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THREE-DIMENSIONAL ELASTIC SOLUTION OF
A POWER FORM FUNCTIONALLY GRADED
RECTANGULAR PLATES
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ABSTRACT

The paper presents a three-dimensional analysis of a simply supported functionally graded plate subjected to normal
and shear loadings on the lower and upper surfaces. The problem is formulated on the assumption that the elastic
constants have the same dependence on the transverse coordinate z. The three-dimensional governing equations for
an inhomogeneous isotropic plate are solved by expanding the corresponding physical quantities into Fourier series.
An exact solution is obtained for an isotropic functionally graded rectangular plate based on the assumption that the
Young’s modulus has a general power form and the Poisson’s ratio is constant. Numerical results for displacement
and stress components, taking into account the variation of material nonhomogenous parameter and plate thickness,
are shown graphically and discussed.
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1. INTRODUCTION

Functionally graded materials (FGMs) are heterogeneous composite materials which characterized by a gradual
change in properties within the specimen as a function of the position coordinates. The property gradient in the
material is typically caused by a position-dependent chemical composition, microstructure [1]. The advantage of
FGMs is to eliminate interfacial stress jumps in composite materials and make the stress distribution smoother.
Based on these characteristics, the application of FGMs has become more and more extensive in various industries
[2-3].

With the increasing of the application of FGMs, lots of studies have been devoted to the response of FGM
structures to different loadings. Some simplified theories and numerical techniques have been employed to study
functionally graded beams, plates and shells. For instance, Tanigawa [4] used a laminated approximate model to
analyze thermoelastic behaviour of functionally graded materials. Loy et al. [5] studied the vibration of functionally
graded cylindrical shells using Love’s shell theory. Cheng and Batra [6] used an asymptotic expansion method to
analyze three-dimensional thermoelastic deformations of rigidly clamped functionally graded elliptic plates. Woo
and Meguid [7] developed series solutions for large deflections of functionally graded plates under transverse
loading and a temperature field using von Karman theory. Shen [8] and Yang and Shen [9] studied large deflections
and postbuckling response of functionally graded plates with temperature-dependent material properties using a
classical plate theory and a perturbation method. Tsukamoto [10] examined thermal stresses in a ceramic-metal
plate subjected to through-thickness heat flow using the classical laminated plate theory.

Exact solutions for functionally grade materials based on elasticity theory are very few comparing to those for
homogeneous materials, but they indeed play important roles in providing benchmark results for other simplified
theories, numerical methodologies and experimental tests. In recent years, Jeon and Tanigawa [11] solved an
axisymmetric problem of a FGM thick plate subjected to arbitrarily distributed load or a concentrated load on its
surface. Morishita and Tanigawa [12] studied three-dimensional elastic solution of a FGM thick plate (layer) by



introducing three kinds of displacement functions. Three-dimensional exact solutions were obtained for simply
supported functionally graded plates [13, 14]. Mian and Spencer [15] established an exact three-dimensional solution
for functionally graded plates with traction-free surface. Huang, Lü and Chen [16] provided an exact three-dimensional
elasticity solution for the bending behavior of FGM thick plates on a Winkler-Pasternak foundation. Except for the
researches on isotropic materials, Sankar [17] obtained an elasticity solution for an orthotropic simply supported
functionally graded beam. Zhong and Shang [18, 19] developed three-dimensional analysis for orthotropic functionally
graded piezoelectric and piezothermoelectric rectangular plates using state space approach. In the above works,
elastic moduli were assumed to vary according to exponential law, reciprocal law or linear law through the thickness.
To our knowledge, no exact solution has been found for functionally graded plates with elastic moduli given in a
general power form.

Therefore, it is the purpose of the present paper to study the functionally graded plates with elastic moduli
given in a general power form. Following Plevako’s approach, two displacement functions are used to analyze the
three-dimensional governing equations for an isotropic functionally graded plate and an exact solution are obtained
by assuming that the Young’s modulus has a general power form and the Poisson’s ratio is constant. Numerical
examples are provided to validate the proposed solution and examine the dependence of stress and displacement
fields on the nonhomogenous parameter and plate thickness.

2. BASIC EQUATIONS OF A THREE-DIMENSIONAL ISOTROPIC FUNCTIONALLY GRADED
PLATE

Consider an isotropic functionally graded rectangular plate of length a, width b and thickness h, as shown in Fig. 1.
Introduce a Cartesian coordinate system xyz such that 0 � x � a, 0 � y � b, 0 � z � h.

In the absence of body forces, the equations of equilibrium in terms of displacements for an inhomogeneous
isotropic elastic material can be written in the following form [14]:
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where x, y, z are Cartesian coordinates, u, v, w are displacement components, e = �u / �x + �v / �y + �w / �z is the
volumetric strain and �2 = �2 / �x2 + �2 / �y2 + �2 / �z2 is the Laplcian operator, E and � are respectively the Young’s
modulus and the Poisson’s ratio that depend on z coordinate only.

The plate is subjected to normal and shear loadings on its lower and upper surfaces, whose boundary conditions
are given as:

�
z
 = Z0(x, y) �

xz
 = X0(x, y) �

yz
 = Y0(x, y)   at z = 0

�
z
 = Z1(x, y) �xz = X1(x, y) �

yz
 = Y1(x, y)  at z = h, (2)

where Z0(x, y) and Z1(x, y) are normal tractions, X0(x, y), X1(x, y), Y0(x, y), Y1(x, y) are shear tractions on the lower or
upper surfaces of the plate.

If the plate is simply supported at its four edges, the edge boundary conditions are written as:

�
x
 = � = w = 0   (at x = 0, a)

�
y
 = u = w = 0  (at y = 0, b) (3)

Now the problem is reduced to solve the governing equations given in Eq. (1) under the boundary conditions (2)
and (3).



3. SOLUTION

If the Poisson’s ratio is constant, the displacement components are expressed as [20]:
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where L = L(x, y, z) and N = N(x, y, z) are two functions which satisfy the following partial differential equations:
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where  ' /E dE dz� .

The stress components can also be expressed in terms of functions L and N as:
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Assuming that functions L  and N  have the following forms:
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where m and n are positive integers. It can be shown that Eq. (8) gives solutions of Eqs. (5) and (6) that satisfies the
simply supported edge boundary conditions given by Eq. (3) [14].

Substituting Eq. (8) into Eqs. (5) and (6) leads to the following governing equations for unknown functions �
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If the normal tractions, Z0 (x, y) and Z1(x, y), and the shear tractions, X0(x, y), X1(x, y), Y0(x, y) and Y1(x, y), on the
upper and lower surfaces of the plate, can be expanded into double Fourier series:
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we get from Eq. (2) the boundary conditions for �

mn
 and �

mn
 as:

0 1
2 2

(0) ( )mn mn
mn mn

mn mn

Z Z
h� � � �

� �

� �0 02
0

1mn
mn m mn n

z mn

d
X Y

dz �

�
� � � �
� (15)

� �1 12

1mn
mn m mn n

z h mn

d
X Y

dz �

�
� � � �
�

and

� �0 0
0

2(1 )mn
mn n mn m

z mn

d
X Y

dz E�

� � �
� � � � �

�

� �1 1

2(1 )mn
mn n mn m

z h mn

d
X Y

dz E�

� � �
� � � � �

� (16)

Therefore, the next task is to find the solutions of the ordinary differential equations with variable coefficients,
Eqs. (10), (11), under boundary conditions (15) and (16).

4. POWER FUNCTIONS

When we take a power-law dependence of the elastic modulus on the coordinate z in the form

E(z) = E0(1 + cz)p (17)

where c and p are two material parameters describing the nonhomogeneity of E(z). In this case, Eqs. (10) and (11)
are reduced to
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whose solution can be expressed, as follows:
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where , 1( 2 )gW z�� � �  are Whittaker functions, I
g
(�z1) and K

g
(�z1) are the gth order modified Bessel functions of the

first and second kind respectively, I–g+3/2(�z1) and K–g+3/2(�z1) are the –g + 3 / 2 order modified Bessel functions of
the first and second kind respectively [21]. The coefficients A1, A2, A3, A4, A5, A6 need to be determined from
boundary conditions (15) and (16).

5. NUMERICAL RESULTS AND DISCUSSION

In this section we will make numerical study of an isotropic FGM square plate (a = b = 1m, h = 0.1m) based on the
above exact solutions. The plate is simply supported on its four lateral edges and subjected to a sinusoidal normal
traction at its upper surface, i.e.,

1( , ) sin sinZ x y q x y
a b
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, q = 1Pa

X0(x, y) = Y0(x, y) = Z0(x, y) = X1(x, y) = Y1(x, y) = 0

from which only one term solution is used (m = 1, n = 1) and attention is focused on the influence of different
nonhomogenous parameter p on the displacement and stress fields in the plate. The Young’s moduli at the upper and
lower surfaces of the plate are given as E(0) = 1GPa, E(h), E(h) = 10GPa. Accordingly, material model for FGM
used in the present study is given as in Eq. (17) with p = –2, –1,0,1,2,  E0 = E(0) and :
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Fig. 2 shows the variations of the Young’s modulus along the thickness direction for different nonhomogenous
parameter p when E(h) / E(0) = 10.

Based on the above models of Young’s modulus, the variation of displacements u and w, stresses �
x
, �

xy
, �

z
 and

�
xz

 at a chosen position (x / a = 0.25, y / b = 0.25), along the thickness direction, are shown in Fig. 3 for a thin plate
(h / a = 0.1) and Fig. 4 for a thick plate (h / a = 0.4). The displacement �, stresses �

y
 and �

yz
 are not depicted because

their distributions along the plate thickness direction are similar to those of u, �
x
 and �

xz
 respectively, because of the

symmetry of the problem.

From Fig. 3 and Fig. 4, the following observations can be made:

For a thin FGM plate, the vertical displacement w (Fig. 3(b)) demonstrates essentially uniform distribution
along the thickness direction and the horizontal displacement u (Fig. 3(a)) shows a linear variation across the
thickness of the plate. For a thick FGM plate, the vertical displacement w (Fig. 4(b)) is no longer uniform and the
horizontal displacement u (Fig. 4(a)) shows a deviation from linear distribution across the thickness.

Either for a thin plate or a thick plate, the magnitude of the vertical displacement for p = 1 is smallest while that
for p = 0 is biggest (Fig. 3(b) and Fig. 4(b)). This can be explained by the fact that the bending rigidities of the plate



are different for different nonhomogenous models. It can also be found that for the same graded model of elastic
modulus, a thin plate has a much larger deflection than that of a thick plate since the bending rigidity of a thin plate
is less than that of a thick plate.

The in-plane stress concentrations (Fig. 3(c) and Fig. 4(c)) in the plate are quite different for different grade
models of Young’s modulus. This enables an optimal design of the plate by selecting the appropriate graded parameter
of a functionally graded material.

The out-of-plane stresses, �
z
 and �

zx
, are negligible compared to the in-plane stress �

x
 for a thin FGM plate. But

for a thick plate this is not true since �
z
 and �

zx
 are comparable with �

x
. This observation should be considered in

establishing a simplified FGM thin plate theory.

6. CONCLUDING REMARKS

An exact solution is obtained for a simply supported isotropic FGM plate subjected to normal and shear loadings on
its lower and upper surfaces by assuming that the Young’s modulus is of power form and the Poisson’s ratio is a
constant. The obtained solution can be used to assess the validity and accuracy of various approximate theoretical
and numerical models of functionally graded plates.
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Figure 1: A Schematic of a Functionally Graded Plate

Figure 2: Variation of Young’s Modulus along the Thickness of the Plate



 
 

  

  

Figure 3: Variation of Physical Quantities with z-coordinate at a Chosen Location (x/a = 0.25, y/b = 0.25) for a thin Plate
(h/a = 0.1): (a) displacement u, (b) displacement w, (c) stress 
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Figure 4: Variation of Physical Quantities with z-coordinate at a Chosen Location (x/a = 0.25, y / b = 0.25) for a Thick Plate
(h/a = 0.4): (a) displacement u, (b) displacement w, (c) stress 
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