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ABSTRACT:  An equation that models electromagnetic wave propagation in a medium
with spatial and temporal inhomogeneities is considered. Asymptotic solutions and some
Hamiltonian-related field properties of the equation in both non-caustic and caustic regions
are developed.
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1. INTRODUCTION

Electromagnetic wave propagation in a medium with both spatial and temporal
inhomogeneities is commonly modeled by an equation of the form

2
2

2

( , )
( , ) ( , ) ( , ) ( , ) 0

E r t
E r t f r t g r t E r t

t

�
� � � �

�
. (1)

 In Equation 1, E
—

 (r
—, t) is the wave function, r— refers to the spatial coordinates and

t is the time. When associated with a plasma, f (r
—, t) is related to the index of refraction

and g (r—, t) to the plasma oscillations. In modelling ionospheric propagation, often the
ionosphere is regarded as stationary, hence time does not appear in the index of refraction
and the medium oscillations are considered as negligible, hence g (r—, t) = 0. With regard
to electromagnetic wave propagation in tokamaks, however, both the time variation of
the medium and g (r—, t) assume greater importance. Physically, the temporal
inhomogeneity occurs when the characteristic frequencies of the medium, e.g., the
resonant absorption frequency of the molecules, the cyclotron frequency of the plasma,
lie within the frequency range of the source. In this case the component frequencies of
the source are not uniformly absorbed and re-radiated. The re-radiated frequency
components are propagated with different velocities, resulting in a distortion of the
waveform[1, 2].

No general technique exists for obtaining exact solutions to Equation 1, or even the
stationary model often considered in ionospheric propagation. Consequently, various
approaches have been developed leading to approximate solutions, each approach valid
under situation-specific assumptions. But the difficulty of obtaining even approximate
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solutions has long been noted, cf., [3]. One such approach is the asymptotic series, or
geometrical optics algorithm, originally developed by Keller [4]; however, this formalism
predicts infinite wave amplitudes at caustics, regions where the inhomogeneities of the
medium effect a focusing of the wave trajectories. The geometrical optics algorithm
has been modified to predict realistic wave amplitudes, associated with simple caustics
for such as Equation 1, cf., [5, 6, 7]. More complicated caustics remain problematic,
both in the analysis of propagation in tokamaks and in the time-independent propagation
models associated with radio occultation, the remote analysis of planetary atmospheres
[8, 9]. Further, such optical caustics have been produced in stationary media in a
laboratory setting [10].

One approach to this difficulty is the Lagrange manifold formalism introduced by
Arnol’d [11] and Maslov [12]. The finite wave amplitudes their approach predicts shows
that while caustics are associated with regions which exhibit a focusing of energy, the
wave amplitudes predicted by the geometrical optics approach arise as a consequence
of the parametrization, rather than from a physical singularity. Our purpose here is to
extend a formalism [13] developed to study more general caustics associated with scalar
waves in spatially and temporally inhomogeneous media to asymptotic series solutions
near caustics for electromagnetic wave propagation as modelled by Equation 1. In order
to provide a better comparison of the geometrial optics and modified Lagrange
formalisms, away from caustics we summarize Keller’s asymptotic approach. Near
caustics, we apply the modified Lagrange manifold approach, which allows inclusion
of more complicated caustics than are ordinarily considered. In both regions, we develop
transport equations that enable determination of the full asymptotic series solution and
illustrate this approach with a simple example. Because both the geometrical optics
and Lagrange manifold approaches are Hamiltonian formalisms, we illustrate that some
field considerations associated with non-caustic regions may be extended to caustic
regions.

2 NON-CAUSTIC REGIONS

The asymptotic procedures begin with a re-scaling of coordinates (r— � r—/�, t � t/�),
where � is a large parameter. Consequently, Equation 1 may be written as
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Physically, this implies the regime of long distances and observation times. Away
from caustics, the geometrical optics approach assumes a solution of the form

( , )( , ) ( , , ) i r tE r t E r t e ��� � , (3)
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In Equation 3, E
—

 (r
—, t, �) may be regarded as the wave amplitude and � (r

—, t) as a
phase. Then substituting Equation 3 into Equation 2, followed by a re-grouping by
powers of i�, obtains
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Next, introducing the wavevector and frequency
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�
, (6)

respectively, into the coefficient of the (i�)2 term determines the eikonal equation
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which may be regarded as a Hamiltonian
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Then Hamilton’s equations
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where � is a raypath parameter, e.g., the arclength, may be used to determine the phase.
The solution of Equations 9 and 10



40 ARTHUR D. GORMAN

( , ), ( , )r r k k� � � � � � (11)
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where �— is a parameterized initial condition, e.g., direction cosines, are the space-time
ray trajectories. The phase is determined by an integration along the trajectories
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With the phase thus determined, a transport equation for the wave amplitudes
proceeds from the (i�) and (i�)0 terms in Equation 5, again using Hamilton’s Equations,
specifically from Equation 8,
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Then substitution of Equations 14 into Equation 5 determines the transport equation
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Consequently, if the wave amplitude E
—

0 is specified at the source, r—0 at some initial
time, t0, with initial wave vectors, k

—

0, and frequency, �0, satisfying Equation 7, then the
wave amplitudes at any space-time field point (r—, t) may be determined from
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where J
t
 is the Jacobian of the ray transformation from parameter space to coordinate

space, �— � r—, at each time t, i.e.,
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where �— = (�—, �). With E
—

0(r
—, t) determined, the other E

—

n
,’s may be obtained recursively.

This algorithm suffices to determine the asymptotic solution at most field points.
At caustic points, however, the spatial and temporal inhomogeneities of the medium
effect a focusing of trajectories and the ray transformation from parameter space to
coordinate space becomes singular, i.e., J

t 
(r—, �—) = 0. Consequently, at such points, this

algorithm predicts unrealistic wave amplitudes and a modified approach is necessary.
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3. CAUSTIC REGIONS

One approach that applies near caustics is a variation of a formalism developed by
Arnol’d [11] and Maslov [12] that has been adapted to study caustics associated with
scalar waves in media with an inhomogeneous non-stationary flow [13]. Analogous to
Equation 3, near caustics we assume a solution of the form

( , ) ( , , , ) iE r t E r k t e dk��� �� . (18)
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and its derivatives are assumed bounded, and

( , , ) · ( , )r k t r k S k t� � � , (20)

is analytic. Then carrying the differentiation in Equation 2 across the integral in Equation 18,
re-grouping by powers of i� leads to
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By introducing the wavevector and frequency from Equation 6, the coefficient of
the (i�)2 term is seen to be the Hamiltonian, Equation 8, from which we obtain the
phase.

The determination of S (k
—

, t), and hence the phase, proceeds from the stationary
phase (�

k 
� = 0) evaluation of the integral at any caustic point (r—, t), leading to the

time-parameterized Lagrange manifold

r— = �
k 
S (k

—
, t), (22)

a coordinate transformation between configuration space and momentum space. To
determine S (k

—
, t), we again apply Hamilton’s Equations 9 and 10 to find the trajectories

(map) in Equations 11 and 12. Next the wavevector and time transformations are inverted
to obtain

k
—

 = k
—

 (�, �
—), t = t (�, �

—). (23)
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Then substitution of Equation 23 into the coordinate space map, determines the
Lagrange Manifold explicitly:
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where time appears as a parameter. Finally, an integration along the trajectories obtains
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and, hence, the phase
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In the parametrization specified by the Lagrange Manifold, caustic points are those
space-time points at which
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Each triplet (k
—

) that satisfies Equation 27 at a particular time t corresponds to a
caustic point in configuration space obtained by substitution into the Lagrange manifold,
Equation 22. The locus of these points specifies the caustic curve in configuration
space at that particular time. Solving Equation 27 for various values of time, with
repeated substitution into the Lagrange manifold, obtains the time-evolution of the
caustic in configuration space.

We determine a transport equation for the wave amplitudes by Taylor-expanding
the Hamiltonian near the Lagrange manifold
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 Substitution of Equation 29 into Equation 21, followed by a partial integration,
leads to
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Finally, introducing the non-Hamiltonian flow
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into the integral in Equation 30 determines the transport equation
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for the evolution of the amplitude in Equation 21.

4. EXAMPLE

As an example, we consider propagation from a point source at the origin r— = (0, 0, 0)
at time t0 with initial frequency �, initial wave vector k

—

0 and direction cosines
(cos (�), (sin (�), cos (�)), where � and � are the usual horizontal and vertical direction
angles, respectively. For expositional clarity, let the medium have an index of refraction
f (r

—, t) = 1 and plasma oscillation index g (r
—, t) = c2 – at – bz, where a, b and c are

positive constants. Then assuming a solution of the form in Equation 3 leads to the
Hamiltonian
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and from Hamilton’s Equations, the configuration space and wavevector maps
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We note that the map from parameter space to coordinate space (�— � r—) becomes
singular on the curve �b cos (�) + k0 = 0 or if � = 0. For such caustic points, we invert
the map from parameter space to wavevector space (�— � k
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) and substitute into Equations
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where
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Finally, from Equation 32, we determine the transport equation
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The determination of the electromagnetic field E
—

 = (r—, t) then follows from the
asymptotic evaluation of the field integrals, from Equations 18 and 19,
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5. CALCULATIONAL CONSIDERATIONS

The asymptotic evaluation of the field integrals
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phase to its canonical form. If the Hessian determinant, i.e.,
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(The case j = 2 corresponds to points in the non-caustic region and are most
expeditiously handled using the geometrical optics approach.) The value of the exponent
‘j’ may be found by forming
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where e1, e2 and e3 are the components of the zero eigenvector and k
—

f
 = (kfx
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, ffz) . The

first non-vanishing term in the Taylor series of G (�) determines the value of j. The sign
�3 corresponds to the sign of this Taylor coefficient, and the signs of �1 and �2 correspond
to the signs of the non-zero eigenvalues. The values j = 3, 4 correspond to the Airy and
Pearcy functions, or the fold and cusp forms of Thom [14, 15], and the coordinate
transformations carrying the eikonal phase to the canonical form may be determined
algebraically by completing the cubic or quartic, as appropriate. If j � 5, where j = 5, 6
correspond to the swallowtail and butterfly forms of Thom, the coordinate
transformations require an application of the implicit function theorem.

The resulting integral
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is evaluated by factoring the triple integral into an integral over (�1, �2) followed by an
integral over �3. The evaluation proceeds using the classical stationary phase technique
for the integral over (�1, �2), followed by a modified stationary phase approach for the
integral over �3.

The case where the Hessian determinant has two zero eigenvalues corresponds to
more complicated caustic structures. The canonical form for the phase is
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where � (�2, �3) is the appropriate Thom umbilic and the sign of �1 corresponds to the
sign of the non-zero eigenvalue. To transform the eikonal phase to this canonical form
we first apply the splitting lemma and complete the square in the quadratic. The umbilic
corresponding to the eikonal phase is then determined from the cubic terms in �2 and
�3, i.e.,
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Two special cases are noteworthy. If t30 = t03 = 0 and both t12 and t21 � 0, the
corresponding form is the parabolic umbilic. If t30 = t03 = 0 and either t12 or t21 = 0, there is
no corresponding form. Additionally, we note that the case corresponding to three equal
roots represents a symmetry where propagation in three dimensions may be modelled as
two dimensional. The canonical forms corresponding to the Hessian matrix having three
zero eigenvalues have been given by Arnol’d [16]. This case is not considered here.

The coordinate transformations carrying the eikonal phase to the appropriate umbilic
are detailed elsewhere [14, 15] and after a factoring result in the integral
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where � (�2, �3) is the umbilic and the sign of �1 follows from the sign of the non-zero
eigenvalue. The evaluation of this triple integral begins with a straightforward stationary
phase integration over �1, followed by a substantially modified stationary phase approach
for the integration over �2 and �3 [17].

6. FIELD CONSIDERATIONS

Because the Lagrange Manifold formalism is essentially an integral representation of
the geometrical optics approach, various Hamiltonian and field properties away from
the caustic carry over into the caustic region. Since these algorithms develop identical
eikonal equations and Hamiltonians on and off the caustic, i.e.,
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Also, Hamilton’s equations will be the same in both regions, specifically,
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Hamilton’s equations may be recast as derivatives with respect to time by merely
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From these equations, we observe the following phenomenological predictions apply
both away from and on the caustic:

(1) the direction of propagation coincides with the group velocity;

(2) any change in the local wave vector in a given direction must be the result of
a spatial inhomogeneity acting in that direction. If the medium is cyclic in
that direction, the wavevector is conserved in that direction;

(3) any change in the frequency must be the result of a temporal inhomogeneity
in the medium. If the medium is autonomous, then the frequency is conserved.

Two vector field phenomenologies are also worth noting. The first-order
approximation to the time-averaged Poynting vector (power density or, equivalently
the magnitude of the field vector, E0

2) S
—

 both on and off the caustic becomes
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where �0 and �0 are the permittivity and permeability, respectively, of vacuum, proceeds
from the n = 0 term of the appropriate transport equation. For example, in the off-caustic
region, from i� term Equation 5, we have
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—

0
* and the complex conjugate of Equation

40 by E
—

0, adding and introducing � from Equations 6 and the Hamiltonian flow from
Equations 14, leads to

2 2
2 20

02
2 ( , ) 0

dE
f r t E

d t

� �� �
� � � � �� �� �� �� �

, (41)

and thus

2
2 2 2
0 0 2

( ) (0) exp 2 ( , )E E f r t d
t

� �� �� �� �� � � � � �� �� �� ��� �� �� �
� . (42)

Analogously on the caustic, we consider the �\ tau term in the integral in Equation 30

2
0

0 0 0 02
( · ) ( · ) 2 · ( , ) ( , ) 0k k

E
D E D E E f r t f r t E

t t t

� ���� � �
� � � � � �� � � � �� �� � �� �

. (43)
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 Applying the same procedure but with the flow from Equations 31 leads to

2 2
20
02

2 ( , ) · 0k
dE

f r t D E
d t

� �� �
� � � �� �� �� �� �

, (44)

and

2
2 2
0 0 2

( ) (0) exp 2 ( , ) · 0kE E f r t D d
t

� �� �� �� �� � � � � �� �� �� ��� �� �� �
� . (45)

A similar consideration leads to an interesting result for the zeroth-order
approximation for the polarization

0

0 0( · )

E
P

E E�
� . (46)

In the off-caustic region, substituting for �2� from Equation 40 into Equation 41
and re-grouping leads to the result that on the Hamiltonian flow

0
dP
d

�
�

. (47)

Analogously, substituting for �  D
—

 from Equation 43 into Equation 44 and
introducing the non-Hamiltonian flow from Equation 31, also yields Equation 47 on
the caustic. Consequently, this model predicts that away from the caustic on the
Hamiltonian flow and that on the caustic on the non-Hamiltonian flow in Equation 31,
the first-order approximation to the polarization is a constant. Equations 41, 44 and 47
correspond to similar results obtained for spatially inhomogeneous stationary media
[18, 19].

REFERENCES

[1] K. C. Chen, Asymptotic Theory of Wave Propagation in Spatial and Temporal Inhomogeneous
Media, J. Math. Phys., 12, (1971), 743-753.

[2] P. M. Bellam, Fundamentals of Plasma Physics, Cambridge, University Press, London, (2006).

[3] M. Branbilla, and A. Cardinali, Eikonal Description of High Frequency Waves in Toroidal
Plasmas, Plas. Phys., 26, (1982), 1187-1218.

[4] J. B. Ke1ler, A Geometrical Theory of Diffraction in Calculus of Variations and Its
Applications, Proc. Symp. Appl. Math., VIII, (1958), (Ed.), L. M. Graves, McGraw-Hill,
New York.



50 ARTHUR D. GORMAN

[5] J.-D. Benamou, O. Lafitte, R. Sentis, and I. Sollie, A Geometrical Optics-Based Numerical
Method for High Frequency Electromagnetic Fields Near Fold Caustics, I. J. Comput. Appl.
Math., 156, (2003), 93-125.

[6] Jaun E. R., Tracy A. N., Kaufman, Eikonal Waves, Caustics and Mode Conversion in Tokamak
Plasmas, Plasma Phys. Contr. Fusion., 49, (2007), 43-67.

[7] A. V. Panchenko, T. Zh. Esirkepov, A. S. Pirozhkov, F. F. Kamenets, and S. V. Bulanov,
Interaction of Electromagnetic Waves with Caustics in Plasma fFlows, Phys. Rev. E, 78,
(2008), 056402-13.

[8] M. E. Gorbunov, and K. B. Lauritsen, Analysis of Wavefields by Fourier Integral Operators
and Their Application for Radio Occultations, Rad. Sci., 39, (2004), RS 4010, doi:10.1029/
2003RS002971.

[9] A. S. Jensen, M. S. Lohman, A. S. Nielsen, and H.-H. Benzon, Geometrical Optics Phase
Matching of Radio Occultation Signals, Rad. Sci., 39, (2004), RS 3009, doi:1029/
2003RS002899.

[10] J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations,
Institute of Physics Publishing, Bristol (1999).

[11] V. I. Arnol’d, Characteristic Class Entering in Quantification Conditions, Funct. Anal. Appl.,
30, (1967), 1-l3.

[12] V. P. Maslov, Theorie des Perturbations et Methodes Asymptotiques, Dunod, Gauthier-Villars,
Paris, (1972).

[13] A. D. Gorman, On Wave Propagation in an Inhomogeneous Non-Stationary Medium with
an Inhomogeneous Non-Stationary Flow, Proc. Roy. Soc., 461, (2005), 701-710.

[14] T. Poston, and I. N. Stewart, Catastrophe Theory and Its Applications, Pitman, London, (1978).

[15] R. Gilmore, Catastrophe Theory for Scientists and Engineers, Wiley, New York, (1981).

[16] V. I. Arnol’d, Singularity Theory, Cambridge University Press, Cambridge, (1981).

[17] A. D. Gorman, and R. Wells, On the Asymptotic Expansion of Certain Canonical Integrals,
J. Math. Anal. Appl., 102,(1984), 566-584.

[18] L. B. Felsen, and N. Marcuvitz, Radiation and Scattering of Waves. Prentice Hal1, Englewood
Cliffs, NJ, (1973).

[19] A. D. Gorman, Vector Fields Near Caustics, J. Math. Phys., 26, (1985), 1404-1407.

Arthur D. Gorman
Department of Mathematics,
Lafayette College, Easton, Pennsylvania 18042, USA
E-mail: gormana@lafayette.edu




