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Abstract: The Distributed Differential Evolution (dDE) algorithm is a natural extension of the Differential Evolution
(DE) algorithm, which is a recent addition to the Evolutionary Algorithms (EAs) pool, in the Evolutionary Computing
(EC) field of computer science. The algorithmic novelty of the dDE algorithm is well evident in the literature.
However, the theoretical studies on the performance of the dDE algorithms are scarcely reported. This paper is an
attempt to analyze the performance of the dDE algorithm with a theoretical study. A theoretical equation, to measure
the population diversity of the sub-population of the dDE algorithm, after migration, is derived and the validity of
the same is verified with a simple distributed framework of dDE with two sub-population.

Index Terms: Distributed Differential Evolution, Population Diversity, Theoretical Study of dDE, Population
Variance, Distributed Framework.

1. INTRODUCTION

There are several optimization tasks around us. In order to solve these optimization tasks we have optimization
techniques. One among these optimization techniques is Evolutionary Computation. The algorithms used
in Evolutionary Computation are grouped and termed as Evolutionary Algorithms (EAs). The EAs relate
the biological processes and optimization. There are many instances of Evolutionary Algorithms which
include Evolutionary Strategies (ES), Evolutionary Programming (EP), Genetic Algorithm (GA) and Genetic
Programming (GP).

Differential evolution, introduced by Storn and Price(1995,1997), is an optimization technique which
can handle non-linear, non-differentiable and multimodal objective functions. DE inculcates the policy of
survival of the fittest. It is a simple, robust and a powerful population based search algorithm. DE is said to
have good convergence properties and it outperforms any other Evolutionary Algorithms.

In distributed differential evolution (dDE), the entire population is divided into n subpopulation and
each of this subpopulation evolves independently. The subpopulation are interconnected by a topology. At
every particular interval, known as the migration interval, each subpopulation sends their best candidate to
the neighboring node which results in a cooperative co-evolution. Such continuous cooperative co-evolution
leads to the success of distributed Differential Evolution. The novelty of distributed Differential Evolution
lies in the exchange of information from one node to the other. This periodic exchange of information is
termed as the process of migration. The process of migration is dependent on many factors which include
the interval at which one node sends the information to the other (migration interval), number of migrants
that are transferred from one node to the other (migration rate), the topology according to which the nodes
are inter connected, number of islands in which each subpopulation is let to evolve independently and the
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migration policy. Migration policy includes the method of selecting the individual that is to be migrated to
the other (selection policy) in order to replace another individual (replacement policy).

The impact of migration on the diversity of the population can be explained with the parameters of
migration. As migration interval decreases, the population may be prone to genetic drift and finally loses
the diversity very fast. If the migrations are rare, it leads to slow convergence as it gets stuck in the local
minima, causing the algorithm to stop prematurely. The best performance is achieved with moderate migration
intervals and small migration rates.

With migration, the exploration ability of DE increases as foreign candidates add diversity to the
population. The population diversity should neither increase nor decrease too fast. In order to ensure that
the algorithm is proceeding in the correct path, it is essential to maintain the diversity. If there is no balance
between the exploration (mutation and crossover) and exploitation (selection) processes, the Evolutionary
Algorithms lose their search capability, leading to premature convergence or stagnation (Zaharie, 2003,
Zaharie and Zamfirache, 2006, Angela et al., 2008, Zaharie, 2001b). Measuring the population variance is
a standard method to measure the population diversity.

The aim of this paper is to derive an equation to measure the changes in the population diversity of the
sub-populations of the dDE algorithm and to verify the correctness of the equation. The experiments
conducted and the results obtained are presented in this paper.

The remaining part of the paper is organized as: section II deals with related works, section III details
the experiments conducted and their results and finally section IV concludes the paper.

2. RELATED WORKS

In the literature of Evolutionary Algorithms (EAs), the theoretical studies are very limited compared to the
empirical studies. This is true for DE algorithm also. However, the working behavior of any algorithm can
be understood and further improved with suitable theoretical studies made on the algorithm. Few research
attempts made in DE algorithm with theoretical foreground is presented below.

The evolutionary search dynamics of DE was analyzed theoretically and reported in (Dasgupta et al, 2008,
2009). Interestingly the runtime complexity analysis of DE algorithm with different stopping criteria was done
by Zielinski et al, theoretically and empirically. The results are reported in (Zielinski et al., 2005). A mathematical
modeling to convergence analysis of DE (but for continuous multi-objective optimization) was presented in
(Xue et al., 2005a). This work was later extended for discrete case and reported in (Xue et al., 2005b).

Co-operative co-evolution was first put forward in (Potter and DeJong, 1994), for genetic algorithm
(CCGA). This concept had been widely applied to all the EAs (Liu et al., 2001, Sofge et al., 2002, Bergh
and Engelbrecht, 2004). It follows the Divide-and-Conquer strategy. The co-operative co-evolution
architecture included three components viz. Problem decomposition, Subcomponent optimization and
Subcomponent co-adaptation. The efficiency of one among the parallel models, i.e, island based distributed
model, with cooperative coevolution concept was studied in (Skolicki and Jong, 2004, 2005) and (Cantu-
Paz, 2001). The distributed models of EAs follow the exchange process called migration, to send and
receive candidates among the populations. The migration process itself involves many parameters (Cantu-
Paz, 2001, Skolicki and Jong, 2004).

In 2004, D.K Tasoulis et.al studied on how to parallelize Differential Evolution using ring topology in
order to improve the speed and performance of DE. The different migration policies was experimented on
ring topology and the performance was studied in (Jeyakumar and ShunmugaVelayutham, 2010b). The
best and worst variants of DE were heterogeneously mixed together in different distributed frameworks
(dDE framework) in (Jeyakumar and ShunmugaVelayutham, 2015) and the best variants were found to
outperform the worst.
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Zaharie (Zaharie, 2001a) made a significant contribution to the theoretical analysis of DE algorithm, by
deriving an expression to measure the population diversity of the DE population, with the know control
parameter values mutation rate (F) and cross over rate (P

c
). This work was later extended in (Zaharie,

2002a) and (Zaharie 2002b). Zaharie also reported the impact of population variance in DE search for
different mutation and crossover operators in (Zaharie, 2008). A theoretical insight about the influence of
crossover operators of DE was provided in (Zaharie, 2009). By extending the theoretical work done by
Zaharie (zaharie, 2001) for DE/rand/1/bin variant, in (Jeyakumar and ShunmugaVelayutham, 2010a) and
(Thangavelu et al, 2015) the expressions to measure the expected population variance of few other variants
of DE are presented.

But the idea of deriving a theoretical expression to measure the population variance at each generation
of dDE is a new research direction. It is worth noting that this paper is an initial attempt in this direction of
research. The authors derived the expression by considering the migration process of dDE and its validity
is verified with suitable experiments.

3. RESULTS AND DISCUSSION

The equation derived by Zaharie (Zaharie, 2001a), to measure the population variance of classical DE
algorithm is not applicable to measure the population variance of the dDE algorithm, as this equation
calculates the current population variance from the initial population variance of the population. The initial
population variance of the classical DE algorithm is fixed. But in dDE algorithm, since the population
variance of the sub-population changes after every migration between them, the initial population variance
is not fixed. Hence, the equation derived in (zaharie, 2001a) is not applicable for dDE.

Thus the authors are proposing to derive a new equation to find out the population variance of each of
the subpopulation taking into account the factor of migration. In the migration process of distributed
Differential Evolution, the strategy chosen by the authors, the best candidate of each of the sub-population
replaces a random candidate in the other sub-population. Consider a population of size 100 candidates is
split into two subpopulations of size 50 candidates each. Thus there are two nodes S

1
 and S

2
, connected

using ring topology, running each subpopulation. After a particular migration interval, each node transfers
the best candidate to the next node and replaces a random candidate by the received candidate. This
operational scheme of dDE is depicted in Figure 1.

Thus the migration process brings a change in the population diversity of each of the sub-population.
The authors formulated an equation to measure the population diversity of the sub-population after the
migration. The derived equation is shown in Equ (1).

Figure1: Distributed Differential Evolution using two subpopulations
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Where 2
new� is the new variance (after migration), 2

old� is the old variance (before migration), X
new

 is

the new (best) candidate, X
old

 is the old (random) candidate, �
old

 is the old mean, n is the total number of
candidates in the population.

Two approaches are followed to verify the validity of the derived equation

(1) Sequential Approach: In a single population, at a certain interval, the best candidate is replaced by
newly created random candidate. This experiment was conducted to analyze the validity of the
derived equation (Equ (1)) in classical DE algorithm itself.

(2) Simulated Distributed Approach: The initial population is divided into two subpopulation of equal
size, and they are allowed to evolve one by one in two different procedures. They also migrate at
each generation. Since this approach simulates the distributed DE (dDE) where the subpopulation
are evolved by independent processes, it verifies the validity of the equation in simulated distribute
DE (dDE).

3.1. Sequential Approach

This experimental setup used a population of size 15 and dimension 4, DE variant DE/rand/1/bin, and the
benchmark function ‘Sphere Model’. A random candidate of dimension 4 is generated and used to replace
the best candidate of the population. The variance was calculated component wise and the average of all
the variances thus obtained was observed as the total variance. This was made to repeat for 3000 generations.
The algorithmic structure of this sequential approach is shown in Figure 2.

The statistical method used in this algorithm (Figure 2) for measuring the population variance uses the
logic of finding the variance of the components of the population using the equation Equ (2) and finding
their average as the population variance.

2
0

1
var ( [1] )n

i iX
n
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where X[1]
i
 is the component [1] of the population

Figure 2: Algorithm for Sequential Implementation
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and � is mean of component[1]

The results obtained for the verification of the equation is presented in Table 1. The results includes the
population variance values measured (for the first 150 generations) using the statistical equation (Equ (2))
and the by using the equation derived by the authors (Equ (1)). The Table 1 also shows the population
variance measured without migration step. It is evident from the results that the population variance measured
using the equation Equ (1) is matching with the values measured statistically, at all the generation. This
proves the validity of the equation derive by the authors.

Table 1. Population variance measured for sequential implementation

Population Variance

G Without With Migration

Migration Statistical Using Equ (1)

1 1852.80 1837/78 1837.78

10 134.47 211.38 211.38

20 4.64 87.98 87.98

30 0.97 84.87 84.87

40 0.07 83.43 83.43

50 0.01 83.92 83.92

60 0.00 83.84 83.84

70 0.00 83.86 83.86

80 0.00 83.85 83.85

90 0.00 83.86 83.86

100 0.00 83.86 83.86

110 0.00 83.86 83.86

120 0.00 83.86 83.86

130 0.00 83.86 83.86

140 0.00 83.86 83.86

150 0.00 83.86 83.86

3.2. Simulated Distributed Approach

Later, the above said experiment was extended to a population of 60 candidates and 30 dimension, for
distributed DE with two sub-population. The population was divided into two subpopulation each having
30 candidates. Two different procedures are generated to evolve the subpopulation one by one. When one
of the procedures is called, it performs mutation, crossover, selection and finds the best candidate in its
subpopulation. Then this candidate is sent to the next procedure to replace a random candidate in the sub-
population. Similarly, the second procedure also performs mutation, crossover, selection, finds best candidate
and sends the best candidate to the first subpopulation. The algorithmic structure of this implementation is
shown in Figure 3.

The results obtained after this implementation are presented in Table 2 for sub-population 1 and sub-
population 2. The results are recorded for both the sub-populations, at every generation. The theoretical
variance and the statistical variance after migration were found to be the same in every case. This reiterates
the validity of the equation derived by the authors. Thus, the derived the equation is verified for its validity
with two different experimental setups.
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Figure 3: Algorithmic Structure of Distributed Implementation

Table 2. Population variance measured for distributed implementation

G Sub-Population 1 G Sub-Population 2

Statistical Using Equ (1) Statiscial Using Equ (1)

1 2755/72 2755/72 1 3135.18 3135.18

2 2454/64 2454/64 2 2882.09 2882.09

3 2085.83 2085.83 3 2607.28 2607.28

4 1766/47 1766/47 4 2343.78 2343.78

5 1405.25 1405.25 5 2046.60 2046.60

6 1136.75 1136.75 6 1437.72 1437.72

7 816.92 816.92 7 922.19 922.19

8 610.55 610.55 8 683.48 683.48

9 476.84 476.84 9 557.16 557.16

10 321.72 321.72 10 362.21 362.21

11 155.01 155.01 11 201.60 201.60

12 95.85 95.85 12 117.21 117.21

13 38.81 38.81 13 79.79 79.79

14 18.19 18.19 14 33.02 33.02

15 8.93 8.93 15 19.75 19.75

16 3.94 3.94 16 7.17 7.17
17 2.14 2.14 17 2.75 2.75

18 1.10 1.10 18 1.41 1.41

19 0.36 0.36 19 0.53 0.53

20 0.11 0.11 20 0.17 0.17

21 0.03 0.03 21 0.06 0.06

22 0.00 0.00 22 0.01 0.01

23 0.00 0.00 23 0.00 0.00

24 0.00 0.00 24 0.00 0.00

25 0.00 0.00 25 0.00 0.00
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4. CONCLUSION

This paper presented about the derivation of a theoretical equation to measure the population diversity of
the sub-populations of the distributed differential evolution algorithm after the migration step. The validity
of the derived equation is also verified with two different experimental approaches: sequential approach
and simulated distributed approach. The experiments are conducted with the experimental setups suitably
designed to implement classical DE and distributed DE (dDE) algorithms. The results obtained by the
experiments proved that the derived equation to measure the population diversity as population variance of
a population after migration of new candidates is valid.
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