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Abstract: This paper aims to explore the issue of whether the number of regimes in aggregate
time series is similar to those in individual time series. Two methods of aggregation, which
areequal and value weighted, are considered. A Monte Carlo simulation is carried out with
different settings to investigate possible source of changes that could affect the number of regimes
in aggregate time series. The results show that the number of regimes in aggregate time series
is a function of individual time series, regardless of the aggregation method. This result is
consistent with Francq and Zakoian (2001, 2002).
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1. INTRODUCTION

This paper concerns determination of the number of regimes (hereafter called
r) in aggregate time series in Markov switching model (hereafter called the MS
model). Suppose that one individual time series (y1,t) has two regimes and another
series (y2,t) has three regimes. When combining these two time series into one
aggregate time series an interesting issue is whether aggregate time serieswould
have a similar number of regimes to that of individual time series (y1,t or y2,t). This
question is not only interesting in theory but also important in practical
applications. For instance, investment portfolios of most investors generally have
more than one investment asset for the purpose of diversification. Assuming that
there are two assets (common stocks and real estates, for example) in a portfolio
and both of them have different regimes (e.g., one asset has two regimes while
another asset has three regimes), would a combination of these two assets in a
portfolio produce two or three regimes?

There are two general methods for aggregating time series: temporal and cross-
sectional (Granger, 1988). The cross-sectional aggregation is a method by which
several time series are summed to form an aggregate time series at a given point in
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time. On the other hand, when a time series is generated on a daily or weekly basis
and summed in a form of a monthly series, it can be referred to as the temporal
aggregation. Quarterly or annual time series, for instance, may be constructed from
monthly series. In the literature, some studies, including Girardin and Liu (2007)
and Chan and Chan (2008), have examined the latter case by using the MS model.
Chan et al. (2009), for example, investigate the effects of temporal aggregation on
the MS model. They suggest that if a model is closed under temporal aggregation,
parameters of the lower frequency model (or aggregate time series) can be directly
implied by those of the higher frequency model (or individual time series). Little
study, however, has examined the cross-sectional aggregation on the MS model.

This paper considers particularly two possible cross-sectional methods of
combining individual series into one aggregate time series. The first method (an
equal-weighted method) assumes that all individual series have the same weight.
The second method (a value-weighed method) assumes that individual series
have a different weight. The primary focus of this paper is on the number of
regimes in aggregate time series, which is formed by the cross-sectional
aggregation.

There are four papers related to this issue. They are Rose (1977), Zhang and
Stine (2001), and Francq and Zakoian (2001, 2002). On the issue of cross-sectional
aggregation of time series, Rose (1977) shows that the (p, q) orders of aggregate
time series are a function of the orders of individual ARMA processes. In addition,
this aggregate time series could be formed directly from independent ARMA
models. More specifically, the weighted sum of n independent ARMA processes
of orders (pi, qi), i = 1, 2, …, n is an ARMA process of order (p, q) where k is the total
number of root repetitions among the polynomials and

1

,  max( ).
n

i ii
i

p p k q p q

For example, if there are three independent time series without root repetitions
and pi for each of them is one, then when combining these three models into one
aggregate time series, the order pof the aggregate time series would be less than or
equal to three. Zhang and Stine (2001) first show that the auto-covariance function
of a second-order stationary MS model without intercept term can be represented
as that of VARMA model and the orders of VARMA model are directly linked
with the number of regimes. Francq and Zakoian (2001, 2002) extend this result to
any second-order stationary MS model (with or without intercept term). The results
can be summarised as follows: (i) in the case of MS static model where both p and
q are zero, there exists an ARMA(r–1, r–1) representation; (ii) in the case of MS
model that allows autoregressive parameters to be varying, both p and q orders
will be a function of the p, r, and the dimension of the processes (hereafter called
h), which may be calculated as r + r (hp)2–1 and r + r (hp)2 – 2, respectively.
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The above ideas when combined together imply that any second-order
stationary MS models can be represented as the VARMA model, where both p and
q can be calculated from r. In particular, the (p, q) orders of the VARMA model are
a function of that of individual ARMA models and the number of regimesin the
MS models is also a function of the orders of individual ARMA models. For
example, if the true model of individual time series is a two-regime MS
autoregressive model of order one (ri = 2; pi = 1), Francq and Zakoian (2001, 2002)
suggest that individual time series admits an ARMA(1, 1) representation. According
to Rose (1977), the aggregate time series also has an ARMA representation with
p � 3 and q � 4 which translates into a MS autoregressive model with r � 0.04 and
p � 3.

The motivation for this paper is stated as follows: First, the above analytical
results only provide an upper bound with which the number of regimes in
aggregate time series can be identified. It is interesting to see whether this bound
holds true or not when confronted with actual data. Second, they may not apply
to a MS static model where there are exogenous variables. Third, they may not
apply to cases where some individual time series has number of regimes different
from the others. A Monte Carlo simulation with different settings is proposed to
investigate possible sources of changes that could affect the number of regimes in
aggregate time series. These settings include a difference in number of individual
series in aggregate time series, sample size, parameters, and noise level. The results
suggest that the number of regimes in aggregate time series is a function of that of
individual time series, regardless of whether the aggregation method is equal or
value weighted. For example, if aggregate time series has two individual series
(e.g., one series has two regimes and one exogenous variable, while another time
series has three regimes and one exogenous variable), the numbers of regimes and
variables in aggregate time series would be two and one, respectively. This result
is consistent with Francq and Zakoian (2001, 2002).

The reminder of the paper is organised as follows. Section 2 presents the class
of the MS models under consideration. Sections 3 and 4 present the set-up of Monte
Carlo studies and their simulation results. Section 5 concludes the paper.

2. MODELS AND ASSUMPTIONS

This paper considers the MS static model of the following form:
( ) ( ) ( )t t ts s s

t l t ty v A x e , (1)

where st are unobservable random variables that take values in the finite set {1, 2,
…, r} and are independent of et and

et is independent and identically distributed random variables such that
E(et) = 0.
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The random variables, st, (hereafter referred to as regime variables) are assumed
to be a temporally homogeneous first-order Markov chain on {1, 2, …, r} with
transition matrix P = pij, i and j ��{1, 2, …, r}, where pij = Prob(st+1 = j|st = i). It is also
assumed that st are periodic and irreducible. Notice that st may or may not be
stationary. If the stationarity assumption is imposed, the above conditions
guarantee a unique row-stochastic vector � = (�1, �2, …, �r)� such that �P = � and �i
= Prob(st = i) > 0 for all i�{1, 2, …, r} and all t. Under these assumptions, the model
could be referred as a r-regime MS static model (or MS(r) static model).

It is assumed that r of the MS static model are unknown, so the interesting
issue is to estimate r on the basis of a finite segment yn = (y1, y2, …, yT) of length T
from Equation (1). This paper identifies r by using Schwarz (1978) information
criterion (hereafter called BIC) since Awirothananon and Cheung (2009) show that
BIC outperforms other information criteria (including Akaike (1974) information
criterion, HQC (Hannan and Quinn, 1979), and MSC (Smith et al., 2006)) in joint
determination of the numbers of states and variables. BIC can be calculated as BIC
= –2L + k log(T), where L, k, and T are the maximised log likelihood value, the
number of estimated parameters, and the total observations, respectively.

The MS model could be estimated by using a maximum likelihood (hereafter
called ML) procedure. The ML algorithm of this model is based on the expectation
maximisation algorithm discussed in Krolzig (1997). This algorithm is originally
described by Dempster et al. (1977) as a general approach to iteratively compute
the ML estimation technique. This technique is designed for general models where
observed variables are dependent on some unobserved variables, st.

3. SIMULATION DESIGN

This paper considers two possible cases of forming aggregate time series. The
first case assumes that all individual time series have the same regime (in this case
is two regimes). Another case is that all individual time series have a different
regime. All variables are independent and identically distributed random variables
with zero mean and unit variance. Possible factors that could affect regime in
aggregate time series are also included in the simulation settings as follows:

(i) MS static model: the true model consists of two regimes (or r = 2) and one
exogenous variable with an intercept term in each regime. The true
regression coefficients are v(st) = (0, 1) and A(st) = (0.3, 0.9). The r-regime
variable, st, is a Markov chain with transition probabilities p11 = 0.6
and p22 = 0.4 and the initial probabilities are set to 0.1 and 0.9. The
total number of observations, T, is initially set to 200 and et ~ N(0, 1) and
�(st) = (0.5, 0.5).

(ii) MS static model with small/large coefficient: this paper considers variation
from the setting (i). First, this paper changes the coefficient for both regimes
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to the same value: v(st) = (0, 1) and A(st) = (0.3, 0.3). Second, setting the
intercept term for both regimes to the same value: v(st) = (0, 0) and A(st) =
(0.3, 0.9).

(iii) MS static model with high/low transition probability: this paper also
considers variations from the settings (i) and (ii) by changing the transition
probability p11 from 0.6 to 0.9 and p22 from 0.4 to 0.1 and the initial
probabilities from (0.1, 0.9) to (0.4, 0.6). To examine the impact of
persistence in {st}, the transition probabilities p11 and p22 are also set to 0.9
so that their sum is greater than one.

(iv) MS static model with small/large sample and high/low noise level: the
following variations from the settings (i), (ii), and (iii) are considered.
First, to examine the impact of sample size on performance, this paper
conducts the above simulations using T = 100, 400, and 500, respectively.
Second, s(st)= (1.0, 1.0) and (0.5, 1.0) for all T to understand the effect of a
change in noise level.

The second case where a different regime is set to each individual time series
is also investigated. In particular, this paper considers only two time series; one
series has two regimes while another time series has three regimes. The simulation
designs for this case are discussed below:

(v) For two-regime time series, the initial probabilities are set to 0.1 and 0.9
with the transition probabilities as p11 = 0.6; p22 = 0.4. The true regression
coefficients are v(st) = (0, 1) and A(st)= (0.3, 0.9). For the regime-specific case,
the s(st)is set to 0.5 if st = regime 1 and 1 if st = regime 2. For the three-regime
time series, initial probabilities are set to 0.1, 0.3, and 0.6 with the transition
probabilities as p11= 0.6; p22= 0.3; p33= 0.1. The true coefficients are v(st) = (0,
0.4, 0.6) and A(st)= (0.3, 0.4, 0.5). For the regime-specific case, �(st)is set to 1/3,
1/3, and 1/3 for st = regime 1, regime 2, and regime 3, respectively.

(vi) The models with small/large coefficient: the coefficient in the setting (v)
will be set as follows: First, setting the coefficient for all regimes to the same
value: v(st) = (0, 1) and A(st)= (0.3, 0.3) for two-regime time series, while v(st) =
(0, 0.4, 0.6) and A(st)= (0.3, 0.3, 0.3) are assigned to three-regime time series.
Second, setting the intercept coefficient for all regimes to the same value:
v(st) =(0, 0) and A(st)= (0.3, 0.9) are set to the two-regime time series, while the
three-regime series has v(st) = (0, 0, 0) and A(st)= (0.3, 0.4, 0.5).

(vii) The models with small/large sample and high/low noise level: the
following variation from the settings (v) and (vi) is considered to change.
First, to examine the impact of sample size on performance, the above
simulations is conducted using T = 100, 400, and 500, respectively. Second,
setting �(st) to (1, 1) and (0.5, 0.1) for the two-regime time series, while the
three-regime time series has �(st)= (1, 1, 1) and (1/3, 0.5, 1.0).
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(viii)The models with high/low transition probabilities: the transition
probabilities in the settings (v) to (vii) will be changed from (0.6, 0.4) and
(0.6, 0.3, 0.1) to (0.9, 0.1) and (0.9, 0.08, 0.02), respectively. This paper also
changes the initial probabilities from (0.1, 0.9) and (0.1, 0.3, 0.6) to (0.4,
0.6) and (0.4, 0.1, 0.5) for the two-regime and three-regime time series,
respectively.

The number of individual time series, n, in this paper will be set to 3, 10, 30,
100, and 500, respectively. The simulations proceed by first generating an artificial
time series,yt, and exogenous variables, xt, of length 500 + T according to the settings
(i) and (viii) and setting initial values to zero. The first 500 pseudo-data points
then are discarded in order to eliminate start-up effects, while the remaining T
points are used to determine r minimising BIC over r regimes (r = 2 and 3). Since
computations are very intensive, 1000 Monte Carlo replications are carried out for
each setting to assess how often BIC selects the model with r regimes.

4. SIMULATION RESULTS

All results in this section are generated by using Ox Metrics version 3.40
(Doornik, 2002) and the MSVAR package version 1.32a (Krolzig, 1998).The data
generating process is a two-regime MS static model with one exogenous variable
for different sample size, parameters, and noise level. To ease interpretation, this
paper hereinafter refers to any MS static model that observes the relationship as
the expected model. The results will show how many times that aggregate time
series has r regimes (r = 2, 3), if the true model of individual time series is a two-
regime MS static model of one exogenous variable (ri = 2) for different settings.These
settings include a difference in number of individual series in aggregate time series,
sample size, parameters, and noise level. Notice that only value-weighted method
is firstly consideredto form aggregate time series. In particular, Table 1 shows the
benchmark case where the initial probabilities of state 1 and state 2 are set to 0.4
and 0.6, respectively, and the transition probability of moving from state 1 (2) to
state 2 (1) is set to 0.4 (0.6). Table 1first allows for change in regression coefficient
only. The case allowing for change in intercept term is presented in Table 2. This
paper further allows for both intercept term and regression coefficient to be regime-
specific, which is reported in Table 3. In addition, Table 4 considers the case where
there is a change in transition probabilities from (0.6, 0.4) to (0.9, 0.1), while Table
5 deals with a change in the initial probabilities. Table 6 considers the case where
{st} is allowed to be persistent.

Before proceeding into the details, two main noticeable results can be seen.
First, an increase in noise level could reduce the frequency of two regimes and one
exogenous variable selection. Second, increasing sample size does help to identify
the true model. Allowing for change in regression coefficient only, Table 1shows
that aggregate time series has more than 90% chance of having two regimes and
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one exogenous variable. Remarkably, the frequency of three-regime selection is
zero when the sample size becomes larger. With 100 observations and the noise
level of 0.5, for instance, the number of times that aggregate time series of three
individual series has two regimes and one exogenous variable is 928 out of 1000.
This frequency reduces to 911, when the noise level is high.

Table 2 exhibits a similar result; an increasing in sample size leads to a better
frequency of the true model identification. As an example, if the sample size is 100
and the noise level is high, Table 2 indicates that the frequency of two regimes and
one exogenous variable selection for 30 individual series in aggregate time series
is 907. The frequency increases significantly to 970 when the sample size becomes
500 observations. Regardless of the number of individual time series being
considered, increasing sample size or reducing the noise level could improve the
chance of the true model selection, while allowing for change in variance could not.

Table 3, where the model allows for regime change in both intercept term and
regression coefficient, basically reinforce observations from Tables 1 and 2.
Compared to Table 1, however, Table 3 shows that the frequency of two regimes
and one exogenous variable selection is generally higher. In the case of 200
observations with low noise level, for instance, the frequency of the true model
identification for 30 individual series in aggregate time series is 970 out of 1000 in
Table 3. This number is slightly higher than Table 1 because the corresponding
number is 965.

Change in transition probabilities from (0.6, 0.4) to (0.9, 0.1), as shown in Table
4, generally leads to a slight increase in frequency of two regimes and one exogenous
variable selection. The results reveal that change in initial probabilities from (0.1,
0.9) to (0.4, 0.6) leads to a better identification of the model with two regimes and
one exogenous variable. With 200 observations and high noise level, for instance,
the frequency of true model selection for 30 individual series in aggregate time
series is 952. This number is higher than Table 1 since the corresponding number
is 943 out of 1000. In addition, persistence in {st} generally increases the frequency
of selecting the model with two regimes and one exogenous variable, as depicted
in Table 6.

This paper also considers another case, where all individual series having the
same weight when forming aggregate time series. Similar assumptions of value-
weighted model (see Tables 1 to 6) are employed. The results suggest that the
results of equal-weighted method are generally higher than those of value-weighted
method, regardless of changes in regression coefficient or an intercept term or in
both. With 400 observations and low noise level, for example, the frequency of the
model identified with two regimes and one exogenous variable for 500 individual
series in aggregate time series is 989. This number is marginally higher than that
allows for changing in intercept term only, which is 986.
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Other three possible factors that could influence the number of regimes in
aggregate time series are changes in transition and initial probabilities and allowing
for persistence in {st}. The results suggest that changes in transition and initial
probabilities lead to an increase in frequency of the true model identification. In
addition, allowing for persistence in {st} does increase the frequency. As an example,
if the sample size is 400 and low noise level, the results indicate that the frequency
of two regimes and one exogenous variable selection for 10 individual series in
aggregate time series is 992 out of 1000. This number is slightly higher than that
allows for changing in regression coefficient only, which is 983.

This paper further investigates an additional factor where individual time series
have a different r. All previous settings are used with this case. Only two time
series are considered for this case; one series has two regimes, while another series
has three regimes. The results suggest that aggregate time series has more than
90% chance of having two regimes and one exogenous variable. In addition,
aggregate time series tends to have two regimes rather than three regimes. With
100 observations and the noise level of 0.5, for instance, the chance that aggregate
time series with individual series equally weighted, has two regimes and one
exogenous variable is 95.4%. This frequency slightly increases to 99.5% when the
sample size is 500 observations, while the chance of having three regimes for
aggregate time series is zero.This paper also explores changes in transition and
initial probabilities that could affect r in aggregate time series. The same settings
as the above are employed to investigate the effect from these two changes. The
results suggest that these changes could not alter the main conclusion.

5. CONCLUSION

This paper investigates the issue of whether the number of regimes in aggregate
time series is similar to those in individual time series. A Monte Carlo simulation
is carried out with different settings to investigate possible sources of changes
that could affect the number of regimes in aggregate time series. For aggregation
purpose, this paper considers both equal and value weighted methods. The results
suggest that the number of regimes in aggregate time series are a function of
individual series, regardless of whether the aggregation method is equal or value
weighted. For example, if aggregate time series has two individual series (e.g.,
one series has two regimes and one exogenous variable, while another time series
has three regimes and one exogenous), the numbers of regimes and variables in
aggregate time series would be two and one, respectively. This result is consistent
with Francq and Zokoian(2001, 2002).
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