problem, the statistical model of term frequency-
inverse document frequency (TF-IDF) is used to sort the required SCs collected in the user log file.

Term Frequency is represented by,

( , ), ( , )1
n i jTFi j n k jk� � (1)

Where n(i,j) is the number of times that ti was issued during the execution of j, h is the number of
different SCs generated when j is executed, and the denominator k=h n(k,j) sums up the numbers of times
that all these SCs were launched. The inverse document frequency (IDF), the measure of the importance of
ti among all concerned shell commands, is defined as,
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Here |D|, the cardinality of D, is the number of shell commands in the dedicated corpus and {j: ti “ dj}
is the set of shell commands dj. In which each member employs ‘ti’ during its execution. The TF-IDF
weight of ti generated by j is defined as

(TF – IDF)i, j = TFi, j × IDFi (3)

Below are examples of commands and the number of system calls generated respectively.

The TF weight of close () in the command chmod from (1) is 0.2021(=19/94) where 94 is the total
number of times that SCs were generated from ‘chmod’ command. A data mining tool named, iDataAnalyzer
[8], is used to calculate class predictability and class predictiveness. These parameters are used to evaluate
intraclass and interclass weights.

Class predictability: Given a class C and a categorical attribute A with v
1
, v

2
, v

3 
, . . . , and v

n
 as its

candidate values, class C’s predictability score on A=vi is defined as the percentage with which A’s value in
C is vi.

Class predictiveness: Given a class C and its categorical attribute with v1, v2, v3,…and vn as candidate
values, the attribute value vi’s predictiveness score P (A=vi) is the probability of which T with A=vi resides
in C.

Figure 2: Generation of the user profile [15]

(C) Mining Server

The mining server extracts SC-sequence generated by the user’s log file. The resultant SC pattern appears
in the file, and the results were stored in the pattern of {SC pattern, appearance counts} in user’s habit file.
The similarity weights of SC patterns are matched to remove commonly used SC patterns. Further, the
result is matched with other users’ habit wallet to identify user’s exact behavior in the SC-patterns.
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1. Mining User and Attacker Habits

The SCs which were collected in user’s log file were processed by the IIDPS with a sliding window, named
as log –sliding window (L-window). The SCs were partitioned in the window of l-grams where l is the
number of consecutive SCs. Along with it, another window of the same size is determined called compared-
sliding window (C-window) is used to identify other patterns in the user’s log file. This time, l’ consecutive
SCs are extracted from the C-window to generate the total of l’=2, 3, 4…|sliding window|.

The mining server compares l-grams and l’-grams. All the l grams from the L-window and all the l’
grams from C-window were compared. The longest common subsequence algorithm was used for the
comparing of above. The algorithm for generating user’s habit file is as follows.

Input: u’s log file where u is a user of the underlying system

Output: u’s habit file.

1. G = |log file| - |sliding window|

/*|sliding windows|=|L-window|=|C-window|/*

2. for(i = 0; i <= G-1; i ++){

3. for(j=i+1; j <= G; j++){

4. for (each of � 
k=2

|sliding window|(|sliding window| - k+1) k-grams in current L-window){

5. for (each of “
k’=2

|sliding window|(|sliding window| - k’+1) k’-grams in C-window){

6. Compare the k-grams and k’-grams with the longest Common Subsequence algorithm.

7. if (the identified SC-pattern already exists in the habit file)

8. Increase the count of the SC-pattern by one;

9. else

10. Insert the SC-pattern into habit file with count = 1;}}}}

Figure 3: Algorithm to generate user’s habit file [15]

2. Creating User Profiles and Attacker Profiles- As seen in Figure 2, a user’s user profile is a habit file
with an SC-appearance count. It was substituted by its corresponding similarity weight.

Those SC patterns with fewer similarity weights were removed since they are not useful to differentiate
between the other users.

Similarly, an attack pattern which may be specific to attackers is identified in the same way. Also, an
attack pattern that has been submitted by the attacker but never submitted by others will obtain a high
similarity weight.

A commonly used equation (4), is used to assign weight to a term in information retrieval domain [], is
used to give each SC pattern a similarity weight.

log 0.5

0.5 1.5 log( 1)
Mjfij N

Wij
fij nsj N

�
�

� � � � � (4)

i = 1, 2, 3… k and J= 1, 2, 3… N

In which fij is the appearance count of CSi in UHj , nsj is the total number of SC-patterns collected in
UHj, nsavg is the average number of SC-patterns that an element of D has, and log ((N + 0.5)/Mi)/ log (N
+ 1) is the inverse characteristic profile frequency (ICPF) [9].
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(D) Detection Server

The Detection Server captures the sent SCs by the user to the kernel, when users are executing shell commands
and were stored in user’s log file. After this, the server tries to check whether the user is underlying account
holder or not by comparing similarity scores between newly generated SCs and the user’s usage habits. The
Okapi model [10] is used to calculate a similarity score between user’s profile and an unknown user u’s
current input SC-sequence, denoted by Sim(u, j).

(5)

( , ) ,
p

i

u j Fiu Wij
�

�� �

In which p is the number of SC-patterns appearing in both NCSu and UHj , Fiu is the appearance count
of SC patterns collected in NCSu, and Wij produced by invoking is the similarity weight of i in UHj .The
higher the Sim(u, j), the higher the probability, with which u is the person j submitted NCSu. The concept
of the Detection Server is same as the Mining server only difference being that the comparison between L-
window and C-window is from the back to front each time when an SC is an input by the user. That is, when
the L-window contains the last |sliding window| SCs, the C-window left shifts one SC from L-window and
compares l grams and l’ grams. After this process, for each left shift on C-window covers the first |sliding
window| SCs of NCSu.

Input: user u’s current input SCs, i.e NSC
u
 (each time only one SC is input) and all users’ user profiles

Output: u’s is suspected as an internal intruder

1. NCS
u
 = �;

2. while( receiving u’s input SC, denoted by h) {

3. NCS
u
 = NCS

u
 
ä
 {h};

4. if (| NCS
u
| > |sliding window|) {

5. L-window = Right(NCS
u
; |sliding window|; /*Right (x,y) retrieves the last L-window of y from x*/

6. for(j=|NCS
u
| - |sliding window|; j>0; j—) {

7. C-window = Mid(NCS
u
j, |sliding window|); /*Mid(x, y, z) retrieves a sliding window of size z beginning

at the position of y from x */

8. Compare k-grams and k’grams by using comparison logic employed in Algorithm 1 to generate NHF
u
}

9. for (each user g, 1<=g<=N)

10. Calculate the similarity score Sim(u, j) between NCS
u
 and g’s user profile by invoking equation (5).

11. if( ( |NCS
u
| mod paragraph size) == 0) { /*paragraph size = 30, meaning we judge whether u is an

attacker or the account holder for every 30 input SCs*/

12. Sort similarity scores for all users;

13. if (((the decisive rate of u’s user profile < threshold;) or (the decisive rate of attacker profile > threshold;)){
/* threshold; is the predefined lower bound of average decisive rate of user u’s profile, while threshold; is
predefined upper bound of average decisive rate of attacker profile */

14. Alert system manager that u is a suspected attacker, rather than u himself ;}}}}

Figure 4: Detection server detects whether the user is a possible intruder.

When the Detection Server algorithm was invoked, the sliding window left shifts, to identify the SC
sequences on each new input of SC. If the user’s input are less than or equal to |sliding window|, no action
is performed.
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(E) Computational Grid

The computational grid is a collection of internally connected computers working together as a single
integrated computing resource. A Mining server and a Detection server have been implemented in this
paper to speed up data processing. The advantage of cluster computing is that it divides a large task into
smaller subtasks, supported by multiple computer processors. The master node coordinates the distributed
processing and combines processing results of all processors to complete the entire computation.

Figure 5: Symmetric multiprocessing cluster (SMP) with open message passing interface (MPI)[15]

The functions of Mining server were fulfilled by grid processors with a hostfile that defines computation
resources for mining server. The Detection server is implemented on the master node of the computational
grid with hostfile describing computation resources for the detection server.

III. SUMMARY

An IIDPS is developed to detect and resist insider attacks at SC level by using data mining and forensic
techniques, extending the features of [11]. A command input by a user will generate hundreds and thousands
of SCs. The IIDPS, on an average, takes 0.45s to identify a user. Implementing a local computational grid
can increase the processing speed of the mining and the detection server. Systems employing GUI interfaces
can also detect malicious behaviors despite user behavior profiles. Many third party shell commands [12],
[13] have been developed, including those which are present in Oracle Database, Oracle Web Logic,
and IBM WebSphere MQ. Detecting attacker signatures [14] has also being implemented for further
accuracy.

IV. CONCLUSION

In this paper, IIDPS has been proposed an approach that employs Data Mining and Forensic Techniques to
identify the representative SC-patterns for a user.

The time that a habitual SC pattern appears in the user’s log file would be counted, the most commonly
used SC-patterns are filtered out, and then a user’s profile is established. The further study will be done by
improving IIDPS’s performance and investigating third-party shell commands.
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