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Validating Stochastic Models: Invariance
Criteria for Systems of Stochastic Differential
Equations and the Selection of a Stochastic
Hodgkin-Huxley Type Model

Jacky Cresson®?, BENEDICTE Puic! & Steranie SONNER®#

AgsTrACT: In recent years, many difficulties appeared when taking into account the inherent stochastic behavior
of neurons and voltage-dependent ion channelsin Hodgking-Huxley type models. In particular, an open problem
for a stochastic mode of cerebellar granule cell excitahility wasto ensure that the val ues of the gating variables
remain within the unit interval. In this paper, we provide an answer to this modeling issue and obtain a class of
viable stochastic models. We select the stochastic models thanks to a general criterion for the flow invariance of
rectangular subsetsunder systems of stochastic differential equations. Weformulate explicit necessary and sufficient
conditions, that are valid for both, 1t6's and Stratonovich’s interpretation of stochastic differential equations,
improving apreviousresult obtained by A. Milian [A.Milian, Coll. Math. 1995] in the Itd case. Theseinvariance
criteria allow to validate stochastic models in many applications. To illustrate our results we present numerical
simulations for a stochastic Hodgkin-Huxley model.

1991 M ATHEMATICS SuBJECT CLAssIFIcAaTION: 60H10, 60H30, 65C30, 92B05.

KEevyworbps AND PHRAsES: Invariance criteria, Stochastic differential equations, Validation of stochastic Models,
Stochastic hodgkin-huxley model.

1. INTRODUCTION

In recent years, agreat dea of activities has been devoted to develop models of neuronal excitability that
take into account the intrinsic stochastic bioelectrical activity of neurons (see[11], [3]). In[11], the authors
apply 1t0’s theory of stochastic differential equations and propose a stochastic model which reproducesthe
irregular electrophysiological activity of anin vitro granule cell (see[11] and Fig. 6, p. 7). A particular case
of this model is a stochastic version of the classical Hodgkin-Huxley model (see [4], [3]). However, as
aready indicated by the authors, the model suers severe difficulties ([11] p. 4 and p. 10): Undesired values
were observed for the gating variablesthat are supposed to take values within the unit interval. The solution
of this modeling difficulty is mentioned as a challenge for future work ([11] p. 10). Similar problems also
occurred for the stochastic Hodgkin-Huxley model in [3] (see p. 2071). In this article, we provide an
answer to thisproblem and obtain afamily of viable stochastic modelsfor cerebellar granule cell excitahility.
The admissible models are derived from a general invariance theorem for systems of stochastic differential
eguations.
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We formulate invariance results in a general setting that alow to validate stochastic models in many
applications. When the solutions of a given system of stochastic differential equations describe quantities
that necessarily take values within a certain range, the problem can be mathematically analyzed by studying
the flow invariance of rectangular subsets of the euclidean space. To be more precise, we consider systems
of 110 differential equations of the form

dX (t) =f(t, X(t)) dt + g(t, X(t)) dW(t),

where the process X is vector-valued. For the concrete formulation we refer to Section 2. We characterize
the class of functions f and g that lead to viable stochastic models and formulate explicit necessary and
sufficient conditions that can be directly checked and easlly veried in applications. We further show that
the invariance theorems are valid for both, 1t6’s and Stratonovich's interpretation of stochastic differential
equations. The result for the 1t0 case was previoudy obtained by A. Milian in [7]. Asdiscussed in [12], in
a concrete application it is generally not easy to decide which interpretation should be applied. Our results
show that the qualitative behavior of solutions regarding non-negativity and boundedness is independent
of 1t6’s or Stratonovich’'s interpretation. Other properties of the solutions, however, may strongly depend
on the choice of the interpretation (see [8]).

The outline of our paper is as follows: In Section 2 we introduce the class of stochastic systems we
study and formulate general invariance criteria for systems of stochastic differential equations. We then
apply the results to obtain viable stochastic models for cerebellar granule cell excitability in Section 3. In
Section 4 we present numerical simulations to illustrate the model behaviour. Finally, in Section 5 we
recall the results obtained by A. Milian in [7] and present the proofs of the invariance theorems.

2. INVARIANCE CRITERIA FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Let (2, F, P) be aprobability space with aright-continuous increasing family F = (F), . , of sub-c-elds of 7
each containing all sets of P-measure zero. We consider systems of stochastic 1t6 equations of the form

X@zxwﬂ:HaX@D$+fg®qudN@, teft, of , (1)

wheref=[f] : [0, o[ x R™ — R™isBorel-measurable, and g = [gij] 1[0, o] x R™— R™ " isaBorel-measurable
mapping into the set of all R™*"-matrices, i =1, ..., m,j =1, ..., r. Furthermore, W: [0, o[ x Q — R" denotes
an r-dimensional F-Wiener process, the initial time t is non-negative and X, € R™ is the given initial data.

The stochastic integral equations (1) are commonly written as system of stochastic 1t6 differential
eguations,

dX (1) = f(t, X)) dt+g(t, X®)dW(L),  te[t, o],
X(t) = X,

where the function g represents the stochastic perturbation and f the deterministic part. Indeed, if g=0we
obtain the corresponding unperturbed deterministic system of ODEs.

Inthe sequel, we denote by (f; g) stochasticinitial value problems of theform (1). We aim at formulating
explicit necessary and sufficient conditions on the functions f and g for the non-negativity and boundedness
of solutions. The conditions can directly be veried and allow to explicitly characterize the class of admissible
models in applications. In Section 5 we deduce our main theorems from a more general result about the
stochastic invariance of polyhedral subsets of R™ However, in applications the non-negativity and
boundedness of solutions are the most relevant modeling issues.

Since our aim is not to establish the well-posedness of the stochastic initial value problem but to study
the qualitative behavior of solutions, we assume that for every initial time t, > 0 and initial data X, € R™
there exists a unique solution of the stochastic problem (1).
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Definition 1. We say that the subset K < R™ isinvariant for the stochastic system (f; g) if for every
initial data X, € K and initial time t, > O the corresponding solution X(t), t > t,, satisfies

P{X({®) e K, telt, of})=1

The following theorem characterizes the class of functions f and g such that the stochastic system (f; )
preserves the positivity of solutions. That is, solutions emanating from nonnegative initial data (almost
surely) remain non-negative as long as they exist.

Theorem 2: Let | — {1, ..., m} beanon-empty subset. Then, the set
Ko={x=(X,...,Xx)eR" x>0,i e}
isinvariant for the stochastic system (f; g) if and only if
f(t,x)=0 for x e K*suchthat x =0,
g”.(t, X)=0 for xe K*suchthatx =0, j=1,..,r,
foralt>0andi € I.
Thisresult appliesindependent of 1td’sor Stratonovich'sinterpretation of stochastic differential equations.

The solutions of mathematical models often describe quantities that necessarily take values within a
particular range. We next formulate a criterion for the invariance of rectangular subsets of the phase space
R™

Theorem 3: Let| {1, ..., m} beanon-empty subset and a, b. € R suchthat b. > a. Then, the set
Ki={xeR": a<x<b,iel},
isinvariant for the stochastic system (f, g) if and only if
f(t,x)=0 for xeK suchthat x
f(t,x)<0 for xeK suchthat x
g”.(t, X)=0 for xeK suchthat x e

a
b,
{

L b}, =1, ..,
foradlt>0andi € I.
This result is valid independent of [t6’s or Stratonovich's interpretation.

If we apply Theorem 2 or Theorem 3 to the corresponding unperturbed deterministic system (f, 0) we
recover the well-known tangential condition for systems of ODES, which is necessary and sufficient for the
flow invariance of subsets of R™ (see [13] or [9]).

Finally, we formulate a criterion for the validity of comparison principles for the solutions of stochastic
systems. A. Milian stated the following theorem for systems of 1t6 equationsin [7]. We recall her result and
show that it remains valid if we apply Stratonovich’s interpretation of stochastic differential equations.

Theorem 4: Let | be anon-empty subset of {1, ..., m}. We assume that (f, g) and (f, g) are stochastic
systems of the form (1) with given initial data X, Y, € R™, and denote by X and Y the corresponding
solutions. Then, the following statements are equivalent:

(@ Forallt,>0andi e I, if the initial data satisfy (X)), > (Y,), then
PAX ()2Y 1), tet,oficl})=1
(b) The functionsf, f, g and § satisfy
f (LX) =~ (L), t>0,
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g,(t x) =gt y), t>0,j=1,..,r,
foral i elandx,y e R™ suchthat x =y andx >y fork e I.

3. THE VALIDATION OF A StocHAsTIC HobekIN-HuxLEY TyPE M ODEL

A stochastic model for cerebellar granule cell excitability was proposed and numerically studied in [11]. As
many biophysical models of neuronsit is based on the well-known deterministic Hodgkin-Huxley formalism
[4], which qualitatively describes the conduction and excitation in nerves. Such models are commonly
formulated as systems of deterministic ODESs. The behavior of neurons and voltage-dependent ion channels,
however, is known to be stochastic in nature, which motivates the modeling approach in [11]. The
mathematical model is formulated as system of stochastic differential equations for the dependent model
variables x, which represent the gating variables for the specific ion channels, the transmembrane potential
V and the intracellular calcium concentration C,

dx =f (V,x)dt + o dW (1), i=1,..,8, 2

dx, =f,(V, C, x)) dt + o, dW/(t),

dV=F(,V, X, ..., x)dt,

dC=G(V, C, x, x))dt,
where the reaction functions in the equations for the gating variables are given by

f(V,x)=a (V)(1-x)-B (V)X, i=1,..,8,
f(V, C,x) = ay(V, C) (1—x) —By(V, CO) X,

and the rate functions for activation o, and inactivation 3, are continuous and positive. The stochastic
differential equations areinterpreted inthe sense of It6, W (t), t > O; denote standard scalar Wiener processes,
dW the corresponding 1t6 differentials, and the parameters o, are positive and constant, i = 1, ..., 9. For the

concrete form of the interaction functions F and G and the complete description of the model we refer
to[11].

This model extends a previous deterministic model for cerebellar granule cell excitability by adding
the stochastic terms o, dW, (t) in the governing equations for the gating variables x, i = 1, ..., 9. lon channel
stochasticity has been detected experimentally and isdueto the thermal interaction of molecules constituting
an ion channel. It can be observed as random opening and closing of an ion channel at an experimentally
fixed membrane potential (see [11] and also [3]).

The gating variables x describe the opening and closing rates of the specificion channels and necessarily
take values within the interval [0, 1]. While the corresponding unperturbed deterministic model, where
c =0,i=1,..,9, certainly ensuresthis property, it cannot be guaranteed by the stochastic model (2):

The parameters , i = 1, ..., 9, which take into account the intensity of the stochastic perturbations,
were taken to be constant in the model and the simulations presented in [11]. The necessity to carefully
choose these parameterswasindicated. In particular, undesired values of the gating variableswere observed
and discussed, it was stressed that this modeling issue needed to be solved and highlighted as a challenge
for futurework (see[11], p. 4and p. 10). Similar difficulties also occurred for the stochastic Hodgkin-Huxley
mode! developed in [3] (see p. 2071). Our results show that independent of the choice of the parameters o,
the invariance of the unit interval cannot be guaranteed by the stochastic mode (2) if wetake these parameters
to be constant. Indeed, the conditions on the stochastic perturbationsin Theorem 3 applied to the model (2)
and the invariant subset

K={yeR®0<y<1i=1, ..,9},
are never satisfied.
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We obtain viable stochastic models if we replace the constants o, by appropriate functions g, that
ensure the desired invariance of the unit interval. To be more precise, we propose to consider models of the
form

dx =f(V,x)dt+g (t, V, C,x)dW/ (1), i=1..,8, (3
dx, =f(V, C, x ) dt + g (t, V, C, x) dW,(t),
dv=F(t,V, x)dt,
dC=G(V, C, x, x) dt,
where x = (X, ..., X;), and the stochastic perturbations g, : [0, oo x R*™ — R satisfy
gty =0 for yeK suchthat y {0, 1},
foral t>0andi=1, ..., 9.

Proposition 5: The modified stochastic model (4) ensures that the gating variables xi take values
withintheinterval [0, 1], for all i =1, ..., 9. Thisisvalid for It6’s and for Stratonovich’s interpretation of the
stochastic differential equations.

Proof: The statement isadirect consequence of Theorem 3 sincetheinteraction functionsf and stochastic
perturbations g inthe governing equations for the gating variables x, i = 1, ..., 9, in the modified stochastic
model (4) satisfy the required conditions.

One possible choice for the stochastic perturbations are functions of the form
g (x) = o,x (1-Xx),

with constantsi e R+,i=1, ..., 9.

4. NUMERICAL SIMULATIONS

To illustrate our results we present numerical smulations for a simplied version of the stochastic model
discussed in the previous section and consider a stochastic version of the classical Hodgkin-Huxley model
[4] Despiteits simplicity, the deterministic Hodgkin-Huxley model has always been playing avery important
role in the study of neuron excitahility ([6]). However, stochasticity should be included in the model to take
into account the stochastic behavior of the ion channel kinetics (see [6], p. 558 and p. 559).
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Figure 1: Deterministic Model
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The model we consider is formulated as system of ordinary differential equations for the dependent
model variables x, i = 1, 2, 3, that represent the gating variables for the specific ion channels, and the
voltageV,

K =0, nE-9-pMx,

(?j_\t/ ‘—[ — 0w %V — Ey) — 906V - E) -9 (V - E)I. “)

The rate functions for activation and inactivation are given by

0.1(V + 35)

( V+35j’
1-exp| - 10

a,(V) = B,(V) = 4.0 exp(—0.0556(V + 60)),

0.01(V + 50)

V) = V +50)’
1-exp (— j

V +60
V)= 0125exp| - — |,
BV) p( - j

10

1

0,(V) = 0.07 ep(~0.05(V + 60)),  B(V) = — exp (— 0.1(V +30))

and the parameter values by

nF mS mS mS
C=001 , va =1.2—, =0.36 —, ,
cm? cm?’ 9« cm?’ cm?
| =0.1mV, E.=5517mV, E =-7214mV, E, =-49.42mV

(see[4]).

We illustrate the model behavior in Fig. 1. The gating variables x, i = 1, 2, 3, describe the opening and
closing rates of the specific ion channels and necessarily take values within the interval [0, 1]. The
deterministic model (4) certainly ensures this property.

Following the modeling approach in[11], we may extend the deterministic model by adding the stochastic
terms o, dW (t) in the governing equations for the gating variables x in the model (4), which leads to the
system of stochastic differential equations

ax (1) = (o, (VD)L - X (0) - B, (VD)X D) dt + o AW (1) 1=1,2,3 (5

We interpret the stochastic differential equations in the sense of It6, W, (t), t > 0, denote standard scalar
Wiener processes, dW the corresponding 1t6 differentials, and the parameters o, are positive and constant,
i=1..,3

Our resultsin Section 2 imply that the gating variables in the model (6) take undesired values outside of
the unit interval. The simulations in Fig. 2 illustrate this observation for different values of the parameter
c=o0,i=1,2, 3. Here, we used the Euler-Maruyama method for the numerical implementation (see [5]
and [10]). Weremark that 1t6’s and Stratonovich’'s interpretation yield the same solution for the stochastic
model (6).
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Figure 2: Stochastic Model: Additive Noise

We obtain viable stochastic modelsif we replace the constants o, in the equations for the gating variables
by appropriate functions g, i = 1, 2, 3, that ensure the desired invariance of the unit interval. To be more
precise, we may consider stochastic models, where the determining equations for the gating variables x are
of the form

o (8) = (o1, (V/(0) (1= %, () = B, (VD) X (D) dt + g, (&, X,(8), X0, X,(8)) AW, (1), (6)
fori =1, 2, 3, and the stochastic perturbations g : [0, oo x R® — R satisfy
gt x,X,X%)=0 for x,Xx,x,€[0,1] suchthat x {0, 1},
foralt>0andi=1,.., 3.

Theorem 3 in Section 2 immediately implies that the gating variables in the modified stochastic model
(6) take valueswithintheinterval [0, 1], and that it isvalid for 1t6’s and Stratonovich’sinterpretation of the
stochastic differential equations.

We illustrate the model behavior for stochastic perturbations of the form
g (t, X, X, X)) = oX (1 —X) i=1..,3

wherethe constant ¢ > 0. The simulationsin Fig. 3 show the behavior of the solutionsfor It6’sinterpretation
of the stochastic system (6), where we used the Euler-Maruyama method for the numerical implementation.
Figure 4 illustrates the model behavior when we apply Stratonovich’sinterpretation. In this case we applied
the Euler-Heun method for the smulations (see [5] and [10]).
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5. PRrROOF oF THE THEOREMS

Our proof is based on the main theorems obtained by A. Milianin [7]. We first recall her results, which are
formulated for systems of stochastic 110 differential equations, and yield necessary and sufficient conditions
for the stochastic viahility of polyhedral subsets and the validity of comparison theorems.

Definition 6: A subset K — R™ is said to possess the stochastic viability property with respect to the
system (f; g) if for every initid data X € K and every t, > O there exists a global solution of theinitial value
problem (1), and the solution satises

P{X() e K, t e [t, oo[}).
For vectors a, n e R™we denote by
H, . ={xeR" (x-an)=0}

the half-space determined by a and n, where (-, -) isthe scalar product in R™. A polyhedron K in R™is a set
of the form

K = ﬂ H, .,

vel

wherel ={1, .., N} c Nisanitesubsetanda,n € R™, v e I.
For the proof of the following results we refer to [7].

Theorem 7: Let K = ﬂm H, . beapolyhedronin R™and supposethat the functionsf and g satisfy
the following conditions:

(@) For every T > 0 there exists aconstant C_> 0 such that
¢t )P+ g, X) [P < C (A +[IX]P) fordl xeK,te]0,T].
(b) For every T > 0 there exists a constant CT > 0 such that
1) -fEtYI+Igt N -gtI<C lx=yl foral xyeK,te[0,T].
(c) For every x € K the functionsf (-, x) and g(-, X) are continuous on [0, oof.

Then, the set K possesses the stochastic viability property with respect to the system (f, g) if and only
if forall v e | and x € K suchthat (x—a , n ) =0 we have

(f(x,1),n)0;
(g(x1,n)=0 j=1,..,T,
for al t > 0, where g is the j-th column of the matrix g = [gij].

Theorem 8: Let | be a non-empty subset of {1, ..., m} and suppose that for every T > O there exists a
constant C_ > 0 such that

@ TP+ Igt,x)F<C.(1+]x|») foral xeR™te]l0T].
(b) [[T(t, ) —ft Y+ 19t ) —gt. ) I<C/lIx-yl|l foral xyeR"te][0,T].
(c) For every x € K the functionsf (-, X) and g(-, X) are continuous on [0, oof.

We assumethat the functionsf and g satisfy the same conditions and denotethe corresponding solutions
of the stochastic systems (f, g) and (f, g) by X and Y. Then, the following statements are equivalent:
(i) Foralt >0, X =((X), - (X),) € Rmand Y, = ((Y,),, -... (Y,),) € R"suchthat (X ). > (Y,));i €,
the corresponding solutions satisfy
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PAX® =Y (), iel, t>t})=1
(it) For al i e | the functions f and g satisfy
f(t,x)>f(ty for t=0,
gij(t, x)=gij(t, y) for t>0, j=1,..r,
andall x=(x,..,x)eR"y=(y,..Y)eR"suchthat x >y, kel, x=y.

We remark that the assumptions (a)-(c) in Theorem 7 areimposed to guarantee the existence of solutions
of the stochastic initial value problem (f, g). The more restrictive hypothesis in Theorem 8 imply the
existence and uniqueness of solutions, and therefore, the stochastic viability of a subset is equivalent to the
stochastic invariance with respect to the system (f, g).

We will deduce our criteria from Milian's result and show that they are valid independent of 1t6’s and
Statonovich's interpretation of stochastic differential equations. In the sequel, we use the symbol dW/(t) to
indicate Stratonovich'sinterpretation. For convenience of thereader we recall the general conversion formula
for systems of stochastic differential equations, which relates both interpretations (see [2], Section 6E):

If we interpret the stochastic system (1) in the sense of Stratonovich, that is, X is the solution of the
stochastic system

dX(t) =f(t, X(t)) dt + g(t, X(t)) ° dW(t),

then, X solves the system of 116 equations

dX (t) = [ f(t, X (1) +% h(t, X (t))} dt + g (t, X (£)) dW ()

where the function h = [h] : [0, o[ x R™ — R™is given by

hi(t,x):zrlzm:ag‘lk ¥ g, (X, i=L..m. @)

=1 OX

Proof of Theorem 2: Using polyhedral subsets of R™ the positive cone can be represented as

K*:QHOY&I,

where0 € R™denotestheoriginand e, i =1, ..., m, the standard orthonormal basis vectorsin R™. Sincewe
a priori assume the existence and uniqueness of solutions of the stochastic initial value problem (f, g), the
stochastic viahility of the positive cone K* is equivalent to its invariance with respect to the system (f, g).
Evaluating the necessary and sufficient conditions formulated in Theorem 7 immediately follows the result
for 1t@’s interpretation of the stochastic system. We need to show that the statement remains valid if we
apply Stratonovich’sinterpretation of stochastic differential equations. Let X be asolution of the Stratonovich
equation

dX () = f(t, X (1)) dt + g(t, X) © dW(t).

Then, the transformation formulaimplies that X solves the system of It6 equations (f , 9) with modified
interaction term f = f + 12h, where the function h is defined by the formula (7). We apply our previous
result, which isvalid for 1t8’s interpretation, to the stochastic system (f, g) and conclude that the positive
cone is an invariant subset if and only if
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f (x>0 x € K* suchthat x =0,
gi;j(t, X)=0 x e K* suchthat x =0, j=1,..,r,

foralt>0andi e |. The conditions on the stochastic perturbations yield the representation

o9, |
giyj(t,x):)gI:ai);(t,)(l,...,sx,..., X..) dq iel=1..,r, (8)

and it followsthat the functions f and g satisfy the conditions in Theorem 2 if and only if the functionsf and
g fulll these conditions. This observation concludes the proof for Stratonovich's interpretation.

Proof of Theorem 3: We can represent the subset K in Theorem 3 asthe nite intersection of polyhedral
subsets

K= (Hoe NHq ).
iel
Computing explicitly the necessary and sufficient conditions for the invariance of the subset K in
Theorem 7 follows the statement for the system of 1t6 equations (f, g).

To prove the result for Stratonovich's interpretation we use the explicit relation between both
interpretations and the representation (8) for the stochagtic perturbations in the nal part of the proof of
Theorem 3. This leads to the modified system of 1t6 equations (f, g), for which necessary and sufficient
conditions are known. We observe that the conditions on the functions f and g are equivalent to the same
conditions for the functions f and g, and are therefore invariant under the transformation relating both
interpretations.

Proof of Theorem 4. The comparison theorem for 1t0’s interpretation is valid by Theorem 8. To show
the result for Stratonovich’s interpretation of stochastic differential equations we use the explicit
transformation formula, which leads to the modified system of It6 equations (f, g). We apply the known
result for 1td’s interpretation and observe that the conditions for the functions f and g are equivalent to the
conditions for the functions f and g.

6. CoNcLUDING REMARKS

We obtained necessary and sufficient conditions for the invariance of rectangular subsets of the euclidean
space under sysemsof stochastic differential equationsand proved that the invariance property isindependent
of It&é’sand Stratonovich's interpretation. In particular, we were able to characterize the class of stochastic
perturbations that preserve the invariance property of the unperturbed deterministic system of ODEs. Such
results are very relevant for applications and allow to validate stochastic models.

When not only temporal but also spatial properties are relevant, the models are generally formulated as
systems of stochastic PDEs. We are currently working on the extension of our invariance results for systems
of parabolic PDEs under stochastic perturbations. A first result in this direction has been obtained in [1].
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