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Video Transmission by the Use of
Bayesian Compressive Sensing in
Wireless Sensor Network

Fereshteh Rahmanian K ooshkaki*, Saeed M ehrjoo** and Kia Jahanbin***

Abstract: Multimediafilestransmission andinformation exchange among network nodes are considered asimportant
topicsin wirdless sensor networks which significantly depend on restrictions, resources and provided facilities.
Algorithm or appropriate method selection for video fil es transmission considering network working conditions
greatly influences of network performance eval uation parameters. By studying therelated literature, we concluded
that themain effort in transmission and reconstruction of videos and images was based on sampling ratereduction
and reduction of algorithm computational complexity. it hasbeen observed that compressive sensing can overcome
the current difficulties of video transmission in the wireless multimedia sensor network. First, reduction in the
complexity of cryptographic agorithmsand low-resisance againgt error channel scan be mentioned. Someresearchers
challengeimplementation of compressive sensing which a non-adaptivetheory in video transmission is; it will be
discussed | ater. For thispurpose, weintend to present anetwork system based on compression style, streaming rate
control, and video error correction in embedded deviceswith constrained resources based on the theory of Bayesian
compressive sensing which isan adaptive sampling method. Simulation results show that the proposed method has
abetter performancein termsof fairnessrates, delay extent and resi stance against noise channels in comparison to
other methods.

Keywords: Compressive Sensing, Bayesian Compressive Sensing, Network Optimization, Multimedia Streaming,
Sampling Adaptivity

1.

Wireless Multimedia sensor networks|[ 1] are self-organising systems which devises has been deployed intheir
nodes; these devises do the recovery and processing tasks, etc., and provide a combination of heterogeneous
video streaming fromtheir resources. Wireless multimediasensor network also enjoysnew capahilities, including
cameramonitoring, Sorageand retrieval of its subsequent activities, other potential activitiesand itsrelated services
person locator. Inthe wirdlessmultimediasensor network, informetion essence and theway informationisexchanged
onthe network has specia featureswhichtheir use of specid techniquesare well-gpplicableinthese networks[ 1].
One of thechdlengesin the network isthe problemsrelated to video streaming transmissonwhichisstill unknown
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and unresolved, and can be summarized asfollows[2]:

before encoding, dl of encoders techniquesneed to accessto total video frame (or to severd frames).
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Thedgorithmscomputationa complexity: Encoders Complexity requires processng of complex agorithms
which causesenergy consumptionto augment. Conventional video coding patternsrequiresto bereversedfor a
amplecodificationwhichisimproper for the embedded video sensors, and causesalower performance. Besides

Resistance regtriction in noise channels: Inthe protocol stack based onthel EEE 802.11 and 802.15.4
standards, frames are divided into several packets. Even if an error occursin abit of a packet inthe
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channel during thetransmission, after examining CRC the entire packet isremoved. This problem causes
video decoder operation in decoding act not to operateindependently fromi-th coding frame; asaresult
al theframeswill be damaged oneafter the other. Theided Stuationistha whenafailure occursinonebit,
it should have intangible impact and the least Sde effectson video recovery. Downloading video quality
should be reduced softly asthe quality of channdl beginsreducing.

» Lack of farnessamong video streamings: Video coding with M PEG standards causesthe production of
unstable signal rates. Frames are divided into mainframesand differential frames. Differential frames
producelesshit rate. Restrictionin band width causesareduction insignal changesrateand anincreasein
sending delay.

Inthispaper, we propose an optimization solution based on adaptive compressve sensing which can solvethe
mentioned problems. In fact, Our goal isto implement a network system that enables datareconstruction by
collecting asmall number of sensor samples. For Sgnal recovery we areinterested in using adaptive compressive
sensing [ 3] whichisproved to beareliable techniquefor video and image. However, thetransmisson of images
and videos by using adaptive compressive sensing in wireless networksislessintroduced; so, anew system,
Bayesan compressve Distortion Minimizing Rate Control (BC - DMRC), hasbeen proposed whichisdesigned
and set based on one of adaptive compressive sensing methods named ‘ Bayesian Compressive Sensing’[3]. The
sysgemhasacross-layer sructureto maximizethe qudity of thevideosand to minimizethe computational complexity.

In the second part we will describe the related works. In part three, we review the compressive sensing
technique, and Bayesian compressive sensaing. In part four, BC- DMRC system architectureis elaborated. Proposed
method resultsin sending videosin wirdesssensor networksare shownin part five, and eventually condusonsand
thefurther suggestionsare presented inthelast part.

2. LITERATUREREVIEW

In classical samplings ( that hasbeen used at engineering literature by Shannon for thefirst time[4]), weare
searching for arestricted bandwidth signals by its chronological samples. Nyquist—Shannon sampling theory
suggeststhat asignal can be precisely reconstructed by signal sampling if asampling frequency istwo times
bigger than the highest signal frequency component. In practice, sampling frequency ismostly assumed more
than two times bigger than the necessary bandwidth [4]. In anew method of sampling which isknown asthe
compressive sensing, reducing the number of samplesto reconstruct similar signalsin a domain known as
‘Frequency Domain’ is considered asthe aimto show sparse representation. In other words, inthe favorite
frequency domain, the number of non-zero coefficients should befar less than the number of zero coefficients.
It isinteresting to notethat inthe case of joining non-zero coefficients, no hypothessis presented; that’swhy the
bandwidth does not cometruelessinthiscase[5].

Now, we will investigate anumber of relevant works regarding compressive sensing application onvideo
transmission: In[6], block-based CS natura imagesand image preparation are suggested according to block-by-
block pattern. Recovery image algorithmsmade use of both linear and non-linear operationssuch asfiltering and
convex optimization in conversion fields. Comparison results between block-based CS sysemsand current CS
designsshowsthat implementation cost ismuch lower. Candeset dl. [ 7] suggested theimagerecovery plan by the
use of CSso that they can reduce the computational complexity in video/image encoding using compressive
sensing process. Encoder dividestheimageinto two partsfor thefirst time, dense and dispersed, whereonly the
dispersed part isencoded using CS. Encoding complexity and the number of random measurements reduces
significantly. In[8], it isstated that multimedia sensor networks have been used for critical operations such as
cameramonitoring, etc. InaWMSN network, storage and transmissionsinclude complex conversons, compressive
senging can reconstruct sparse signasby just few measurements.

This paper suggestsamethod combined of compressive sensing based on'‘ Discrete Wavelet Transform? (DWT)
and ' Discrete Cosine Transform’ (DCT).



Video Transmission by the Use of Bayesian Compressive Sensing in Wireless Sensor Network 1677

The performance of the method interms of storage complexity level, energy transmission and delay rateis
investigated. Theresults show that the presented matrix issimilar to or better thanthe PSNR intermsof memory
usage; matrix of time has been compared to the Gaussian matrix in this paper. According to comparisons, the
qudity and efficiency of V CSwhichisacombination of DCT & DWT are much better than thetimewhenthe DCT
and DWT are being used done. It isshown that energy transmission gets50 % less, while delay isreduced 52 %
inaverage. Asit isobserved, related literature used conventional compressive sensing, but some researchers
challenged theimplementation of compressive sensing whichisanon-adaptive theory for video transmisson; they
believe using thismethod isnot economicintermsof costsor video quality in comparison with adaptable methods
[9]. Inthethird section, theissue will be explained in more details.

3. REVIEW OFPROPOSED METHOD
3.1. Compressive Sensing

We show signasof aphoto by avector asX e RV, where N isthevector length. We assumethat inverse matrix
of N* N existswhichischanged to v, suchthat [10]:

(D) X=wyY
inwhich Sisasparse vector, ||| S||e = K withK <N, and ||.||p represents p-norm. Thismeansthat aphoto isshown

asansparsematrix in someareas of exchange, aswell asinthewavel et transform. Signalsare measured regarding
m< n linear and based on linear measurement operatorsy. Hence[10]:

y=D0x=D0Px="Y, 2

Wewant to improvethevalue of X by usng Y measurements. Thus, with mentioning So, we offer asolutionto
Eq. (2) regarding S; each S* vector isdefined asS* =S +n, € N (y) definesasolution as Equation (3) . However,
in[5] it was proved that ¥ measurement matrix isdispersed enough and kissmaller than threshold ( for example
x matrix agnal isfairly dispersed), and after that scan beimproved by Eq. (2). However, theabove problemis,
in general NP-hard. Columns of matrix ¥ are enough detached. At any time, the solutionto the problemisa
unique; it isasfollows[ 10]:

P\: minimize ||s]|, subject o]y —¥'s[ <e 3)

inwhich e istoo small. Notethat P1isconvex, and theoptimization of e isdifficult; itscomplexity of isas o(M "N /™).

Theproblemissolved through theinterior point method era[ 11]. Although, there are more appropriate effective
grategiesfor recongruction, theframework presented inthis paper isindegpendent of specific methodsof recongtruction.

3.2. Bayesian Compressive Sensing

Compressive sensing seeks to offer a simple solution consists of two steps, samples collection and signal
recongruction. Samplesare collected randomly, and Sgnasare recovered directly without congdering any afiliation
with the use of reconstruction sparseentries. Lihan et al. provethat sgnal structureimproved using compressive
sensing. Inthis section, we focus on Bayesian compressive sensing which is developed form of compressive
sensing and treewavelet structures[12].

Recent researcheson compressve sensing for examining oarse sgnalssructure, thetarget isstudying Bayesian
views. | n Bayesan compressive senaing, measurement matrix isproduced gradually such that any measurement is
doneto reach alocal optimum. Thetarget signal enjoys statistic characteristicswhich significantly reduce the
number of compressive sensing measurements of Bayesian inference [3]. Based on Bayesian viewpoint, in
compressive sensing measurementsBCS can estimate error barsin X signal, and can beanoptimal adaptive design
with CS measurements. In BCS, each of transmission coefficient elements 6 are defined aszero-mean[3, 13]:

Each wavelet entry coefficients/spars, models ‘s through arandom variable Gaussan mode [13].
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si~ N(,o")i =)..N, @

where svisvariancewhichisintroduced asa Gaussan precision distributionin many papers. Signa srecongtruction
includes two important elements: important and unimportant data. So, matrix scanbeshownass_+s =s,in
whichs_issubstituted by asmall zeroinput, and s isset by zero inputs. Bothvariables, s ands,, canbeused as
Gaussian random variables with small variancein Eq. (4). However, the second one, the s isconsidered asa
Gaussan noisethat can alwaysbe neglected inasparssignd. The updated syssemequationisasfollows[12, 13]:

y=0¥'S +O¥'S =0¥'S, +n, (5)

inwhich n_isanunimportant item, asakind of noise. Actualy, measured noise has been added up to the stage of
sampling. Considering measurement noise, the new equation can berewritten asbelow [12, 13]:

y=0¥'S +n +n,=0¥'S +n, (6)
inwhichn_isthe measured noiserate, and n. isthetotal noiserateinthe system. Noisesin Gaussian didtribution are
N(-,a*) ~ n.and on Gaussian precisione] = o~ So, compressivesensing measurementsy can beconsidered as
amultivariate distributed Gaussan[3, 12, 13].

y~N@¥'S ,aa, ()

4. THEBC-DMRC!PROPOSED SYSTEM

4.1. UsingAdaptive Compressive Sensing for Video Transmission and Compressive
Sensing Challengesin ThisRegard

Various programs challenged compressive sensing application in video transmission. First of al, dueto the
complexitiesof varioustissues, acommunicationamong different framesisnecessary indeed smilar scenesmust be
sent repeatedly one after the other to deliver avideo. Second, it should be made certainthat that with the constant
video scenesvdocity, theinterval among the adjacent frames should also befixed. Assuming that hardware sensing
collect measurement informationwith aconstant velocity, thenit allocates al measurements of aperiod of timeto
acommon number. However, in aspecific scenewhichissent, areaswith different characteristicsare not equally
distributed among all the frames. So, giventhe number of fixed measurementsfor each frame, they should be
properly arranged inaframework to makethe best quality. Third, in various scenes, thereare various properties
and tempord coordinationamong adjacent frames. Therefore, the number of required measurementsineach frame
isdifferent. If different framerate are used for other sceneswe can achievetherequired leve of quality. To address
these challenges, regarding alarge number of measurements collected in any second, asample adaptive framework
issuggested for various scenes of animage to increasethe quality of output satisfactorily [14].

4.2. Architecture of Proposed BC-DMRC System

Inthissection, wediscusstheoverdl architectureof BC-DMRC. Thissysemddiversasariesof photosfromframesper
second, and transmitstheencoded video using the BCSwirdesdy. The RT T2 measuresnetwork congestionfor sending
avideo, and dso estimetes it error rate® for video protection against the channd casudlties. The sysemcombinesthe
characterigticsof application layer, transmission layer and physicd layer to maximizethevideo qudity inamulti-hop
wirdessnetwork. AsshowninHg. (1), the sysemconsistsof four main partswhichispresented asfollows

4.2.1. CS Camera

The sub-system savesthe CSimages. In case sudy, theimageisdirectly obtained through alinear combination of
random set of pixelsand their totd intengity by aphoto-diode. Then produced samplesaretransmittedto thevideo
encoder.
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Figure 1: Proposed System Architecture

Compressive senaing (or CS) camerasreplace camerasthat are conventionaly built by afocal plan array with
a series of temporal measurements by one or afew diode meters. These cameras notably reduce the cost of
infrared cameras, in CS cameratemporal measurements have been made by an algorithmthat isfed from spatial
information of theoriginad image[11].

4.2.2. How Does CS Camera Work [15]?

1.

A compressive senaing camerafocusesthe input dataon aSpatia Light Modulator (SLM), or storesona
Digital Micromirror Device(DMD). FPA typicaly isembedded in an ordinary camera, and DMD replaces
FPA deviceinan ordinary camera.

During taking aphoto, aseriesof SLM unique settings are used successively. Each pattern chooses half of
the original image. Patterns were determined by amathematical theory of compressve sensing, and the
maximum information on the screen can be used by the system.

Any of DMD micro-mirrorscan belocated 12° left or right. For every measurement, half of themirrorsare
placed in aposition that they canreflect back on the photo-detector |eft diode which isfocused on their
mirrors. Asaresult, thetota light energy or half of it isfocused onthe diode detector.

Photonsare changed to digital inan electric sgnal of half-image or photo by adiode, an amplifier and an
analogue transformer. A number of temporal measurements are done on the delivered image. Each
measurement dependson the situation of aspecific mirror.

Animagerecongruction algorithm recongtructsthe output image using mirrorsknowledge pattern and
datameasurements, and representsit. Reconstructionalgorithms are linear; they are provento beableto
reconstruct theorigind image.

Theway CScamerafunctionsisshowninfigure2[15].

4.3. BCSVideo Encoder and Decoder

The receiving encoder receives raw samples from camera; they are changed into compressed video frames.
Compression is obtained through the BCS properties, and it is also achieved by temporal correlation among
successve video frames. Number of samples and sampling matrixes are defined in the same block. The number of
samples or sampling rate are calculated according to the controller input rate while sampling matrix is shared
between the sender and receiver before selection.
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Figure 2: The Way CS Camera Functiong15]

4.3.1. BCSV Encoding Functions
First, imageis sampled using BCS equation, Eg. (6); our goal isto improve X signal usngY measurement. By
doing this, dl the samplingsin sgna X are sampled making advantage of Bayesian compressivesensing. Thenwe
useEq. [15]

Y=YDq,, (8)
for the representation of the video framesinwhich Y’ representsanimage sampled by BCS. Then, sasmplesare
randomly selected from X, and are sent to thereceiver.

Video encoding processisdifferent form| frameand Pframe[4] which will beelaborated later. | framesare
transmitted directly after sampling. But, in congtruction of P frame, first theimageis sampled by BCS sampling;
thenit ischangedto | frame, and finally transmitted. Then, with the use of tempord correlation, following processing
isdonefor frametransmissioninthe system.

DV'=Z_.-Z. ©)
here, Z includesall the samplesint™ frame. DV’ isaso transmitted using Eq. (6) in aquantized manner. Fig.3
showstheproposed method.

4.3.2. BCSV Decoder Performance

Decoder processisdescribed asfollows. Firg of dll, to reconstruct the mainframeand V', stated inthe previous part
we useeguation(6). For | framesrecongtruction, Sncethey weretransmitted directly without any converson, itisalso
possbleto recongtruct thereceived samplesdirectly; but in the case of Pframe, samples should be recongtructed with
DV'. Thisvector isalso reconstructed using Eq. (6). Firg, t* sampling of Pframeisobtained by eq 10.

s Camera records o .
BCSW Raw Samplas D
their Inages =4
Controller Veetsr Caleulation Comprassed Samples

I frame

Figure 3. Block Diagram for BCS Video Encoder
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Z =DV'+Z_, (10)
then Z framesarealso reconstructed by using Eq. (6) .
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Figure 4: Block Diagram for BCS Video Decoder

4.4. Controller Rate

The sub-systemcontroller rate both provides systemfairness, and it attemptsto transmit theoptimum-quality film
viathe network. Preventing network intensity, anode considerstwo main factorsfor sending data. First of all, the
sender must obtainthe least bandwidth thefilm needsto betransmitted in agood and significant quality. Note that
thiswork isdifferent fromthe current I nternet performance which emphasizes on accessto fairnessintermsof data
velocity(film doesn't enjoy such agood quality).

Second, the sender sets up atransmission rateto make sure that the packet losswhich occurs dueto buffer
overflow isreduced. To determineintendty, round timetrip (RTT) ismeasured for video packages. RTT isthe
amount of timeit takesfor apacket to reach itsdestination, and itsddlivery responseto be sent tothe source. RTT
changes are measured asfollows[16]:

N-? N
el a 'R-I_rt,\ e Q; 'R-rrtfi
AR-I—I-t - N N-" a NZI'\L ai (]1)

a, valueis considered as alow-passfilter onround trip time of apacket, and N isthelength of DV’ vector.

4.5. Adaptive Parity-based Transmission

In compressive sensing, unlike conventional wirelessimaging system, sampleis of great importanceinimage
recongtruction. Instead, the only mgor factor in determining image quality isthat the number received samplesbe
correct because asample contained errorscan easly be discarded, and itsimpact onthefilm quality islow till the
timetheerror rateistrivid. Thiserror detection takesplace with anumber of pre-defined samples using even parity
whichisevaluated a the receiver or intermediate nodes. Thisisuseful inmost casesespecialy when BERislow;
but itsexcessve errorsare smply neglected. To determine the amount of shared samplesin encoding, the amount
of the correct samples can be modelled asfollows[16]:
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Qb ob
c=| — |((—BER)*”,
[Qb " J ( ) (12)
where C estimatesthe number of correct samples; b isthe number of sampleswhich are coded incommon, and Q
isquantization rate in samples. Into check for theoptimal valueof bfor BER, it ispossibleto differentiatefromEQ.
(10), andit includesaset equa to zero and asolved set for b. Thus[16]:

_1+\/1_]*
"Q

5. SIMULATION RESULTS

In order to investigate the performance of BC-DMRC system severa testswere done. Indeed, theresults of the
smulation software made by MATLB, product of MathWorks company [1_)(Natick, MA, USA). Inorder to study
the system presented inthis paper, thequdity of the video isevaluated by the receiving node. Most measurements,
simulation and SSIM* are used for checking the quality of the video. SSIM canrecognize differencesrelated to
photo structure better in comparisonto conventiond criteria; these differencesare easily seen by human eye[16].

5.1. Energy Consumed by Sensors.

Thetopology of Manhattan network isconsisted of 49 nodes(7 * 7). The sender and Sink are selected randomly
for 10 seeds. All the senders transmit videosfor asingledestination. Tracking continues accordingto AODV [17]
and |EEE 802.16 MAC 11 b. Model used in wirelessradio is set on 914 MHZ and Wave LAN according to
DSSS Radio. Physical channel changesthe data packetswhich haveabit error rate, and needstheir balance bit to
be adjusted.

First of dl, BCSV video encoding tracking filesare obtained for severa Yi values. Thistrackingfileisgivento
the smulator asan input in which the decison regarding rates control has been made inthe simulation schedule.
Network smulator determinesthe sampling rateinY |, and thevideo size isdetermined on the basis of thisamount.
After network simulation, received samplesare sent to detector BCSV; asaresult, thereceived video frameis
reconstructed again withthe use of BCS; then the non-compressed video frameswill be sent again; and thesetwo
techniqueswill be compared with each other regarding images. Video films are transmitted smultaneously inthe
network which are compared by BC-DMRC and C-DMRC (reviewed in [16]) and TFRC. The transmitted
Video filesvary from 1 to 5in number, and will be sent 10 secondsafter the previous frame (120 frames). Our
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Figure 5: Sensors Energy Consumption by Using several videos
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darting rate ensuresusthat al transmitted filmsarefairly treated. Figure (5) showsthe smulationresults. Ineach
simulation, the results of the BC-DMRC are better than the other two. Asyou can see BC-DMRC approach

consumeslessenergy per sensor than thetwo other methods, and causes energy saving; thus network lifetime will
beincreased.

Fairnessis shown in Figure (6) in which fairness measurement [18] isused from Jain sayings on fairness;
several senders are also used. Once again, it isclear that the BC-DMRC functions better than the other two
methods.

Jain's Fairmness Index of BC—DIVIRC and
C-DWVIRC and TFRC

i.2

Ok
[N - DA
Cua - - DR
- T I
L]
1 - =] -4 =

Mumbesr of Trianemidroed Yideos

Jan'sFamemsinda

Figure 6: Video Transmission Fairness Indicator Usng BC-DM RC and C-DMRC and TFRC

5.2. Recongtruction Error

Congder asigna with alength of N=1000 which includes M=25 spikesthat are created by selecting 20 random
gtuations, and then putting +1 and —1 a these points. Theimage of the ¢ matrix has beenformed withthe creation

of thefirst K* N matrix with equality of i.i.d Gaussian distribution A/(, ). Then, the ¢ linesarenormalized to
reach aunity in szeand in number of lines. To simulate noise measurement, zero-mean Gaussian noisewitha

gandard deviation ...A = o, isadded to each of K measurementswhich defineg data. Inthe experiment k=150.

Every image vector isdefined as, itsrelated reconstruction error is calculated. For an optimal selection, r, , has
been constructed using Sigmaspecial vector that hasthelargest eigenvalue. When considering (testifying) an
approximate pattern, for loading diameter € =0.1. dueto thenon-randomtests (that includesmain spike signal,
40image of theinitial choice and attributing ( filling ) empty entriestor, , , etc.) , werepeated thetest one hundred
times by average performance of two variancesasit isseenin FHg. (7). In(7) it isdepicted that error reconstruction
of optimal selectionwas much smaller than randomimage reconstruction error; thissuperior performance shows
the optimization. Inaddition, the proposed system would lead to the significant resultsin comparison withthe

Figure 7: System Error Reconstruction C - DMRC and BC - DMRC
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results of avery careful implementation, and it can be argued that BC-DMRC system can be an appropriate
method for BCS sampling method.

Infigure(8) and (9), animagewith abit error raterelaerr=0.21103 isgiven to BC-DMRC system. There, the
origina image, thereconstructed signd of theoriginal image, and thereconstructed Sgnd imagewitherror ratecan
be seen. It isclear that by thiserror rate theimage would beinagood quality.

Original Image Original Signal Original Sparse Coefficients
1
4
0 []_ﬂ 2
-1
-2
100 200 300 400 500 100 200 300 400 500
Figure 8: An Image and Its Signals for Testing
Fecoversd signal, rela Recoverdimage rela
Reconstryuted sparse cofficients &= 0.21103 err=0.21103
1
4
2 0
g 4
2

100 200 300 400 500 100 200 300 400 500

Figure 9: Reconstructed Image with Rela err = 0.21103

6. CONCLUSIONSANDFURTHER STUDIES

Inthis paper, weintroduce anew system of video transmission on wireless sensing networks based on Bayesan
compressive sensing. Thissystem has4 key componentsthat we explained about themin details. The systemis
ableto transmit ahigh-quality video by reducing the complexity of encoding and decoding agorithms Thesmulation
results show that we increase thevel ocity of transmission and fairnessand at the sametime decrease the delay and
error ratein signal reconstruction.

Infutureworks, asthere are much faster Bayesian learning algorithms, we can discuss using theminimage
transmission onwireless sensing networks. Also, analysing the adaptive CS canlead to complete the analysisabout
formulating prevalent CSinthefield of imagetransmission.

Notes

Bayesian compressive Distortion Minimizing Rate Control
Round Trip Time

BER

structural similarity

WD
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