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ABSTRACT. We consider a process given as the solution of a stochastic differential equa-
tion with irregular, path dependent and time-inhomogeneous drift coefficient and additive
noise. Explicit and optimal bounds for the Lebesgue density of that process at any given
time are derived. The bounds and their optimality are shown by identifying the worst case
stochastic differential equation inspired by known techniques on control theory. Then we
generalise our findings to a larger class of diffusion coefficients.

1. Introduction

The study of regularity of solutions of stochastic differential equations (SDEs) has been
a topic of great interest within stochastic analysis, especially since Malliavin calculus was
developed. One of the main motivations of Malliavin calculus is precisely to study the
regularity properties of the law of Wiener functionals, for instance, solutions to SDEs,
as well as, properties of their densities. A classical result on this subject is that if the
coefficients of an SDE are bounded and C∞-functions with bounded derivatives and the
so-called Hörmander’s condition (see e.g. [15]) holds, then the solution of the equation
is smooth in the Malliavin sense. Then P. Malliavin shows in [21] that smoothness in
the Malliavin sense together with a non-degeneracy condition implies that the laws of
the solutions at any time are absolutely continuous with respect to the Lebesgue measure
and the densities are smooth and bounded. Another approach is attributed to N. Bouleau
and F. Hirsch utilising Dirichlet forms where they show in [7] absolute continuity of the
finite dimensional laws of solutions to SDEs based on a stochastic calculus of variations in
finite dimensions where they use a limit argument. Also, as a motivation of [7], D. Nualart
and M. Zakai [23] found related results on the existence and smoothness of conditional
densities of Malliavin differentiable random variables.

It appears to be quite difficult to derive regularity properties for the densities of solu-
tions to SDEs with singular coefficients, i.e. non-Lipschitz coefficients, in particular in
the drift. Nevertheless, some findings on this direction have been attained. Let us for in-
stance remark here the work by M. Hayashi, A. Kohatsu-Higa and G. Yûki in [13] where
the authors show that SDEs with Hölder continuous drift and smooth elliptic diffusion
coefficients admit Hölder continuous densities at any time. Their techniques are mainly
based on an integration by parts formula (IPF) in the Malliavin setting and estimates on
the characteristic function of the solution in connection with Fourier’s inversion theorem.
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Another result in this direction is due to S. De Marco in [9] where the author proves
smoothness of the density on an open domain under the usual condition of ellipticity and
that the coefficients are smooth on such domain. A remarkable fact is that Hörmander’s
condition is circumvented in this proof. Moreover, estimates for the tails of the density
are also given. The technique relies strongly on Malliavin calculus and an IPF together
with estimates on the Fourier transform of the solution. One may already observe that
integration by parts formulas in the Malliavin context are a powerful tool for the inves-
tigation of densities of random variables as it is the case in the work by V. Bally and L.
Caramellino in [2] where an IPF is derived and the integrability of the weight obtained
in the formula gives the desired regularity of the density. As a consequence of the afore-
mentioned result D. Baños and T. Nilssen give in [4] a criterion to obtain regularity of
densities of solutions to SDEs according to how regular the drift is. The technique is also
based on Malliavin calculus and a sharp estimate on the moments of the derivative of
the flow associated to the solution. This result is a slight improvement of a very similar
criterion obtained by S. Kusuoka and D. Stroock in [20] when the diffusion coefficient
is constant and the drift may be unbounded. Another related result on upper and lower
bounds for densities is due to V. Bally and A. Kohatsu-Higa in [3] where bounds for the
density of a type of a two-dimensional degenerated SDE are obtained. For this case, it is
assumed that the coefficients are five times differentiable with bounded derivatives. We
also mention the results by A. Kohatsu-Higa and A. Makhlouf in [19] where the authors
show smoothness of the density for smooth coefficients that may also depend on an exter-
nal process whose drift coefficient is irregular. They also give upper and lower estimates
for the density. Optimality of bounds is also discussed in the work by D. Nualart and L.
Quer-Sardanyons in [22] for a class of interesting SPDEs such as stochastic heat equa-
tion. There the drift is assumed to be continuously differentiable with bounded derivative.
Finally, another remarkable result is due to M. Hayashi, A. Kohatsu-Higa and G. Yûki in
[14] where the authors actually attain Hölder regularity of the densities of SDEs when the
drift is allowed to be bounded and measurable and whose Fourier transform lies is some
Sobolev-type space.

It is worth alluding the exceptional result by A. Debussche and N. Fournier in [8] on
this topic where the authors show that the finite dimensional densities of a solution of
an SDE with jumps lies in a certain (low regular) Besov space when the drift is Hölder
continuous. The novelty is that their method does not use Malliavin calculus as in the
aforementioned works and the techniques were originally developed in [11].

It is therefore important to highlight that in this paper we do not use Malliavin calcu-
lus or any other type of variational calculus and we see this as an alternative perspective
for studying similar problems. Instead, we employ control theory techniques to, shortly
speaking, reduce the overall problem to a critical case for which many results in the lit-
erature are available. In particular, our technique entitles us to find a worst case SDE
whose solution has an explicit density that dominates all densities of solutions to SDEs
among those with measurable bounded drifts. The idea is inspired in a classical result by
Beneš in [5] for the one-dimensional case and further generalised in the book by Ikeda
and Watanabe, see [16] for the multidimensional case and non-Markovian controls. More-
over, we believe this methodology based on a maximisation argument can be studied in
more detail to attain better regularity of the densities, for instance, the optimal regularity,
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i.e. Lipschitz continuity when the drift is merely measurable and bounded, at least, in the
one-dimensional case which appears to be unknown.

This paper is organised as follows. In Section 2 we summarise our main results with
some generalisations to non-trivial diffusion coefficients and to any arbitrary dimension.
We also give some insight on concrete properties of the bounds as well as some examples
with graphics. Section 3 is devoted to thoroughly prove the assertions of the main results.
More specifically, we will give an argument based on a control problem to reduce the
problem to one critical case.

1.1. Notations. We denote the strictly positive numbers by R++ := (0,∞), the trace of
a matrix M ∈ Rd×d by Tr(M) :=

∑d
j=1 Mj,j and ± simply denotes either + or −. We

denote the generalised signum function by sgn(x) := 1{x ̸=0}x/|x| for any x ∈ Rd. This
is the orthogonal projection to the unit Euclidean sphere. For a complex number z ∈ C
we denote its real resp. imaginary part by Re(z) resp. Im(z).

Further notations are used as in [17].

2. Main Results

In this section we present our main result and some direct consequences. In particular,
we will find sharp explicit bounds for SDEs with additive noise in the one-dimensional
case and give some extensions to the d-dimensional case with more general diffusion
coefficients.

Throughout this section let (Ω, (Ft)t≥0,A, P ) be a filtered probability space with the
usual assumptions on the filtration F = (Ft)t≥0, i.e. F0 contains all P -null sets and F is
right-continuous, W be a d-dimensional standard Brownian motion and let A be the set
of progressively measurable processes which are bounded by 1.

The next results constitutes one of the core results of this section and will be proven
in detail in the next section. It gives rather explicit bounds for the density which are very
useful in a priori estimates for processes where a priori nothing more than bounded drift
coefficient is known. The bounding functions α, β appearing in the statement are given
in detail in Theorem 2.2.

Theorem 2.1. Let C > 0, W be a d-dimensional standard Brownian motion and u ∈ A.
Then X(t) :=

∫ t

0
Cu(s)ds+W (t) has Lebesgue density and one of its versions is given

by

ρt(x) := lim sup
ϵ→0

P (|X(t)− x| ≤ ϵ)

Vϵ
, x ∈ Rd,

where Vϵ = πd/2

Γ(d/2+1)ϵ
d denotes the volume of the d-dimensional Euclidean ball with

radius ϵ and Γ denotes the gamma function. Moreover, ρt satisfies

0 < αd,t,C(x) ≤ ρt(x) ≤ βd,t,C(x) ≤ βd,t,C(0)

for any t > 0, x ∈ Rd, where

αd,t,C(x) := lim sup
ϵ→0

P (|Y +
Cx(tC

2)| ≤ Cϵ)

Vϵ
,

βd,t,C(x) := lim sup
ϵ→0

P (|Y −
Cx(tC

2)| ≤ Cϵ)

Vϵ
,
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and Y +
x and Y −

x are the unique solutions to the SDEs

Y +
x (t) = x+

∫ t

0

sgn(Y +
x (s))ds+W (t),

Y −
x (t) = x−

∫ t

0

sgn(Y −
x (s))ds+W (t)

for any t ≥ 0.

Proof. See at the end of Section 3. □

If d = 1, then the functions α, β as well as some of their properties can be derived
explicitly, cf. Proposition 3.5. In the multidemensional case we can give some of their
properties. Let us summarise the formulas.

Theorem 2.2. Let t > 0, C > 0 and α, β be given as in Theorem 2.1. Then

α1,t,C(0) =
1√
t
φ
(
C
√
t
)
− CΦ

(
−C
√
t
)
,

β1,t,C(0) =
1√
t
φ
(
C
√
t
)
+ CΦ

(
C
√
t
)
,

where Φ resp. φ denotes the distribution resp. density function of the standard normal
law. For x ∈ R\{0} we have

α1,t,C(x) =

∫ tC2

0

Cα1,tC2−s,C(0)ρθCx
0

(s)ds,

β1,t,C(x) =

∫ tC2

0

Cβ1,tC2−s,C(0)ρτCx
0

(s)ds,

where

ρτx
0
(s) =

|x|√
2πs3

e−
(|x|−s)2

2s ,

ρθx
0
(s) =

|x|√
2πs3

e−
(|x|+s)2

2s ,

for any s > 0. Moreover, we have

2d

Cddd/2

d∏
i=1

α1,t,C(xi) ≤ αd,t,C(x) ≤ βd,t,C(x) ≤
2d

Cd

d∏
i=1

β1,t,C(xi), x ∈ Rd,

where Cd := πd/2

Γ( d
2+1)

for any x ∈ Rd.

Proof. This is part of the statements of Proposition 3.5 and Theorem 3.6. □

In what follows, we will derive bounds for the densities of solutions to general SDEs.
The following is an immediate consequence of Theorem 2.1. Recall that a function b :
R+ × C(R+,Rd)→ Rd is predictable if it is predictable as a process with respect to the
canonical filtration on the Wiener space C(R+,Rd), cf. [25, p.365].
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Corollary 2.3. Let C > 0, x0 ∈ Rd, b : R+ × C(R+,Rd) → Rd be predictable and
bounded by C. Then any weak solution of the SDE

X(t) = x0 +

∫ t

0

b(s,X)ds+W (t), t ≥ 0,

has density ρt at time t > 0 which is bounded from below by x 7→ αd,t,C(x − x0) and
from above by x 7→ βd,t,C(x − x0) where α and β are given in Theorem 2.1 and W is
a d-dimensional Brownian motion. Moreover, the bounds are optimal in the sense that
for any x1, x2 ∈ Rd there are two functionals bx1 , resp. bx2 for which the density ρt
of the solution to the SDE dX(t) = bx1(X(t))dt + W (t), X(0) = 0, resp. dX(t) =
bx2(X(t))dt +W (t), X(0) = 0 attains the upper bound in x1, resp. the lower bound in
x2.

Proof. Define Y (t) := X(t)− x0 and u(t) := b(t,X) for any t ≥ 0. Then

Y (t) =

∫ t

0

u(s)ds+W (t), t ≥ 0.

The bounds follow from Theorem 2.1. Shifts of the processes Y −, resp. Y + attain the
upper, resp. lower bounds at the given points. □

Now we focus on our second main result which is an application of Corollary 2.3. This
time X is given as a solution of an SDE with measurable drift and a diffusion coefficient
which is continuously differentiable.

Theorem 2.4. Let b : R+ × C(R+,Rd)→ Rd be predictable, σ : R+ × Rd → Rd×d be
continuously differentiable and assume the following conditions.

(1) σ(t, x) is an invertible matrix for any t ≥ 0, x ∈ Rd.
(2) There is an invertible C2-function F : R+ × Rd → Rd such that D2F (t, x) =

(σ(t, x))−1 for any t ≥ 0, x ∈ Rd where D2F (t, x) denotes the Fréchet deriva-
tive of F (t, ·) with respect to x.

(3) The function

b̃ : R+ × C(R+,Rd)→ Rd,

(t, f) 7→ ∂1F (t, f(t)) + σ(t, f(t))−1b(t, f)

+
1

2

(
Tr
(
σ(t, f(t))⊤H2Fk(t, f(t))σ(t, f(t))

))
k=1,...,d

is bounded by some constant C > 0 where H2Fk(t, x) denotes the Hessian ma-
trix of Fk(t, ·), i.e. (∂xi∂xjFk(t, x))i,j=1,...,d for any t ≥ 0, x ∈ Rd.

Then any solution of the SDE

X(t) = x0 +

∫ t

0

b(s,X)ds+

∫ t

0

σ(s,X(s))dW (s)

has, at each time t, Lebesgue density ρt and for every x ∈ Rd we have

ρt(x) ≤
βd,t,C(F (t, x)− F (0, x0))

|det(σ(t, x))|
,
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where αd,t,C , βd,t,C are defined as in Theorem 2.1. Moreover, if additionally F (t, ·) is
invertible for any fixed t > 0, then

0 <
αd,t,C(F (t, x)− F (0, x0))

| det(σ(t, x))|
≤ ρt(x) ≤

βd,t,C(F (t, x)− F (0, x0))

|det(σ(t, x))|
.

Proof. Define Y (t) := F (t,X(t)) and u(t) := b̃(t,X) for any t ≥ 0. Then Itô’s formula
yields

Y (t) = F (0, x0) +

∫ t

0

u(s)ds+W (t), t ≥ 0.

Theorem 2.1 states that Y (t) has Lebesgue density ρY (t) which admits the bounds

αd,t,C(y − F (0, x0)) ≤ ρY (t)(y) ≤ βd,t,C(y − F (0, x0))

for any t > 0, y ∈ Rd.
From the definition of Y (t) we directly get

ρt(x) ≤
ρY (t)(F (t, x)− F (0, x0))

| det(σ(t, x))|
≤ βd,t,C(F (t, x)− F (0, x0))

| det(σ(t, x))|

for any t > 0, x ∈ Rd.
If we assume that F (t, ·) is invertible for any t > 0, then

ρt(x) =
ρY (t)(F (t, x)− F (0, x0))

| det(σ(t, x))|

for any x ∈ Rd and, hence, the additional claim follows. □

The conditions (1) to (3) appearing in Theorem 2.4 simplify considerably in dimension
1. Moreover, due to Itô-Tanaka’s formula we can relax the conditions on σ.

Theorem 2.5. Let X be a solution of the SDE

X(t) = x0 +

∫ t

0

b(s,X)dt+

∫ t

0

σ(X(s))dW (s),

where x0 ∈ R, W is a standard Brownian motion, b : R+ × C(R+,R)→ R predictable
and bounded by some constant Cb, σ : R → R+ is a Lipschitz continuous function with
Lipschitz-bound L and σ(x) ≥ ϵ for some constant ϵ > 0. Then X(t) has Lebesgue
density ρt and

0 < αt,C(|F (x)− F (x0)|)σ(x) ≤ ρt(x) ≤ βt,C(|F (x)− F (x0)|)σ(x)

for any t > 0 where αt,C and βt,C are defined as in Theorem 2.1 when d = 1, F (x) :=∫ x

0
1

σ(u)du and

C := sup

{∣∣∣∣ b(t, f)σ(f(t))

∣∣∣∣ : t ∈ R+, f ∈ C(R+,R)
}
+ L/2.

Moreover, C ≤ Cb

ϵ + L/2 where Cb is a uniform bound for b.
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Proof. Define Y (t) := F (X(t)). Since σ is Lipschitz continuous there is a function
σ′ : R → R which is bounded by L and σ(x) = σ(0) +

∫ x

0
σ′(u)du. Then Itô-Tanaka’s

formula [25, Theorem VI.1.5] yields

Y (t) = F (x0) +

∫ t

0

(
b(s,X)

σ(X(s))
− 1

2
σ′(X(s))

)
ds+W (t).

Let G := F−1 and define

b̃(s, y) :=
b(s,G ◦ f)
σ(G(f(s))

− 1

2
σ′(G(f(s))), s ∈ R+, f ∈ C(R+,R)

which is predictable and bounded by C. Then the result follows from Corollary 2.3. □
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FIGURE 1. Upper and lower bounds for C = 1 starting at x = 0 (in
green and orange) with the respective densities when the drift coeffi-
cients are sgn(x − 0.25) and −sgn(x − 1) (blue and red) at different
times t ∈ {0.25, 0.5, 0.75, 1}.

As we can see, both densities are bounded by αt and βt and the bounds are attained in
0.25 for density of the process with drift +sgn(x− 0.25) (in blue) and in 1 when the
drift is −sgn(x− 1) (in red).

In the next section we will give precise definitions and mathematical computations of
the functions αd,t,C and βd,t,C in dimension 1 and why these are the optimal bounds (in
the sense of Corollary 2.3) for the densities of SDEs with bounded measurable drifts.
Before we do that, let us give some intuitive insight on the shape and behaviour of these
bounds for the one-dimensional case. Consider any one-dimensional process of the form

X(t) =

∫ t

0

u(s)ds+W (t), t ≥ 0, u ∈ A
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as in Theorem 2.1. In particular, X can be the solution to the following SDE, dX(t) =
b(t,X)dt + dW (t), X(0) = 0, t ≥ 0, with b bounded and predictable as in Corollary
2.3. Furthermore, denote by ρt the density of X(t) at a fixed time t > 0. Then Theorem
2.1 grants that 0 < αt(x) ≤ ρt(x) ≤ βt(x) for any x ∈ R. In the figure above we can
observe the functions αt and βt for different values of t > 0 and see how they behave.
We can see the function αt in orange and βt in green. Any density lies between these
two curves and these bounds are optimal in the sense that, for given x0, y0 ∈ R we can
find drifts ux0 and uy0 such that the associated densities ρx0

t , resp. ρy0

t for these drift
coefficients satisfy ρt(x0) = αt(x0), respectively, ρt(y0) = βt(y0). As an illustration we
just take the drift to be +sgn(x− 0.25) in blue and −sgn(x− 1) in red.

3. Reduction and the Critical Case

In this section we will see how to derive the functions αt,C and βt,C explicitly for the
case d = 1 as well as some of their properties, cf. Proposition 3.5. Then we will show
that these are indeed the bounds for the densities of any solution to SDEs with bounded
measurable drift by solving a stochastic control problem, cf. Proposition 3.7 and thereafter
we give the proof for Theorem 2.1. In the sequel, consider the process

Y ±
x (t) := x±

∫ t

0

sgn(Y ±
x (s))ds+W (t), t ≥ 0, (3.1)

c.f. [25, Theorem IX.3.5 i)] for existence and (pathwise) uniqueness. Moreover, at some
point we will also use the property that the solution to equation (3.1) is strong Markov,
even for the multidimensional case. This can be for instance justified using [1, Theorem
6.4.5] in connection with [25, Corollary IX.1.14].

Lemma 3.1. For every t > 0, Y +
0 (t) resp. Y −

0 (t) has density ρY +
0 (t), respectively ρY −

0 (t)

given by

pt(0, y) := ρY +
0 (t) =

1√
t
φ

(
|y| − t√

t

)
− e2|y|Φ

(
−|y|+ t√

t

)
,

qt(0, y) := ρY −
0 (t) =

1√
t
φ

(
t+ |y|√

t

)
+ e−2|y|Φ

(
t− |y|√

t

)
,

for y ∈ R and any t > 0 where φ, resp. Φ, denote the density, resp. the distribution
function, of the standard normal law.

Proof. The density for Y −
0 (t) is the statement of [18, Exercise 6.3.5] as for Y +

0 (t) com-
putations are fairly similar. □

The computation of the densities ρY +
0 (t) and ρY −

0 (t) in the previous lemma are rela-
tively easy given the fact that the local-time of the Brownian motion starting from 0 is
symmetric and the joint law of W (t) and the local time of W , LW

t (0) is explicitly known,
see [18]. Nevertheless, one is able to find reasonably explicit expressions for the densities
of Y +

x (t) and Y −
x (t) which yield representations for α and β if d = 1. A different version

of these densities can be found in [18, Section 6.5, Ch. 6] using different arguments based
on local time and occupation time. Here, we give an argument based on stopping time
and obtain a different representation for the density.
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First we focus on the computation of the density of Y −
x (t) and then for Y +

x (t) which
is similar.

Lemma 3.2. For every t ≥ 0, the density of Y −
x (t) is given by

qt(x, y) =
1√
2πt

e−
(sgn(x)(x−y)−t)2

2t

(
1− e−

2xy
t

)
1{sgn(xy)≥0} +

∫ t

0

qt−s(0, y)ρτx
0
(s)ds

where x, y ∈ R, x ̸= 0 and τx0 is the first hitting time of the process Y −
x (t) at 0 whose

density function is explicitly given by

ρτx
0
(s) =

|x|√
2πs3

e−
(|x|−s)2

2s , s > 0.

Proof. Let τx0 be the first time the process Y −
x hits 0, i.e.

τx0 := inf{t ≥ 0 : Y −
x (t) = 0}.

Then it is clear, that Y −
x (t) = x− sgn(x)t+W (t) for any t ∈ [0, τx0 ]. Define W̃ := −W

and B(t) := sgn(x)t+ W̃ (t). The process B(t) is a Brownian motion with drift starting
at 0. It is clear, that τx0 = inf{t ≥ 0 : B(t) = x}, whose law is known, namely τx0 is
inverse Gaussian distributed and [6, p.223, Formula 2.0.2] states that its density is given
by

ρτx
0
(t) =

|x|√
2πt3

e−
(|x|−t)2

2t , t > 0.

Now define fε(z) :=
1
2ε1(y−ε,y+ε)(z) for a fixed y ∈ R, then

E[fε(Yx(t))] = E[fε(Y
−
x (t))1{t<τx

0 }] + E[fε(Y
−
x (t))1{t≥τx

0 }]

= A1 +A2,

where A1 := E[fε(Y
−
x (t))1{t<τx

0 }] and A2 := E[fε(Y
−
x (t))1{t≥τx

0 }]. We have

P
(
Y −
x (t) ≤ y, t < τx0

)
= P (x− sgn(x)t+W (t) ≤ y, t < τx0 )

= P (B(t) ≥ x− y, t < τx0 ) .

We start with the case x > 0. Observe that τx0 = inf{t > 0 : B(t) = x} and hence
{t < τx0 } = {M(t) < x} where M(t) := sups∈[0,t] B(s). As a consequence

P
(
Y −
x (t) ≤ y, t < τx0

)
= P (B(t) ≥ x− y,M(t) < x)

= E
[
1{B(t)≥x−y,M(t)<x}

]
= EQ

[
1{B(t)≥x−y,M(t)<x}

1

Z(t)

]
where Q is the equivalent measure w.r.t. P defined by

dQ

dP

∣∣∣∣
Ft

= exp
{
−sgn(x)W̃ (t)− t/2

}
=: Z(t), t ≥ 0.

[24, Theorem 8.6.4] yields that the process B(t) = sgn(x)t+W̃ (t), t ≥ 0 is a standard Q-
Brownian motion and M(t) is therefore the running maximum of the standard Brownian
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motion B, hence

P
(
Y −
x (t) ≤ y, t ≤ τx0

)
=

∫ ∞

0

∫ w

−∞
1{z≥x−y,w<x}e

sgn(x)z−t/2ρB(t),M(t)(z, w)dzdw

(3.2)

where ρB(t),M(t) denotes the joint density of B(t) and M(t) which is explicitly given,
see [18, Proposition 2.8.1], by

ρB(t),M(t)(z, w) =
2(2w − z)√

2πt3
exp

{
− (2w − z)2

2t

}
, z ≤ w, w ≥ 0.

We have

A1 =
1

2ε
P
(
y − ε ≤ Y −

x (t) ≤ y + ε, t ≤ τx0
)

=
1

2ε

∫ ∞

0

∫ w

−∞
1{x−y−ε≤z≤x−y+ε,w<x}e

sgn(x)z−t/2ρB(t),M(t)(z, w)dzdw

Finally, the above probability converges to the derivative of (3.2) w.r.t. y, that is

lim
ε↘0

1

2ε
P
(
y − ε ≤ Y −

x (t) ≤ y + ε, t < τx0
)

= esgn(x)(x−y)−t/2

∫ x

x−y

ρB(t),M(t)(x− y, w)dw

=
1√
2πt

esgn(x)(x−y)−t/2
(
e−(x−y)2/2t − e−(x+y)2/2t

)
1{x≥x−y}

=
1√
2πt

e−
(sgn(x)(x−y)−t)2

2t

(
1− e−

2xy
t

)
1{y≥0}.

Now we continue to compute A2. Define the random variable τ := τx0 ∨ t. It is readily
checked that τ ≥ τx0 and τ is Fτx

0
-measurable because the event {t ≥ τx0 } is in Fτx

0
.

Then the strong Markov property of Y −
x and [18, Corollary 2.6.18] yield

E[fε(Y
−
x (t))1{t≥τx

0 }|Fτx
0
] = E[fε(Y

−
x (τ))1{t≥τx

0 }|Fτx
0
]

= 1{t≥τx
0 }E[fε(Y

−
x (τ))|Fτx

0
]

= 1{t≥τx
0 }E[fε(Y

−
0 (ξ))]|ξ=τ−τx

0

P -a.s. As a consequence

E[fε(Y
−
x (t))1{t≥τx

0 }] = E
[
E[fε(Y

−
x (t))1{t≥τx

0 }|Fτx
0
]
]

= E
[
1{t≥τx

0 }E[fε(Y
−
0 (ξ))]|ξ=τ−τx

0

]
= E

[
1{t≥τx

0 }E[fε(Y
−
0 (ξ))]|ξ=t−τx

0

]
.

Now, the density of Y −
0 (t) is explicitly known by Lemma 3.1. Thus

A2 = E

[∫
R
fε(z)qt−τx

0
(0, z)1{t≥τx

0 }dz

]
=

∫ t

0

∫
R
fε(z)qt−s(0, z)ρτx

0
(s)dzds.

Then, letting ε → 0 and by Lebesgue’s differentiation theorem we obtain that, for
x > 0

qt(x, y) =
1√
2πt

e−
(sgn(x)(x−y)−t)2

2t

(
1− e−

2xy
t

)
1{y≥0} +

∫ t

0

qt−s(0, y)ρτx
0
(s)ds.
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We have

−Y −
−x(t) = x+

∫ t

0

sgn(Y −
−x(s))ds+ W̃ (t)

= x−
∫ t

0

sgn(−Y −
−x(s))ds+ W̃ (t)

for any t ≥ 0 and hence (−Y −
−x, W̃ ) is a weak solution of (3.1) for ± = − and starting

point x. Hence, −Y −
−x(t) has the same law as Y −

x (t) for any t ≥ 0. Consequently, we
have

qt(x, y) = qt(−x,−y), x > 0.

The claimed formula follows. □

Similarly, we can also obtain the density for Y +
x (t). The proof follows exactly the

same ideas as in Lemma 3.2 and has therefore been omitted.

Lemma 3.3. For every t ≥ 0, the density of Y +
x (t) is given by

pt(x, y) :=
2√
2πt

e−
(sgn(x)(x−y)+t)2

2t

(
1− e

−2xy
t

)
1{sgn(xy)≥0}+

∫ t

0

pt−s(0, y)ρθx
0
(s)ds.

for x, y ∈ R, x ̸= 0 and θx0 is the first hitting time of the process Y +
x (t) at 0 where

ρθx
0
(s) =

|x|√
2πs3

e−
(|x|+s)2

2s , 0 < s <∞.

The proof of Lemma 3.3 follows completely the same ideas as in Lemma 3.2. One
of the main differences is that in this case the distribution of the stopping time θx0 has an
atom at infinity, namely, from [6, p.223, Formula 2.0.2] we have

ρθx
0
(t) =

|x|√
2πt3

e−
(|x|+t)2

2t , 0 < t <∞

and
P (θx0 =∞) = 1− e−2|x|.

This, however, doesn’t change anything in the arguments.
Now we are in a position to define the functions αt,C and βt,C for the one-dimensional

case and study some of their properties. Before we do that, we will need a technical result
to prove one of the properties of these functions. The following result can be consulted
in [16, Theorem 1.1 Ch. VI] for the case when the coefficients are continuous. Never-
theless, we provide here an alternative proof since we are considering a general bounded
measurable drift coefficient.

Proposition 3.4. Let b : R+ × R→ R be bounded and measurable and

Xx(t) := x+

∫ t

0

b(s,Xx(s))ds+W (t), x ∈ R, t ≥ 0

where W is a 1-dimensional Brownian motion. Then

Xx(t) ≤ Xy(t) P -a.s.

for any t ≥ 0, x, y ∈ R with x ≤ y.



142 DAVID BAÑOS AND PAUL KRÜHNER

Proof. Define

Yx(t) := Xx(t)−W (t) = x+

∫ t

0

b(s, Yx(s) +W (s))ds = x+

∫ t

0

b̃(s, Yx(s))ds,

where the equalities hold P -a.s., b̃(t, z, ω) := b(t, z + W (t, ω)) for any t ≥ 0, ω ∈ Ω,
z ∈ R and denote the Null-set Nx where the equality does not hold. Let x, y ∈ R with
x ≤ y and define N := Nx ∪Ny and Z(t) := min{Yx(t), Yy(t)}.

We claim that

Z(t, ω) = x+

∫ t

0

b̃(s, Z(s, ω), ω)ds, t ≥ 0, ω ∈ Ω\N

In order to see the above identity observe that Z(0) = x and t 7→ Z(t, ω) is Lipschitz-
continuous for any ω ∈ Ω\N with the same bound. Denote by Z ′(t) a bounded version
of the absolutely continuous derivative of Z(t) with respect to t. Then, we have Z(t) =

x+
∫ t

0
Z ′(s)ds for any t ≥ 0 outside N .

Lebesgue’s differentiation theorem yields that for Lebesgue almost any t ≥ 0 we have

b̃(t, Yx(t)) = lim
ϵ→0

Yx(t+ ϵ)− Yx(t)

ϵ
,

b̃(t, Yy(t)) = lim
ϵ→0

Yy(t+ ϵ)− Yy(t)

ϵ
,

Z ′(t) = lim
ϵ→0

Z(t+ ϵ)− Z(t)

ϵ
.

Now fix ω ∈ Ω\N and denote the set J ⊆ R+ where the before mentioned limits
exists. Then, R\Jω has Lebesgue measure zero. Let J̸= := {t ∈ J : Yx(t, ω) ̸=
Yy(t, ω)}. Then, we have

Z ′(t, ω) = b̃(t, Z(t, ω), ω)

for t ∈ J ̸=. Now, let t ∈ J= := J\J̸= and let (ϵn)n∈N be any positive sequence with
ϵn → 0. Then, we have {Yx(t + ϵn, ω) ≥ Yy(t + ϵn, ω)} infinitely often or {Yx(t +
ϵn, ω) ≤ Yy(t+ ϵn, ω)} infinitely often.

Case 1: {Yx(t+ ϵn, ω) ≥ Yy(t+ ϵn, ω)} infinitely often. Then there is a subsequence
(ϵ̃n, ω)n∈N such that Yx(t + ϵ̃n, ω) ≥ Yy(t + ϵ̃n, ω) for any n ∈ N. Hence, we have
Z(t+ ϵ̃n, ω) = Yy(t+ ϵ̃n, ω) for any n ∈ N and

Z ′(t, ω) = lim
n→∞

Z(t+ ϵ̃n, ω)− Z(t)

ϵ̃n
= lim

n→∞

Yy(t+ ϵ̃n, ω)− Yy(t, ω)

ϵ̃n

= b̃(t, Yy(t, ω), ω) = b̃(t, Z(t, ω), ω).

Case 2: This case works analogue to the first case.
Consequently, we have Z ′(t, ω) = b̃(t, Z(t, ω), ω) on J . Since ω was arbitrary we

have

Z(t) = x+

∫ t

0

b̃(s, Z(s))ds

for any t ≥ 0 outside N .
As a result, U(t) := Z(t)+W (t) = x+

∫ t

0
b(s, U(s))ds+W (t). [25, Theorem IX.3.5

i)] yields U(t) = Xx(t) a.s. Observe that U(t) = min{Xx(t), Xy(t)} and hence

Xx(t) = U(t) ≤ Xy(t), t ≥ 0
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P -a.s. □

Proposition 3.5. Let q be the transition density of the Markov process Y − which is given
in Lemma 3.2 and p the transition density for the Markov process Y + given in Lemma 3.3.
Define α, β : R++ × R+ × R → (0,∞) by αt,C(x) := CptC2(Cx, 0) and βt,C(x) :=
CqtC2(Cx, 0) where t > 0, C > 0 and x ∈ R. Then

αt,C(x) =

∫ tC2

0

CptC2−s(0, 0)ρθCx
0

(s)ds,

=

∫ tC2

0

(
C√

tC2 − s
φ(
√

tC2 − s)− CΦ(−
√
tC2 − s)

)
ρθCx

0
(s)ds, x ̸= 0,

(3.3)

and

βt,C(x) =

∫ tC2

0

CqtC2−s(0, 0)ρτCx
0

(s)ds

=

∫ tC2

0

(
C√

tC2 − s
φ(
√
tC2 − s) + CΦ(

√
tC2 − s)

)
ρτCx

0
(s)ds, x ̸= 0,

(3.4)

where recall that ρθx
0

, respectively ρτx
0

are given as in Lemma 3.3, respectively as in
Lemma 3.2.

In addition, for each t > 0 and C > 0 the functions αt,C and βt,C are analytic in
R \ {0}, Lipschitz continuous in R, symmetric, decreasing on [0,∞) and by symmetry
increasing on (−∞, 0]. They have exponential decay of the type o(c1|x|ec2|x|e−c3|x|2)
for constants c1, c2, c3 > 0. Moreover, they attain their maxima at x = 0 which are given
by

αt,C(0) = CptC2(0, 0) =
1√
t
φ
(
C
√
t
)
− CΦ

(
−C
√
t
)

and

βt,C(0) = CqtC2(0, 0) =
1√
t
φ
(
C
√
t
)
+ CΦ

(
C
√
t
)
.

Proof. We will carry out a more detailed proof of the properties on βt,C . For the case of
αt,C the same proof, mutatis mutandis, follows as well.

First of all, observe that βt,C(x) = CβtC2,1(Cx) and hence it is sufficient to carry out
the proof for C = 1 then all properties follow for arbitrary C > 0. Now, additionally fix
t > 0.

At the end of the proof of Lemma 3.2 we have shown that the law of Y −
x (t) coincides

with the law of −Y −
−x(t). Hence, the symmetry of βt,1 follows.

In order to show analyticity, let us define f(s, x) := qt−s(0, 0)ρτx
0
(s) for s ∈ (0, t)

and x ∈ R \ {0} and the family of domains

Sε :=
{
z ∈ C : ε < Re(z) <

1

ε
, Re(z) > 2|Im(z)|

}
,

0 < ε < 1 and S := ∪0<ε<1Sε. Then for every z ∈ S, g : R+ × S → C defined as

g(s, z) := qt−s(0, 0)
z√
2πs3

e−
(z−s)2

2s is the holomorphic extension of f to S. Let ϵ > 0,
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t > 0 and let us check that z 7→
∫ t

0
g(s, z)ds is holomorphic on Sε. We have |z| ≤√

5/4/ϵ, Re(z2) > 3ϵ2/4 and hence

|g(s, z)| ≤
(

1√
t− s

+ 1

)
1/ε√
s3
|e− z2

2s eze−s/2|

≤
(

1√
t− s

+ 1

)
1/ε√
s3

e
√

5/4/εe−
3ε2

8s

for any s ∈ (0, t), which is integrable on (0, t) for every ε > 0. For a real differentiable
function from an open domain in C to C we denote the complex conjugate differential
operator by ∂z̄ = 1

2 (∂x+ i∂y) where ∂x resp. ∂y denotes the derivative with respect to the
real resp. imaginary part of the given function. Recall, that such a function is holomorphic
if and only if its complex conjugate derivative is zero. So, by changing differentiation and
integration, we have

∂z̄

∫ t

0

g(s, z)ds =

∫ t

0

∂z̄g(s, z)ds = 0

for every z ∈ Sε where the last follows since g(t, ·) is holomorphic on S for every t > 0

being thus
∫ t

0
f(s, x)ds is analytic on (0,∞). For x < 0 use the symmetry of βt,1 to

conclude.
In addition, βt,1 is Lipschitz in 0, i.e. there is a constant K > 0 such that |βt,1(0) −

βt,1(x)| ≤ |x|K for any x ∈ R. Indeed, write∫ t

0

qt−s(0, 0)ρτx
0
(s)ds = E[H(τx0 )] +

∫ t

0

qt−s(0, 0)ρτx
0
(s)(1− h(s))ds,

where H(s) := qt−s(0, 0)h(s) where h is some function which is bounded by 1, constant
1 on [0, t/2], constant 0 near t and h ∈ C∞([0, t],R).

We see that H is Lipschitz continuous with some Lipschitz constant L > 0 and, hence,

|E[H(τx0 )]− E[H(τ00 )]| ≤ L(Eτx0 − Eτ00 ) = L|x|

for any x > 0. Moreover,∫ t

t/2

qt−s(0, 0)ρτx
0
(s)(1− h(s))ds ≤ |x| 1√

t

2

π

∫ 1

1/2

(
1√
2πt

1√
1− s

+ 1

)
ds (3.5)

which implies that
|βt,1(0)− βt,1(x)| ≤ |x|K

for some constant K > 0. Together with the analyticity outside zero we conclude that
βt,1 is locally Lipschitz continuous. If we have shown that βt,1 is decreasing on [0,∞),
then it follows that βt,1 is globally Lipschitz continuous because it is positive valued.

For monotonicity, it is sufficient to show that βt,1 is decreasing on (0,∞) and then
symmetry and continuity yield the claimed growth properties. Consider x ∈ (0,∞) and
vεt (x) := E [fε(Y

−
x (t))] where fε(y) = 1{|y|<ε}. Recall that βt,1(x) is defined as the

density of Y −
x (t) at 0. Hence, βt,1(x) = pt(x, 0) = limε↘0

1
εv

ε
t (x). Thus it is enough

to show that vεt (x) is decreasing on (0,∞) for every ε > 0. Let 0 < x < y < ∞.
Proposition 3.4 yields P (∀t ≥ 0 : Y −

y (t) ≥ Y −
x (t)) = 1. Define τ := inf{t > 0 :

−Y −
x (t) = Y −

y (t)}. [10, Proposition 2.1.5 a)] yields that τ is a stopping time because
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it is the first contact time with the closed set {0} of the continuous process Y −
x + Y −

y .
Observe, that |Y −

x (t)| ≤ Y −
y (t) for any t ∈ [0, τ ]. We can write

vεt (y)− vεt (x) = E
[(

1{|Y −
y (t)|<ε} − 1{|Y −

x (t)|<ε}

)
1{t<τ}

]
+ E

[(
1{|Y −

y (t)|<ε} − 1{|Y −
x (t)|<ε}

)
1{t≥τ}

]
= C1 + C2,

where C1 := E
[(

1{|Y −
y (t)|<ε} − 1{|Y −

x (t)|<ε}

)
1{t<τ}

]
and C2 is the other summand. It

can be seen that C1 is negative since

P (|Y −
x (t)| ≤ ε, t < τ) ≥ P (|Y −

y (t)| ≤ ε, t < τ).

For the other term C2, we use exactly the same Markov-argument as for the term A2 in
Lemma 3.2 by defining τ̃ := τ ∨ t. Then τ̃ ≥ τ and τ̃ is Fτ -measurable. Thus, the strong
Markov property of Y −

x and Y −
y and [18, Corollary 2.6.18] yield

E
[
1{|Y −

y (t)|<ε}1{t≥τ}|Fτ

]
= E

[
1{|Y −

y (τ̃)|<ε}1{t≥τ}|Fτ

]
= 1{t≥τ}E

[
1{|Y −

y (τ̃)|<ε}|Fτ

]
= 1{t≥τ}E

[
1{|Y −

y (ξ)|<ε}|ξ=τ̃−τ

]
P-a.s. On the other hand, observe that Y −

y (τ) = −Y −
x (τ) by the definition of τ . So

1{t≥τ}E
[
1{|Y −

y (ξ)|<ε}|ξ=τ̃−τ

]
= 1{t≥τ}E

[
1{|−Y −

x (ξ)|<ε}|ξ=τ̃−τ

]
which implies that C2 = 0. As a result

vεt (y)− vεt (x) = E
[(

1{|Y −
y (t)|<ε} − 1{|Y −

x (t)|<ε}

)
1{t<τ}

]
≤ 0

which implies

βt(y)− βt(x) = lim
ε↘0

1

ε
(vεt (y)− vεt (x)) ≤ 0

for every x, y ∈ R with 0 < x < y.
Finally, we show that βt,1 has exponential tails. Observe that

|qt−s(0, 0)| ≤
1√

2π(t− t/2)
+ 1

for s ∈ [0, t/2] and thus∫ t/2

0

|qt−s(0, 0)|
|x|√
2πs3

e−
(|x|−s)2

2s ds ≤ Kt|x|e|x|
∫ t/2

0

s−3/2e−
|x|2
2s ds,

where Kt denotes the collection of constants not depending on x > 0. Moreover, one can
show that ∫ t/2

0

s−3/2e−
|x|2
2s ds ≤ K

1

|x|2
e−

|x|2
2t

for a constant K > 0 independent of x. Altogether∫ t/2

0

|qt−s(0, 0)|
|x|√
2πs3

e−
(|x|−s)2

2s ≤ K
e|x|

|x|
e−

|x|2
2t .
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Finally, |ρτx
0
(s)| ≤ K|x|e−

(|x|−t)2

2t for s ∈ [t/2, t], |x| > t which yields∫ t

t/2

|qt−s(0, 0)||ρτx
0
(s)|ds ≤ K|x|e−

(|x|−t)2

2t .

□

From now on, let us consider the processes Y −
x and Y +

x given in Equation (3.1) for the
multidimensional case, i.e. x ∈ Rd, sgn(x) := x

|x|1x ̸=0 and W a d-dimensional standard
Brownian motion. We denote x = (x1, x2, . . . , xd) ∈ Rd, W = (W1,W2, . . . ,Wd) and
Y ±
x (t) = (Y ±

x,1(t), Y
±
x,2(t), . . . , Y

±
x,d(t)). Theorem 2.1 guarantees that the density of any

adapted process Xu(t) :=
∫ t

0
u(s)ds + W (t) , u ∈ A, has bounds αd,t := αd,t,1 and

βd,t := βd,t,1.
We start with a proposition which gives a different view on the functions αd,t,C and

βd,t,C . Namely, we define Z±
x (t) := |Y ±

x (t)|2 with Z±
x (0) = |x|2 and denote Vε the

volume of the d-dimensional Euclidean ball of radius ε then we have

αt,C(x) = lim sup
ϵ→0

P (|Y +
x (t)| ≤ ϵ)

Vϵ
= lim sup

ϵ→0

P (Z+
x (t) ≤ ϵ2)

Cd ϵd
,

βt,C(x) = lim sup
ϵ→0

P (|Y −
x (t)| ≤ ϵ)

Vϵ
= lim sup

ϵ→0

P (Z−
x (t) ≤ ϵ2)

Cd ϵd
,

cf. Theorem 2.1, where Cd := πd/2

Γ( d
2+1)

. In view of this equality, we are interested in

the behaviour of the transition density of (Zx)x∈Rd near zero which will be exploited in
Theorem 3.6 below.

The following result gives explicit bounds for the functions αd,t and βd,t.

Theorem 3.6. We have

2d

Cddd/2

d∏
i=1

α1,t(xi) ≤ αd,t(x) ≤ βd,t(x) ≤
2d

Cd

d∏
i=1

β1,t(xi), x ∈ Rd,

where Cd := πd/2

Γ( d
2+1)

.

Proof. Since the proof is fairly similar for αd,t, we will just show the last inequality.
Define the processes Z−

x,i(t) := |Y
−
x,i(t)|2, i = 1, . . . , d. Itô’s formula yields

Z−
x,i(t) = |xi|2 +

∫ t

0

(
1− 2

√
Z−
x,i(s)

|Y −
x,i(s)|
|Y −

x (s)|

)
ds+ 2

∫ t

0

Y −
x,i(s)dWi(s)

= |xi|2 +
∫ t

0

(
1− 2

√
Z−
x,i(s)

|Y −
x,i(s)|
|Y −

x (s)|

)
ds+ 2

∫ t

0

√
Z−
x,i(s)dBi(s)

≥ |xi|2 +
∫ t

0

(
1− 2

√
Z−
x,i(s)

)
ds+ 2

∫ t

0

√
Z−
x,i(s)dBi(s),

where Bi(t) :=
∫ t

0
sgn(Y −

x,i(s))dWi(s) defines a new standard Brownian motion w.r.t.
P . Itô isometry ensures that B1, . . . , Bd are independent Brownian motions. Let Vi be
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the solution of the SDE

Vi(t) = |xi|2 +
∫ t

0

(
1− 2

√
Vi(s)

)
ds+ 2

∫ t

0

√
Vi(s)dBi(s) (3.6)

for any i = 1, . . . , d and Q be the measure, equivalent to P , such that B̃(t) := B(t) −
(t, . . . , t) is a Q-Brownian motion where B = (B1, . . . , Bd). Then, we have

Z−
x,i(t) = |xi|2 +

∫ t

0

(
1 + 2

√
Z−
x,i(s)

(
1−
|Y −

x,i(s)|
|Y −

x (s)|

))
ds+ 2

∫ t

0

√
Z−
x,i(s)dB̃i(s),

Vi(t) = |xi|2 +
∫ t

0

1ds+ 2

∫ t

0

√
Vi(s)dB̃i(s). (3.7)

Similar arguments as in the proof of [25, Theorem IX.3.7] show that Z−
x,i(t) ≥ Vi(t) for

any t ≥ 0, Q-a.s.
Observe that pathwise uniqueness holds for Equation (3.7) because of [25, Theorem

IX.3.5 ii)] and hence [25, Theorem IX.1.7 ii)] states that Vi is a strong solution of (3.7).
Consequently, Vi is σ(B̃i)-measurable, but σ(B̃i) = σ(Bi) and hence V1, . . . , Vd are
independent processes under P .

Now given a = (a1, a2, . . . , ad) ∈ Rd one has |a| ≥ max {|ai|, i = 1, . . . , d}. This
implies

P (|Y −
x (t)| ≤ ε) ≤ P

(
d∩

i=1

{|Y −
x,i(t)| ≤ ε}

)

= P

(
d∩

i=1

{Z−
x,i(t) ≤ ε2}

)

≤
d∏

i=1

P
(
Vi(t) ≤ ε2

)
,

where in the last step we use the inequalities Z−
x,i(t) ≥ Vi(t) for every t ≥ 0, P -a.s. and

the fact that V1, . . . , Vd are independent processes.
Finally, observe that the processes Vi, i = 1, . . . , d satisfy Equation (3.6) which has

unique weak solutions by [25, Theorem IX.1.11], ergo the law of Vi(t) is the same as the
law of |Ai(t)|2 where

Ai(t) = xi −
∫ t

0

sgn(Ai(s))ds+Wi(t), t ≥ 0,

and the law of Ai(t) is given in Lemma 3.2. Hence, we have

βd,t(x)←
P (|Y −

x (t)| ≤ ε)

Cdεd

≤
d∏

i=1

P (|Ai(t)| ≤ ε)

Cdεd

=
2d

Cd

d∏
i=1

β1,t(xi)
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for any t > 0. □

The following result is a particular case of a more general result which can be found
in [16, Theorem 2.1, Ch. VI]. For dimension one, this problem has been studied by V. E.
Beneš in [5] in the Markovian setting whose optimal control is indeed the signum function
in dimension one. Such solutions are known as bang-bang solutions. Nevertheless, here
we stress the fact that in the multidimensional case the solution is not bang-bang, in
addition to the fact that we also consider non-Markovian controls here.

Proposition 3.7. Let A be as in the beginning of Section 2. Let T, ϵ > 0, x ∈ Rd and
define u∗

x(t) := sgn(Y +
x (t)) and v∗x(t) := −sgn(Y −

x (t)). Then

inf
u∈A

P (|Xu(T )| ≤ ϵ) = P (|Xu∗
x
(T )| ≤ ϵ) (3.8)

where Xu(t) := x+
∫ t

0
u(s)ds+W (t) for u ∈ A. In other words, an optimal control for

the control problem above is given by u∗
x. Similarly,

sup
v∈A

P (|Xv(T )| ≤ ϵ) = P (|Xv∗
x
(T )| ≤ ϵ). (3.9)

Finally, we give the proof of our main result Theorem 2.1.

Proof of Theorem 2.1. Define X̃(t) := CX(t/C2), ũ(t) := u(t/C2) and the Brownian
motion W̃ (t) := CW (t/C2). Then

X̃(t) =

∫ t/C2

0

C2u(s)ds+ W̃ (t)

=

∫ t

0

ũ(s)ds+ W̃ (t)

for any t ≥ 0. Proposition 3.7 states that

P (|X(T ) + x| ≤ ϵ) ≤ P (|Y −
x (T )| ≤ ϵ)

for any ϵ, T > 0, x ∈ Rd and u ∈ A. By definition

lim
ϵ→0

P (|Y −
x (T )| ≤ ϵ)

Vϵ
= βd,T,1(x).

Thus we have

ρC,T (x) := lim sup
ϵ→0

P (|X̃(T )− x| ≤ ϵ)

Vϵ
≤ βd,T,1(−x).

Observe that for any orthonormal transformation U : Rd → Rd we have

UY −
x (t) = Ux−

∫ t

0

sgn(UY −
x (s))ds+ UW (t)

where here UW is a standard Brownian motion and hence (UY −
x , UW ) is a weak solution

of (3.1) for ± = −. Consequently, UY −
x (t) has the same law as Y −

Ux which implies
βd,T,1(Ux) = βd,T,1(x). Hence, we have

ρC,T (x) ≤ βd,T,1(x).
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Lebesgue differentiation theorem [12, Corollary 2.1.16] yields that ρC,T is a version of
the Lebesgue density of X̃(T ). Consequently, the density ρT of X(T ) given by

ρT (x) := lim sup
ϵ→0

P (|X(T )− x| ≤ ϵ)

Vϵ

satisfies
ρT (x) ≤ βd,T,C(x).

Analogue arguments show that

αd,T,C(x) ≤ ρT (x).

□
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