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Abstract: First, this paper announces a ten-term novel 3-D three-scroll chaotic system with four quadratic
nonlinearities. The phase portraits of the novel chaotic system are displayed and the mathematical properties are
discussed. The Lyapunov exponents of the novel chaotic system are obtained as L

1
 = 1.5015, L

2
 = 0 and L

3
 = –

2.9367. The maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained as L
1
 = 1.5015 and

Lyapunov dimension as D
L
 = 2.5113. Next, we derive new results for the adaptive control design of the novel

chaotic system with unknown parameters. The adaptive controller is designed to achieve global exponential stability
for the novel chaotic system with unknown parameters. Next, we derive new results for the adaptive synchronization
design of the identical novel chaotic systems with unknown parameters. The adaptive control and synchronization
results have been established using Lyapunov stability theory. Numerical simulations with MATLAB have been
shown to validate and illustrate all the new results derived in this paper.

Keywords: Chaos, chaotic systems, novel chaotic system, three-scroll system, adaptive control, adaptive
synchroization.

1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions. The sensitivity of a nonlinear chaotic system in response
to small changes in the initial conditions is commonly called as butterfly effect [1] and this is one of the
characterizing features of a chaotic system.

Chaos was historically discovered first by Henri Poincaré in 1890 when he was studying the n-body
problem. Poincare discovered that the orbit of three or more interacting planets can depict unstable and
unpredictable behaviour, and this is the first finding of a chaotic system. Subsequently, in 1963, Lorenz [2]
discovered irregularity in a 3-D weather model and this is the first experimentally verified chaotic system.

The Lyapunov exponent of a dynamical system is a quantitative measure that characterizes the rate of
separation of infinitesimally close trajectories of the system. Thus, a chaotic system is also defined
mathematically as a dynamical system having at least one positive Lyapunov exponent.

In the last four decades, many chaotic systems have been found in the literature using modelling and
other techniques. Some paradigms of chaotic systems can be listed as Rössler system [3], Shimizu-Morioka
system [4], Shaw system [5], Chen system [6], Lü system [7], Chen-Lee system [8], Cai system [9], Tigan
system [10], Li system [11], etc. Many new 3-D chaotic systems have been discovered in the recent years
such as Sundarapandian systems [12-13], Vaidyanathan systems [14-20], Vaidyanathan-Madhavan system
[21], Vaidyanathan-Azar system [22], Vaidyanathan-Volos system [23-24], Pehlivan-Moroz system [25],
Pham system [26], etc.
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Hyperchaotic systems are the chaotic systems with more than one positive Lyapunov exponent. They
have important applications in control and communication engineering. Some recently discovered 4-D
hyperchaotic systems are hyperchaotic Vaidyanathan systems [27-28], hyperchaotic Vaidyanathan-Azar
system [29], etc. A 5-D hyperchaotic system with three positive Lyapunov exponents was also recently
found [30].

Chaos control and chaos synchronization are important research problems in the chaos literature, which
have been studied extensively in the last four decades. There are several applications of chaos theory in a
variety of fields such as lasers [31], oscillators [32-33], chemical reactors [34-35], biology [36-38], ecology
[39-40], neural networks [41-43], robotics [44-45], memristors [46-48], fuzzy systems [49-50], etc.

The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [51-52]. Some popular methods for chaos control are active control
[53-57], adaptive control [58-59], sliding mode control [60-62], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the master
or drive system and another chaotic system is called the slave or response system, then the idea of the
synchronization is to use the output of the master system to control the slave system so that the output of the
slave system tracks the output of the master system asymptotically. The synchronization of chaotic systems
has applications in secure communications [63-65], cryptosystems [66-67], encryption [68-70], etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecora and Carroll [71-72] for
the chaos synchronization problem, many different methods have been proposed in the control literature
such as active control method [73-80], adaptive control method [81-107], sampled-data feedback control
method [108-109], time-delay feedback approach [110], backstepping method [111-122], sliding mode
control method [123-131], etc.

In this paper, we have proposed a novel 3-D three-scroll chaotic system with four quadratic nonlinearities.
We have obtained the Lyapunov exponents of the novel three-scroll chaotic system as 1 1.5015,L � 2 0L �
and 3 2.9367.L � �  The maximal Lyapunov exponent (MLE) for the novel chaotic system is found as

1 1.5015L �  and Lyapunov dimension as 2.5113.LD �  We have also derived new results for the adaptive
control of the novel chaotic system and adaptive synchronization of identical novel chaotic systems with
unknown parameters. The main adaptive results of this paper are proved using Lyapunov stability theory.
MATLAB simulations have been provided in this paper to illustrate the phase portraits of the novel three-
scroll chaotic system and the adaptive control results for the novel three-scroll chaotic system.

2. A THREE-SCROLL NOVEL CHAOTIC SYSTEM

In this section, we describe the equations and properties of a three-scroll novel 3-D polynomial chaotic
system with four quadratic nonlinearities.

The proposed three-scroll novel chaotic system is modelled by the 3-D dynamics

1 2 1 1 3

2 1 2 1 3

2
3 1 1 2 3

( )

2 2

x a x x cx x

x bx px x x

x p dx x x x

� � �
� � �

� � � �

�

�

�
(1)

where 1 2 3, ,x x x are the states and , , , ,a b c d p are constant, positive parameters of the system.

The system (1) exhibits a three-scroll chaotic attractor for the values

40,  55,  0.16,  0.65,  12a b c d p� � � � � (2)
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For numerical simulations, we take the initial state as 1(0) 1.0,x �  2 (0) 0.7x � and 3(0) 1.2.x �  Figure 1

shows the three-scroll chaotic attractor of the system (1). Figures 2-4 show the 2-D view of the chaotic

attractor of the system (1) in 1 2( , ),x x  2 3( , )x x and 1 3( , )x x planes respectively..

Figure 1: Strange attractor of the novel 3-scroll chaotic system

Figure 2: 2-D view of the novel 3-scroll chaotic system in (x
1
, x

2
) plane
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Figure 4: 2-D view of the novel 3-scroll chaotic system in (x
1
, x

3
) plane

Figure 3: 2-D view of the novel 3-scroll chaotic system in (x
2
, x

3
) plane
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3. PROPERTIES OF THE NOVEL THREE-SCROLL CHAOTIC SYSTEM

A. Symmetry

The novel 3-D chaotic system (1) is invariant under the coordinates transformation

1 2 3 1 2 3( , , ) ( , , )x x x x x x� � � (3)

Since the transformation (3) persists for all values of the system parameters, the novel chaotic system
(1) has rotation symmetry about the x

3
– axis and that any non-trivial trajectory must have a twin trajectory.

B. Invariance

The x
3 
– axis ( 1 0,x � 2 0)x �  is invariant for the system (1). Hence, all orbits of the system (1) starting on

the x
3 
– axis stay in the x

3 
– axis for all values of time. Also, this invariant motion is unstable.

C. Equilibrium Points

The equilibrium points of the novel chaotic system (1) are obtained by solving the following nonlinear
system of equations

1 1 2 3 2 1 1 3

2 1 2 3 1 2 1 3

2
3 1 2 3 1 1 2 3

( , , ) ( ) 0

( , , ) 0

( , , ) 2 2 0

f x x x a x x cx x

f x x x bx px x x

f x x x p dx x x x

� � � �
� � � �

� � � � �
(4)

We take the parameter values as in the chaotic case, viz.

40,  55,  0.16,  0.65,  12a b c d p� � � � � (5)

Solving the equations (4) using the values (5), we obtain the unique equilibrium point:

0

0

0

12

E

� �
� �� � �
� ��� �

(6)

The Jacobian matrix of the novel chaotic system (1) is obtained as

3 1

3 1

1 2 1

( )

2 2

a cx a cx

J x b x p x

dx x x

� �� �
� �� � �� �
� �� �� �

(7)

The Jacobian matrix at the equilibrium E
0
 is obtained as

0 0

41.92 40 0

( ) 67 12 0

0 0 2

J J E

�� �
� �� � � �
� �� �

(8)

which has the eigenvalues

1 2 373.3282,   43.4082,   2� � �� � � � (9)
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This shows that the equilibrium E
0
 is a saddle-point, which is unstable.

D. Lyapunov Exponents

We take the parameter values of the system (1) as

40,  55,  0.16,  0.65,  12a b c d p� � � � � (10)

The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as

1

2

3

1.5015

0

2.9367

L

L

L

��
� ��
� � ��

(11)

Eq. (11) shows that the system (1) is chaotic, since it has a positive Lyapunov exponent.

Also, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as 1 1.5015. L �

Since 1 2 3 1.4352 0,L L L� � � � � it is immediate that (1) is a dissipative chaotic system.

The dynamics of the Lyapunov exponents is depicted in Figure 5.

F. Lyapunov Dimension

The Lyapunov dimension of the chaotic system (1) is determined as

1 2

3

2 2.5113
| |L

L L
D

L

�
� � � (12)

which is high value. This shows that the chaotic behaviour of the system (1) is very complex.

Figure 5: Dynamics of the Lyapunov exponents of the novel chaotic system
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4. ADAPTIVE CONTROL OF THE THREE-SCROLL CHAOTIC SYSTEM

In this section, we design new results for the adaptive controller to stabilize the three-scroll novel chaotic
system with unknown parameters for all initial conditions.

Thus, we consider the controlled novel 3-D chaotic system

1 2 1 1 3 1

2 1 2 1 3 2

2
3 1 1 2 3 3

( )

2 2

x a x x cx x u

x bx px x x u

x p dx x x x u

� � � �
� � � �

� � � � �

�

�

�
(13)

where x
1
, x

2
, x

3
 are state variables, a, b, c, d, p are constant, unknown, parameters of the system and u

1
, u

2
,

u
3
 are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control law

1 2 1 1 3 1 1

2 1 2 1 3 2 2

2
3 1 1 2 3 3 3

ˆ ˆ( )( ) ( )

ˆ ˆ( ) ( )

ˆˆ2 ( ) ( ) 2

u a t x x c t x x k x

u b t x p t x x x k x

u p t d t x x x x k x

� � � � �

� � � � �

� � � � � �
(14)

where ˆ( ),a t ˆ( ),b t ˆ( ),c t ˆ( ),d t ˆ ( )p t  are estimates for the unknown system parameters ,a ,b ,c ,d ,p respectively,,

and 1 2 3, ,k k k  are positive gain constants.

The closed-loop system is obtained by substituting (14) into (13) as

1 2 1 1 3 1 1

2 1 2 2 2

2
3 1 3 3

ˆ ˆ( ( ))( ) ( ( ))

ˆ ˆ( ( )) ( ( )

ˆˆ2( ( )) ( ( ))

x a a t x x c c t x x k x

x b b t x p p t x k x

x p p t d d t x k x

� � � � � �

� � � � �

� � � � �

�

�

�
(15)

To simplify (15), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

d

p

e t a a t

e t b b t

e t c c t

e t d d t

e t p p t

� �

� �
� �

� �
� �

(16)

Substituting (16) into (15), we obtain

1 2 1 1 3 1 1

2 1 2 2 2

2
3 1 3 3

( )

2

a c

b p

p d

x e x x e x x k x

x e x e x k x

x e e x k x

� � � �

� � �

� � �

�

�

�
(17)

Differentiating the parameter estimation error (16) with respect to ,t we get
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ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

d

p

e t a t

e t b t

e t c t

e t d t

e t p t

� �

� �

� �

� �

� �

��

�
�

��

��

��

(18)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , , ) ,

2a b c d p a b c d pV x x x e e e e e x x x e e e e e� � � � � � � � (19)

which is positive definite on R8.

Differentiating V along the trajectories of (17) and (18), we obtain

2 2 2
1 1 2 2 3 3 1 2 1 1 2

2 2 2
1 3 1 3 2 3

ˆˆ( )

ˆˆ ˆ      2

a b

c d p

V k x k x k x e x x x a e x x b

e x x c e x x d e x x p

� �� �� � � � � � � � �� � � �� �
� �� � � �� � � � � � � �� � � �� �� �

���

�� � (20)

In view of (20), we define an update law for the parameter estimates as

1 2 1

1 2

2
1 3

2
1 3

2
2 3

ˆ ( )

ˆ

ˆ

ˆ

ˆ 2

a x x x

b x x

c x x

d x x

p x x

� �

�

�

� �

� �

�

�

�

�

�

(21)

Theorem 1. The novel chaotic system (13) with unknown system parameters is globally and exponentially
stabilized for all initial conditions by the adaptive control law (14) and the parameter update law (21),

where ,ik ( 1, 2,3)i � are positive constants.

Proof. The result is proved using Lyapunov stability theory [132]. We consider the quadratic Lyapunov
function V defined by (19), which is a positive definite function on R8.

Substituting the parameter update law (21) into (20), we obtain V� as

2 2 2
1 1 2 2 3 3V k x k x k x� � � �� (22)

which is a negative semi-definite function on R8.

Therefore, it can be concluded that the state vector ( )x t and the parameter estimation error are globally
bounded, i.e.
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1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T

a b c d px t x t x t e t e t e t e t e t L�� � �� � (23)

We define

� �1 2 3min , , .k k k k� (24)

Then it follows from (21) that

2
V k x� ��  or 

2
.k x V� � � (25)

Integrating the inequality (25) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k x d V d V V t� � � �� � � �� � � (26)

From (26), it follows that 2( ) .x t L�

Using (17), we can conclude that ( ) .x t L���

Hence, using Barbalat’s lemma, we can conclude that ( ) 0x t � exponentially as t �� for all initial

conditions 3(0) .x �R

This completes the proof.

Numerical Results

For the novel chaotic system (13), the parameter values are taken as in the chaotic case, viz.

40,  55,  0.16,  0.65,  12a b c d p� � � � � (27)

We take the feedback gains as 6ik � for 1,2,3.i �

The initial values of the chaotic system (13) are taken as

1 2 3(0) 3.2,  (0) 5.7,  (0) 1.8x x x� � � (28)

The initial values of the parameter estimates are taken as

ˆ ˆˆ ˆ ˆ(0) 6,  (0) 5.1,  (0) 2.5,  (0) 3.4,  (0) 4.2a b c d p� � � � � (29)

Figure 6 depicts the time-history of the controlled novel chaotic system.

5. ADAPTIVE SYNCHRONIZATION OF THE IDENTICAL NOVEL THREE-SCROLL
CHAOTIC SYSTEMS

In this section, we derive new results for the adaptive synchronization of the identical novel three-scroll
chaotic systems with unknown parameters.

As the master system, we take the novel 3-D three-scroll chaotic system

1 2 1 1 3

2 1 2 1 3

2
3 1 1 2 3

( )

2 2

x a x x cx x

x bx px x x

x p dx x x x

� � �
� � �

� � � �

�

�

�
(30)
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where 1 2 3, ,x x x are state variables and , , , ,a b c d p are constant, unknown, parameters of the system.

As the slave system, we take the controlled novel 3-D chaotic system

1 2 1 1 3 1

2 1 2 1 3 2

2
3 1 1 2 3 3

( )

2 2

y a y y cy y u

y by py y y u

y p dy y y y u

� � � �
� � � �

� � � � �

�

�

�
(31)

where 1 2 3, ,y y y are state variables and 1 2 3, ,u u u are adaptive controllers to be designed.

The synchronization error is defined by

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

� �
� �

� �
(32)

The error dynamics is easily obtained as

1 2 1 1 3 1 3 1

2 1 2 1 3 1 3 2

2 2
3 3 1 1 1 2 1 2 3

( ) ( )

2 ( )

e a e e c y y x x u

e be pe y y x x u

e e d y x y y x x u

� � � � �
� � � � �

� � � � � �

�

�

�
(33)

Figure 6: Time history of the controlled three-scroll chaotic system
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We consider the adaptive control law defined by

1 2 1 1 3 1 3 1 1

2 1 2 1 3 1 3 2 2

2 2
3 3 1 1 1 2 1 2 3 3

ˆ ˆ( )( ) ( )( )

ˆ ˆ( ) ( )

ˆ2 ( )( )

u a t e e c t y y x x k e

u b t e p t e y y x x k e

u e d t y x y y x x k e

� � � � � �

� � � � � �

� � � � � � �
(34)

where 1 2 3, ,k k k  are positive gain constants.

Substituting (34) into (33), we get the closed-loop error dynamics as

1 2 1 1 3 1 3 1 1

2 1 2 2 2

2 2
3 1 1 3 3

ˆ ˆ( ( ))( ) ( ( ))( )

ˆ ˆ( ( )) ( ( ))

ˆ( ( ))( )

e a a t e e c c t y y x x k e

e b b t e p p t e k e

e d d t y x k e

� � � � � � �

� � � � �

� � � � �

�

�

�
(35)

To simplify the error dynamics (35), we define the parameter estimation error as

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

d

p

e t a a t

e t b b t

e t c c t

e t d d t

e t p p t

� �

� �
� �

� �
� �

(36)

Using (36), we can simplify the error dynamics (35) as

1 2 1 1 3 1 3 1 1

2 1 2 2 2

2 2
3 1 1 3 3

( ) ( )

( )

a c

b p

d

e e e e e y y x x k e

e e e e e k e

e e y x k e

� � � � �

� � �

� � � �

�

�

�
(37)

Differentiating the parameter estimation error (36) with respect to ,t we get

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

ˆ( ) ( )

a

b

c

d

p

e t a t

e t b t

e t c t

e t d t

e t p t

� �

� �

� �

� �

� �

��

�
�

��

��

��

(38)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , , ) ,

2a b c d p a b c d pV e e e e e e e e e e e e e e e e� � � � � � � � (39)
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which is positive definite on R8.

Differentiating V along the trajectories of (37) and (38), we obtain

� �

2 2 2
1 1 2 2 3 3 1 2 1 1 2

2 2 2
1 1 3 1 3 3 1 1 2

ˆˆ( )

ˆˆ ˆ      ( )

a b

c d p

V k e k e k e e e e e a e e e b

e e y y x x c e e y x d e e p

� �� �� � � � � � � � �� � � �� �
� �� � � �� � � � � � � � �� � � �� �� �

���

�� � (40)

In view of (40), we define an update law for the parameter estimates as

� �

1 2 1

1 2

1 1 3 1 3

2 2
3 1 1

2
2

ˆ ( )

ˆ

ˆ

ˆ ( )

ˆ

a e e e

b e e

c e y y x x

d e y x

p e

� �

�

� �

� � �

�

�

�

�

�

�

(41)

Theorem 2. The identical novel chaotic systems (30) and (31) with unknown system parameters are
globally and exponentially synchronized for all initial conditions by the adaptive control law (34) and the
parameter update law (41), where k

i
, (i = 1, 2, 3) are positive constants.

Proof. The result is proved using Lyapunov stability theory [132]. We consider the quadratic Lyapunov
function V defined by (39), which is a positive definite function on R8.

Substituting the parameter update law (41) into (40), we obtain V� as

2 2 2
1 1 2 2 3 3V k e k e k e� � � �� (42)

which is a negative semi-definite function on R8.

Thus, it can be concluded that the synchronization vector ( )e t and the parameter estimation error are
globally bounded, i.e.

1 2 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T

a b c d pe t e t e t e t e t e t e t e t L�� � �� � (43)

We define

� �1 2 3min , , .k k k k� (44)

Then it follows from (42) that

2
V k e� ��  or 

2
.k e V� � � (45)

Integrating the inequality (45) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k e d V d V V t� � � �� � � �� � � (46)

Therefore, we can conclude that 2( ) .e t L�
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Using (37), we can conclude that ( ) .e t L���

Hence, using Barbalat’s lemma, we can conclude that ( ) 0e t � exponentially as t �� for all initial

conditions 3(0) .e �R

This completes the proof.

Numerical Results

For the novel chaotic systems, the parameter values are taken as in the chaotic case, viz.

40,  55,  0.16,  0.65,  12a b c d p� � � � � (47)

We take the feedback gains as 6ik � for 1,2,3.i �

The initial values of the master system (30) are taken as

1 2 3(0) 1.2,  (0) 0.7,  (0) 0.2x x x� � � (48)

The initial values of the slave system (31) are taken as

1 2 3(0) 1.8,  (0) 1.6,  (0) 1.4y y y� � � (49)

The initial values of the parameter estimates are taken as

ˆ ˆˆ ˆ ˆ(0) 2,  (0) 9,  (0) 1,  (0) 2,  (0) 3a b c d p� � � � � (50)

Figures 7-9 depicts the complete synchronization of the identical novel chaotic systems.

Figure 10 depicts the time-history of the synchronization errors.

Figure 7: Complete synchronization of the states x
1
 and y

1
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Figure 9: Complete synchronization of the states x
3
 and y
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Figure 8: Complete synchronization of the states x
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Figure 10: Time history of the chaos synchronization errors e
1
, e

2
, e

3

6. CONCLUSIONS

In this paper, we have derived a ten-term novel 3-D three-scroll chaotic system with four quadratic
nonlinearities. We gave a qualitative analysis of the mathematical properties of the novel 3-D chaotic
system. We determined the Lyapunov exponents and Lyapunov dimension of the three-scroll chaotic system.
Next, we have derived adaptive control and synchronization results for the novel three-scroll chaotic system
with unknown parameters, which have been established using Lyapunov stability theory. Numerical
simulations with MATLAB were exhibited to demonstrate the phase portraits of the novel three-scroll
chaotic system and the adaptive results derived in this paper.
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