
International Journal of Control Theory and Applications459

A Fork Join Frame Work for Brute Force, Boyer Moore and Skip
Search String Matching Algorithms

S. Viswanadha Rajua, K.K.V.V.V.S. Reddyb and Chinta Someswara Raoc

aDepartment of CSE, JNTUHCEJ, JNTUniversity Hyderabad, Telangana, India	
bResearch Scholar, Rayalasheema University, AP, India	
cDepartment of CSE, SRKR Engineering College, Bhimavaram, AP, India

Abstract: In present days information retrieval play the vital role in every one daily life. If retrieval system returns
irrelevant information that lead to wastage of time and effort. For relevant information retrieval different researchers
proposed retrieval algorithms, but still there is a necessity of these algorithms. For this purpose in this paper, we
take Brute force, Boyer moore and Skip search retrieval algorithms from literature and converted them into parallel
algorithms by adopting fork join concept. The parallel algorithms returns most relevant results as well as reduces
the search time.
Keywords: Information retrieval; Parallel, fork join; Brute force; Boyer moore; Skip search.

Introduction1.	
There is a necessity for the improvement of the performance of searching on the current day text collections
because of the exponential growth of textual databases with the time[1-6]. In retrieving the data from these
textual databases, special purpose algorithms have been developed by the researchers, those are parallelizing
the comparison[1-6]. But these algorithms are not full fill the users requirement, so still there is a scope of
necessity to develop a text retrieval algorithms. For this purpose in this study, Brute force[7], Boyer moore[8]
and Skip search[9] string matching algorithms are considered and convert them into parallel algorithms.
In these parallel algorithms a number of comparisons will be performed parallel and reduced the search
time.

LITERATURE SURVEY2.	
This section three different string matching approaches Brute force, Boyer moore and Skip search that are basic
to this study are discussed.

Brute force[7]: A basic algorithm in the study of string matching problem is the Brute Force (BF) algorithm.
When the length of the text is n and the length of the pattern is m. The comparison will be performed one by

International Journal of Control Theory and Applications

ISSN : 0974-5572

„ International Science Press

Volume 10  •  Number 24  •  2017

S. Viswanadha Raju, K.K.V.V.V.S. Reddy and Chinta Someswara Rao

International Journal of Control Theory and Applications 460

one character from left to right. If a mismatch occurs, the sliding windows get shifted one position to the left
and restarts to match from the first position of the pattern.

Boyer moore[8]: This method developed by Boyer Moore (BM) algorithm in 1977. In search process, the character
comparisons are carried out form right to left in the pattern. When a mismatch occurs in order to reduce the
number of comparisons, this method follows two rules called bad character rule and good suffix rule.

Skip search[9]: This approach is proposed by Christian et. al.,. It has two phases called pre processing and
searching. In pre processing, builds the buckets that contain information regarding all the alphabets position in
the pattern. These alphabets start recording from the first left position of the pattern. In searching compare the
character of pattern with the text with the basis of bucket information.

METHODOLOGY3.	
The multi pattern multi-processor parallel string matching algorithm reads the directory and pattern set. Reads
one file from the directory, opens the file, reads the file line by line, appends the line to string buffer. In this
study three string matching algorithms brute force, boyer moore and skip search are considered. The fork join
mechanism is adopted from java technology and this concept is applied on brute force, boyer moore and skip
search string matching algorithms, and converted into parallel algorithms those are renamed as parallel brute
force, boyer moore and skip search string matching algorithms.. These algorithms are actual process is given in
algorithm 1, 2 and 3 respectively. Algorithm 1 give the actual fork join process of brute force approach. Algorithm2
give the actual fork join process of boyer moore approach, but in this approach fork_join functioning is similar
as in Algorithm 1. Algorithm 3 give the actual fork join process of skip search approach, in this algorithms also
fork_join functioning is similar as in Algorithm 1.

Algorithm 1: Brute Force String Matching Algorithm With Fork Join

Input: Monkey chromosome files, let these are considered as Text files ‘T’ of length ‘n’ and Patterns (P1, P2,
…) of length m

Output: The number of occurrences and the positions of the patterns (P1 , P2, …)

/* Main */

1	 n←T.length, m←P1.length or P2.length or ...or Pn.length

2	 for each P1, P2,...Pn

3	 for i ← 0 to n-m do

4	 begin

5					 fork_join(T);

6	 	 	 	 	 count←search_process(T,P,i,count);

7	 end for

8	 end for

/* Search */

9	 int search_process(Char[] T, Char[] P, int i, int count)

10	 begin

A Fork Join Frame Work for Brute Force, Boyer Moore and Skip Search String Matching Algorithms

International Journal of Control Theory and Applications461

11					 j¢← P.length;

12	 	 	 	 	 j≤← 0;

13					 while (j¢>=0 && T[i - j¢] == P[j≤])

14					 do

15									 j¢←j¢-1;

16									 j≤←j≤-1;

17					 done;

18					 if (j¢== -1)

19									 count++;

20	 	 	 	 	 end if

21	 return count;

22	 end search_process;

/* fork_join */

23	 public static void fork_join(Char[] T, Char[] P)

24	 begin

25	 n←T.length;m←P.length

26	 nc←AvailableProcessors()

27	 start_pos←starting position of the text i.e.0

28	 end_pos←n;

29	 split_pos ← n
nc2

30	 if (end_pos - start_pos > split_pos)

31	 begin

32	 mid_pos =
start_pos + end_pos

2
()

;

33	 task_assignment=invoke(asList(new search_process (T, start_pos, mid_pos+m-1,P), new search_
process (T, mid_pos, end_pos,P)));

34	 end;

35	 invoke(all_tasks);

36	 end fork_join;

Algorithm 2: Boyer Moore String Matching Algorithm With Fork Join

Input: Monkey chromosome files, let these are considered as Text files ‘T’ of length ‘n’ and Patterns (P1, P2, …)
of length m

Output: The number of occurrences and the positions of the patterns (P1 , P2, …)

S. Viswanadha Raju, K.K.V.V.V.S. Reddy and Chinta Someswara Rao

International Journal of Control Theory and Applications 462

/* Main */

1	 n←T.length, m←P1.length or P2.length or ...or Pn.length

2	 for each P1, P2,...Pn

3	 for i ← 0 to n-m do

4	 begin

5					 fork_join(T);

6	 	 	 	 	 count←search_process(T,P,i,count);

7	 end for

8	 end for

/* Search */

9	 int search_process(Char[] T, Char[] P, int i, int count)

10	 begin

11					 j¢← P.length;

12	 	 	 	 	 while (j¢>=0 && T[i + j¢] == P[j¢])

13					 do

14									 j¢←j¢-1;

15					 done ;

16					 if (j¢<0)

17	 	 	 	 	 	 	 	 	 i+= (i+m < n)? m- bad_char_array[T[i+m]] : 1;

18					 else

19	 	 	 	 	 	 	 	 	 i+= max_process(1, j - bad_char-array[T[i+j¢]]);

20	 	 	 	 	 	 	 	 	 count++;

21	 	 	 	 	 end if

22	 return count;

23	 end search_process;

/*max_process*/

24	 public static int max_process(integer a, integer b)

25	 begin

26	 return (a > b)? a: b;

27	 end max_process;

/* bad_char_rule*/

28	 public static void bad_char_rule(char[] str, int size, int[] badchar)

A Fork Join Frame Work for Brute Force, Boyer Moore and Skip Search String Matching Algorithms

International Journal of Control Theory and Applications463

29	 begin

30	 	 	 	 	 bad_char_array[i] = -1;

31					 for i 1 to n

32	 	 	 	 	 begin

33	 	 	 	 	 	 	 	 	 bad_char_array [str[i]] = i;

34					 end

35	 end bad_char_rule;

Algorithm 3: Skip Search String Matching Algorithm With Fork Join

Input: Monkey chromosome files, let these are considered as Text files ‘T’ of length ‘n’ and Patterns (P1, P2,
…) of length m

Output: The number of occurrences and the positions of the patterns (P1 , P2, …)

/* Main */

1	 n←T.length, m←P1.length or P2.length or ...or Pn.length

2	 for each P1, P2,...Pn

3	 for i ← 0 to n-m do

4	 begin

5					 fork_join(T);

6	 	 	 	 	 count←search_process(T,P,i,count);

7	 end for

8	 end for

/* Search */

9	 int search_process(Char[] T, Char[] P, int i, int count)

10	 begin

11					 j¢← P.length;

12	 	 	 	 	 j¢← ¢j
2

13					 j≤← P.length;

14					 while (j¢>=0 && j≤>=0 && T[i - j¢] == P[j¢])

15					 do

16	

17									 j¢← ¢j
2
 - 1;

18									 if (j¢== -1)

S. Viswanadha Raju, K.K.V.V.V.S. Reddy and Chinta Someswara Rao

International Journal of Control Theory and Applications 464

19									 j¢←(–) ¢¢j
2

20	 	 	 	 	 done ;

21	 	 	 	 	 if (j¢== -1)

22	 	 	 	 	 	 	 	 	 count++;

23	 	 	 	 	 end if

24	 return count;

25	 end search_process;

DATA SET4.	
A monkey chromosomes contains 10 patterns called TAGA, TCAT, GAAT, AGAT, AGAA, GATA, TATC,
CTTT, TCTG and TCTA, in this study these 10 patterns are considered as search patterns.

To assess the efficiency of the parallel brute force, boyer moore and skip search string matching algorithms,
all the chromosomes of monkey (Cercocebus atys (771 mb)) dataset is considered[17]. The parallel brute
force, boyer moore and skip search string matching algorithms are implemented in JAVA on WINDOWS 8.1
Operating System with 8GB of RAM. The experimental results of sequential brute force, boyer moore and skip
search string matching algorithms are shown in Table 1. Parallel brute force, boyer moore and skip search string
matching algorithms results are shown in Table 2. From these results (Table 1 and 2), graphs are drawn and
shown in Figure 1 and 2.

Table 1
Search times of sequential brute force, boyer moore and skip search string matching algorithms

Patterns

Mechanisms
TAGA TCAT GAAT AGAT AGAA GATA TATC CTTT TCTG TCTA Total

Brute force 266219 255316 277489 211467 222888 276678 277890 299897 221654 263654 2573152
Boyer moore 256329 246426 267699 200577 213901 267000 268000 290130 212887 253780 2476729
Skip search 247302 238551 257611 193813 203012 256788 260201 279786 201655 247302 2386021

Table 2
Search times of parallel brute force, boyer moore and skip search string matching algorithms

Patterns

Mechanisms
TAGA TCAT GAAT AGAT AGAA GATA TATC CTTT TCTG TCTA Total

Brute force 66389 63670 69199 52735 55583 68997 69299 74787 55275 65749 641683
Boyer moore 64243 61761 67092 50270 53609 66917 67168 72714 53355 63604 620733
Skip search 61062 58901 63608 47855 50126 63404 64247 69083 49791 61062 589139

From the Figure 1, it is observed that, brute force, boyer moore and skip search string matching algorithms
takes 2573152, 2476729, 2386021 milli seconds respectively to search 771 Mb of data for all ten patterns. From
the Fig 1 it is also observe that Boyer moore string matching reduces search time than brute force, skip search
algorithm reduces search time than Brute force and Boyer moore.

A Fork Join Frame Work for Brute Force, Boyer Moore and Skip Search String Matching Algorithms

International Journal of Control Theory and Applications465

From the Figure 2, it is observed that, brute force, boyer moore and skip search string matching algorithms
takes 641683, 620733, 589139 milli seconds respectively to search 771 Mb of data for all ten patterns. From
the Fig 1 it is also observe that Boyer moore string matching reduces search time than brute force, skip search
algorithm reduces search time than Brute force and Boyer moore as like sequential algorithms.

From the Figure 2, it is concluded that parallel brute force, boyer moore and skip search string matching
algorithms performs very well compared to those of sequential string matching algorithms.

Figure 1: Search times of sequential Brute force, Boyer moore and Skip search string matching algorithms

Figure 2: Search times of parallel Brute force, Boyer moore and Skip search string matching algorithms

CONCLUSIONS5.	
In this paper, we have considered three retrieval string matching algorithms called Brute force, Boyer moore and
Skip search, that are converted into parallel string matching algorithms. These parallel Brute force, Boyer moore
and Skip search string matching algorithms are able to count each occurrence of the pattern in the entire file. To
assess the efficiency of the parallel Brute force, Boyer moore and Skip search string matching algorithms , we
have conducted experiments by taking Cercocebus atys(771 Mb) genome sequence as the data set and TAGA,

S. Viswanadha Raju, K.K.V.V.V.S. Reddy and Chinta Someswara Rao

International Journal of Control Theory and Applications 466

TCAT, GAAT, AGAT, AGAA, GATA, TATC, CTTT, TCTG and TCTA as patterns. From the experimental
results observed that converted parallel string matching algorithms reduces search time as well when compared
to those of original Brute force, Boyer moore and Skip search string matching algorithms.

REFERENCES
Chinta Someswara Rao, Dr S Viswanadha Raju, “Next Generation Sequencing (NGS) Database for Tandem Repeats with [1]	
Multiple Pattern 20-shaft Multicore String Matching”, Genomics Data, Elsevier, Vol.7, 2016, PP.307–317, ISSN:2213-
5960.

Chinta Someswara rao, S Viswanadha Raju,[2]	 “A Novel Multi Pattern String Matching Algorithm with While Shift”,
Proceedings of the Second International Conference on Information and Communication Technology for Competitive
Strategies, ACM, pp.1-5, 2016

Chinta Someswara Rao, Dr S Viswanadha Raju, “Concurrent Information Retrieval System (IRS) for large volume of data [3]	
with multiple pattern multiple (2N) shaft parallel string matching”, Annals of Data Science, Springer, Vol.3, Issue.2, 2016,
PP.175-203, ISSN: 2198-5804.

Chinta Someswara Rao, Dr S Viswanadha Raju, “A Frame Work for XML Ontology to STEP-PDM from Express Entities: [4]	
A String Matching Approach”, Annals of Data Science, Springer, Vol.3, Issue.4, 2016, PP.469-507, ISSN: 2198-5804.

Chinta Someswara Rao, Dr S Viswanadha Raju, “Recent Advancements in Parallel Algorithms for string matching on [5]	
computing models-a Survey and Experimental Results”, ADCONS, Proceedings in LNCS Springer, 2012, pp. 270-278,ISBN:
978-3-642-29280-4.

Chinta Someswara Rao, Dr S Viswanadha Raju, “Parallel String Matching with Multi Core Processors-A Comparative [6]	
Study for Gene Sequences”, Global Journal of Computer Science and Technology, Vol.13, Issue.1, 2013, PP.27-41, ISSN:
0975-4172.

Aho, Alfred V., and John E. Hopcroft., “Design & Analysis of Computer Algorithms”, Pearson Education India, 1974.[7]	

R. S. Boyer and J. S. Moore, “A fast string searching algorithm”, Communications of the ACM, vol. 20, no. 10, pp. 762-[8]	
772, 1977.

Charras, Christian, Thierry Lecrog, and Joseph Daniel Pehoushek. , “A very fast string matching algorithm for small alphabets [9]	
and long patterns”, InCombinatorial Pattern Matching, pp. 55-64. Springer Berlin Heidelberg, 1998.

