
7Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller

IJCTA, 9(40), 2016, pp. 7-17
© International Science Press

Component Based Software Development
using Refactoring with Form Method
S. Manimekalai*

Abstract : In industrial, for the enhancement and maintenance of software the Software Product Lines and
Components Based Software Engineering (CBSE) is to increase the reuse level signifi cantly. The Software
Product Lines required to locate the problem of feature unpredictability that is a one feature may need
different implementations for various customers. The refactoring method is used to reuse level of software in
business components. During the planning stages, the domain analysis can be conducted by software product
line engineering to manage the variability. However, high load planning processes are not well arranged
with the minimal values of the practices. Refactoring techniques have been applied to develop the software
quality attribute, but the refactoring effect on exacting quality attribute is still indefi nite. Therefore, in this
paper, the refactoring with Feature Oriented Reuse Method (FORM) is proposed to manage the variability
of software development process. The CBSE is employed for the development of software that depends on
reuse. CBSE is arising from the failure of object-oriented improvement to sustain reuse effi ciently. Here
the refactoring method is applied to improve the design of existing code for the Component Based Software
Development. In FORM, for the development of reusable business components and architectures and the
software applications are developed using the domain artifacts generated from the domain engineering.
The feature model is an assessment space for software expansion and it is a high-quality starting point for
discovering candidate reusable components. The refactoring is performed based on the software quality
attributes. The software quality may be reusability, security, supportability, testability and maintainability.
These methods can provide more effi cient, reusable components for the software development in industries.
Keywords : CBSE, Software Product Lines, Refactoring, Feature Oriented Reuse Method, software quality
attributes, reusable components

1. INTRODUCTION

A Software Product Line (SPL) is a set of software demanding process that contribute to a common,
fulfi lling the exact requirements of a particular segment of the market or assignment by managing the set
of features and that are improved from a frequent set of core assets [7][12][17]. The Software product line
engineering permits organizations to handle products’ families that are parallel but not equal. A product-line
share a common set of necessities and also demonstrates important variability in necessities. An enhancing
number of organizations that recognize the business consequence of maintaining associated products as
members of a product -line [7][19][20]. The product-lines can provide extra effi cient component reuse.
Here, common components are reused many times and fault correctness and improvements to one product
is quickly disseminated to other product-line members. From ideas of product line, the Component-
Based Software Engineering (CBSE) stands to expand considerably. Within a given domain it is probable
that component-based methods or made by a given organization and it will share a lot of resemblances
and in exacting, it can utilize several of the similar components. By creating obtainable mechanisms

* Assistant Professor, Department of Computer Science, Theivanai Ammal College for Women (Autonomous), Villupuram
Email: mamekaroshni@gmail.com

8 S. Manimekalai

the beginning of component-based software engineering modifi es this situation that allows elements of
software and it is to be quickly and capably gathered into novel applications. This permits the fundamental
principle of product line expansion is applied at every phases and software development levels [3][19].

Refactoring is the process of enhancing the existing code design by modifying its internal structure
without disturbing its behavior of external. The badly designed code is complex to sustain, analysis
and execution and therefore the software reduces quality [8][9][13]. We can discover the work balance
modifi es with refactoring. In this process, during development Locate, design, slightly than occurring each
upfront, happens continuously. Making the scheme that how to progress the design [2]. The necessary
goal of refactoring is the secure transformation of the program to develop the quality. The advantage of
responsibility refactoring contains, development of external software quality attributes. The interaction of
resulting directs to a plan with intend that remains good quality as expansion keeps. To assuring security
and refactoring process effi ciency previously needs automation. Where diffi culty enhances due to require
are handling a high number of variants, this support becomes still further necessary in the SPL framework.
In this paper, we illustrate FORM and refactoring tool that executes code transformations for extracting
variations of the product.

FORM method is an effi cient technique that is viewed for and takes similarities and variations of
applications in a domain in terms of features and utilizing the examination results to expand components
and architectures of domain [16] [21]. FORM product line engineering contains two major methods,
component improvement and product improvement. First one is component improvement contains
recognizing a product line that is marketing and product plan (MPP) improvement and alteration, feature
modeling, and analysis of requirement and improving architectures and reusable components depends on
the results of the analysis. Second one is a product improvement contains recognizing necessities, selecting
features, adapting components and making code, selecting and adopting architecture for the product [3]
[18]. In this paper, we insert related information to the FORM’s assets to refactoring process and we
describe a reusable database of business components in order to develop the reusability of the components.
In this process, we revealed the implementation refactoring with the FORM method in component based
software development. We mostly focus on four major topics: CBSE, Refactoring, Feature Oriented Reuse
Method and Software Quality Attributes.

2. LITERATURE REVIEW

Martin L. Griss discussed the process on agent-based product-line CBSE for fl exible e-commerce methods.
Many technologies are integrated for analysis of product-line and design of component, realization and
customization to generate a foundation for systematic product-line improvement. Mainly independent
task on reuse and object-oriented method has developed to the degree that integration of the methods
undertaking a coherent approach. A practical improvement process is outlined that structures a set of
request and changeable features sustaining a product-line and to create reusable components that is
combined into adapted components and frameworks to sustain the product-line.

Marcel FoudaNdjodo et.al extended the semantic of FORM assets in order to identify theoretical
reusable business elements in FORM. The model is utilized by Ramadour, here the notion of context
is introduced to direct conception and reuse of business elements. The Z notation is employed to give a
framework for exact analysis of reusable business components generated. The Assets of the technique are
formalized. This allows to obviously describe how an activity generates an objective asset from an input
one and an improvement of assets through a concept steps. The tool improvement sustaining the technique
is also a concern.

Vander Alves et.al extended the conventional refactoring notion to an SPL framework. Besides
refactoring processes, Feature Models may also be refectories. A set of sound refactoring is presented
for FMs. This comprehensive refactoring description is evaluated for supplying the mobile games area.
Besides conventional program refactoring, feature representations are refactored. Not only the program

9Component Based Software Development using Refactoring with Form Method

quality is enhanced and also the feature model quality by sustaining or enhancing its confi gurability. In
the mobile domain, a set of refactoring of the sound feature model and estimated them in a genuine case
study is shown.

Colin Atkinson et.al discussed a technique, KobrA, which plainly united the two paradigms into a
methodical, united approach to maintenance and software improvement. From this integration Key synergy
resulting contains sustain for the fast and fl exible instantiation of system variables and the procedural
support provision for component based software improvement. In an industrial the technique itself is at
present being validated setting on a case study in the Enterprise Resource Planning area. It is also being
utilized in the improvement of the workbench of KobrA.

Karim O. Elish et.al initial step is taken towards a refactoring classifi cation to pattern methods based
on their quantifi able result on software quality attributes. This classifi cation process assists software
designers in choosing the suitable refactoring to pattern methods that can develop their design quality
based on their design goals. By utilizing exact refactoring it permits them to forecast the quality fl ow
caused to pattern methods.

Yaser Ghanam et.al introduced a test-driven and bottom-up approach to initiate inconsistency to
systems by reactively refactoring existing code. This approach with an eclipse plug-in to mechanize the
process of refactoring is maintained. This approach is evaluated by a case study to decide the possibility
and sensibleness of the approach. An inadequate estimation of the probability and practicality of the
approach was introduced. Systematic refactoring is utilized in order to insert difference points and variants
in the scheme, when required. An Eclipse plug-in is contributed to mechanize this procedure. By the
plug-in the approach is supported and it was discovered to be reasonable and practical, but suffered a
number of limitations that presently trying to address.

3. METHODOLOGY
A. Component Based Software Engineering

Component-Based Software Engineering (CBSE) is one method for development of software that depends
on reuse of software. It is emerging from the failure of improvement of object-oriented to maintain effi cient
reuse. Component-based software engineering also called Component-Based Development (CBD) and it
is a software engineering branch that emphasizes the division of regards in respect of the wide-ranging
functionality obtainable throughout a given software scheme. A single object classes are too complete and
detailed. Components are furthermore conceptual than object classes and it is considered to be stand-alone
service providers. These practices, goals to take about an evenly wide-ranging degree of benefi ts in both
the long-term and short-term for the software itself and for organizations. Software engineers look upon
components as starting platform part of service-orientation.

System
Requirement
Specifications

Analysis of
Components

to reuse

According to the
discovered components,
the requirements will be

modified

Validation of
System

Enhancement
and Integration

System
design with

reuse

Figure 1: CBSE process

10 S. Manimekalai

For instance, in Web Services the components play this role and more lately, in Service-Oriented
Architecture (SOA) - whereby an element is converted into a service and consequently inherits further
characteristics ahead of that of a normal component. Components can generate events or use events and it
is utilized for Event Driven Architecture (EDA).

 Figure 1 shows the CBSE process, system requirement specifi cations are noted to reuse the business
components and the components are analyzed. The system requirements are modifi ed according to the
found components that are reusable purpose after the component analyzed. Design the architectural with
reuse process after requirements modifi cations. To develop and integrate the modifi ed requirements based
on the architectural design. Finally, validate the system for reuse.

The main objectives of CBSE are :
 1. Decrease of cost and time for construction, large and complex systems: Main objective of

Component based approach is to construct complex software systems utilizing off the projection
component so that the time to construct the software reduce signifi cantly. Using function point or
other techniques the cost effi ciency of the present technique is recognized.

 2. Enhancing the software quality: By enhancing the component quality the software quality is
enhanced. Although the model is not true in common. Sometimes the assembled systems’ quality
might not be straightforwardly interrelated to component quality in the sense that enhancing the
component quality does not essentially involve the enhancement of the systems.

By promoting the utilization of software components built, CBSE of Product-line offers assurance
of large-scale software reuse by profi table vendors or in-house developers. A product-line is constructed
approximately the set of reusable components by recognizing the products to decide the ordinary and
variable features utilizing a method is known as analysis of the domain. Then a structure of product and
strategy of implementation approximately a set of reusable components is developed that is composed
to execute numerous different products. CBSE of product-line subsequently becomes of considered
signifi cance, and management will pay concentration.

CBSE of product-line has the probable to :
 1. By permitting the systems to be constructed by assembling reusable components rather than from

scrap, considerably the cost and time-to-market of enterprise software systems is reduced.
 2. By permitting novel (higher) quality components to restore old ones, the maintainability of

enterprise software systems is enhanced.
 3. Improve the consistency of enterprise software systems because every reusable component has

gone through numerous evaluation and examination stages in the course of its unique improvement
and earlier utilization; and because CBSE depends on explicitly described system design and
interfaces.

 4. By improving only a only some novel components, and reusing the rest, the ability of organizations
is enhanced in meeting demands of a changing market by permitting novel products to be rapidly
constructed.

 5. In component-based software improvement, improve the enterprise software systems quality by
permitting application-domain experts to expand components and software engineers particular
to accumulate the components and construct enterprise software systems.

A feature is a characteristic of a product that users and customer analysis as signifi cant in defi ning and
differentiating product-line members. A feature is
 1. A defi nite necessity
 2. An assortment among elective or alternative requirements associated to defi nite characteristics of

the product, such as performance, usability and functionality.
 3. Associated with characteristics of accomplishment, such as size, computer or operating system.
 4. Compatibility with defi nite standards such as HL7, CORBA, or TCP/IP.

11Component Based Software Development using Refactoring with Form Method

In this paper, initially we employ the CBSE for reuse the business components, the CBSE method is
applied before refactoring system. Reusability is a signifi cant characteristic of a high- software component
quality. Programmers should plan and execute software components in such a way that several various
programs are reusing them. In addition, testing of component-based usability is measured as software
components directly cooperate with users. It takes important attempt and responsiveness to write a software
component that is effi ciently reusable. The component requires be completed documenting and systematic
testing, designing with an alert that it will be put to unexpected utilizes CBSE combines fundamentals
of software architecture, software verifi cation, confi guration, modular software design and exploitation.
To promote exchange and teamwork with the community of software architecture, with the Quality of
Software Architectures Conference (QoSA) CBSE is co-located and the International Symposium on
Architecting Critical Systems (ISARCS) as an element of the event of federated CompArch.

B. Feature Oriented Reuse Method (FORM)

FORM is FODA (Feature Oriented Domain Analysis) extension which goals to cover analysis of the
domain and development of core assets and which goals to maintain a view of business on the improvement
of software product line. The concept of utilizing a feature model for requirements engineering was
introduced in FODA. FORM expands FODA to the software plan and execution phases, and dictates how
the feature model is employed to expand domain components and architectures for reuse. In a specifi ed
domain FORM starts with a commonality analysis amongst applications. During the analysis the model
built is known as feature model.

A feature model contains

 1. A further illustration, which is a graphical AND/OR features hierarchy that takes logical structural
relationships, for example composition and generalization between features. There are three kinds
of relationships are represented in this illustration: generalization / specialization, composed-off,
and implemented-by.

 2. Rules of Composition that enhancement the feature illustration with mutual dependence and
shared exclusion relationships.

 3. Issues and decisions that record different trade-offs, justifi cations and rationale for selection of
feature.

The utilization of features is provoked by the information that customers and engineers frequently
speak of the characteristics of the product in terms of features the product contains delivers of AND/
OR. They communicate functions or requirements in terms of features and features are characteristically
particular functional abstractions that must be executed, tested, delivered, and maintained. This information,
conversely, has not been maintained or exploited entirely by the majority of software engineering
techniques so far.

There are various kinds of features that are of concern relying on the interest one might have in system
improvement. Users, system analysts, and developers are all frequently involved in system improvement
and have various interests. Users are regarded more about the functions or services offered by the system
(i.e., service features) and system analysts and designers are regarded about domain methodologies (e.g.,
navigation techniques in the avionics domain, techniques of fi nance transmit in the banking domain) and
developers are regarded about implementation methods (e.g., databases, sorting algorithms). Applications
are not constructing unless a decision of sound is prepared among them that is create an executable and
reliable set of features. The chosen set of features is to restrain the feasible architectures space.

FORM Engineering Process

Figure 2 shows the FORM engineering process. The FORM engineering process has two engineering
process that processes are domain and application engineering process. Domain engineering purpose is to

12 S. Manimekalai

increase domain artifacts that might be utilized in improving applications for a given domain. The domain
engineering contains operations for assembling and describing information on systems that distribute a
common set of data and capabilities. In a further complete manner the domain knowledge is engineered
and organized and it gives the user recognizable and selectable frequent features and reference software
system designs of the aim domain in which reusable component roles are clearly defi ned in terms of their
places in FORM.

FORM Domain Engineering

Analysis
of

Domain

Feature
Model

Reference
System design
Improvement

Reference
System
design

Development of
Reusable

Components

Reusable
Components

Analysis of
user

Requirements

Selection of
Feature

Specifications

Selection of
application

System Design

Subsystem

Process Model

Module Model

Application
Software

Improvement

Application
Software

FORM Application Engineering

Figure 2: FORM Engineering Process

An application engineering is a process of improving a precise application creating utilization of the
domain knowledge obtained through domain engineering (i.e., through discovering an accurate reference
system design and plugging in reusable software components) in FORM. By fi rst recognizing requirements
of user, application engineering progresses and choosing suitable and valid domain features from the
feature model, recognizing the corresponding reference model, and by reusing software components,
fi nishing the application improvement in a bottom-up fashion.

C. Refactoring

Refactoring is the process of enhancing the existing code design by modifying its internal structure
without disturbing its behavior of external. The badly designed code is complex to sustain, analysis and
execution and therefore the software reduces quality. That’s an abnormal turn of expression. In our present
perception of software improvement, we consider that we design and then we have to write to code. An
excellent design comes primarily and the coding comes next. Over time the code is altered and the system
integrity, its structure according to that design and regularly fades. The code gradually goes down from
engineering to chopping.

It is the differing of this practice. We can take a bad design, chaos even and rewrite it into elegant
code in the refactoring process. Every step is easy, even unsophisticated. We move a fi eld from one class
to another class and drag a number of codes out of a technique to create into its own technique and drive
a number of codes up or down a hierarchy. However the collective result of these small modifi cations
is fundamentally developing the design. It is the precise normal notion reverse of software decompose.
We can discover the balance of work alters with refactoring. We can discover that design, rather than
occurring every up front, happens continuously during the improvement of software. In this process, we

13Component Based Software Development using Refactoring with Form Method

can study from constructing the scheme how to develop the design. The interaction of resulting is directed
to a program with a design that remains good as improvement continues.

Example for code refactoring based on feature to Extract Super-class

Figure 3 shows the code refactoring using features. In this process, when we discover two or more classes
that distribute common features, regard as abstracting those distributed features into a super-class. Yet
again, this creates it simpler to bind classes to an abstraction, and eliminates duplicate code from the
unique classes.

public class Employee

{

private String name;

private String job position;

}

public class Patient

{

private String name;

private Disease disease;

}

public abstract class Person
{
protected String name;
}
public class Employee
extends Person
{
private String job position;
}
public class Patient extends
Person
{
private Disease disease;
}

Figure 3: Code refactoring using features

In this paper, not only a program, we also focus on the Feature model refactoring with a feature oriented
reuse method to reuse the business components. SPL refactoring have not only program refactoring, but
also Feature Model refactoring. Based on this description, we propose a FORM method with Feature
Model refactoring. A feature model refactoring is a transformation that develops the feature model quality
by developing its confi gurability.

Figure 4 represents two small Feature Models. It defi nes the mobile colors. A mobile can be white or
black in the left-hand side (LHS) Feature Model. Assume that we would like to refactor the LHS model to
the RHS model by adding a new substitute color. Therefore, we can have an additional color blue mobile in
the resultant model, as still sustaining the earlier confi gurations. We show that the resultant Feature Model
develops the primary Feature Model confi gurability for assuring accuracy of the refactoring described in
Figure 4.

White Black White Black Blue

Mobile
Mobile

Figure 4: Example of Feature Model Refactoring

The LHS Feature Model has two applicable confi gurations: {mobile; White} and {mobile; Black}.
The RHS Feature Model contains similar confi gurations of the LHS Feature Model and additionally it has
the confi guration {mobile; Blue}. As the RHS model has every valid confi guration of the LHS Feature
Model, it is an applicable Feature Model refactoring. Subsequent to a related approach to establish Feature
Model refactorings having signifi cantly extra features, relations and formulas might be complicated, error-
prone and time-consuming. In order to avoid that, we FORM with refactorings are presented.

14 S. Manimekalai

D. Software quality attributes

In this paper, we mainly focus on fi ve software quality attributes of the refactoring process to reuse the
business components. The fi ve software quality attributes are
 1. Reusability 2. Security
 3. Supportability 4. Testability
 5. Maintainability

Software quality is the level to which software has a preferred combination of attributes (e.g.
reusability and adaptability). This means that describing the quality of software for a system is equal to
describing a list of software quality attributes of that organization. ISO/EIC 9126 standard defi nes the
characteristics of software quality as a set of attributes of a software product by which its quality is defi ned
and estimated. The factors that concern quality of software is categorized into two groups (i) factors that is
directly calculated i.e., inner quality attributes (e.g. program length as lines of code) and (ii) factors that is
evaluated only not directly, i.e., outer quality attributes (e.g. reliability and maintainability). The inner and
the outer software quality attributes utilized in our classifi cation and defi ne how external quality attributes
is evaluated utilizing inner quality attributes.

Reusability

Reusability is the possibility that a component is utilized in other components or scenarios to add novel
functionality with slight or no modifi cations. Reusability reduces the components duplication and the
execution time. Analyzing the frequent attributes between different components is the fi rst step in
constructing little reusable components for utilize in a superior system. There are many key issues:
 1. The utilization of various codes or components to attain the similar result in different places; for

instance, replication of related logic in many components, and similar logic duplication in many
layers or subsystems. Observe the design of application to recognize the common functionality
and execute this functionality in separate components that we can reuse. Observe the design of
application to recognize crosscutting regards such as logging, validation and authentication and
execute these functions as divided components.

 2. The utilization of multiple same techniques to execute works that contains only a small difference.
Instead, utilize parameters to differ the performance of a single technique.

 3. Utilizing many systems to execute the similar feature or function instead of distribution or reusing
functionality in an additional system, across several systems or across various subsystems within
an application. Through service interfaces, consider disclosing functionality from components,
layers, and subsystems that other layers and systems can utilize. On various platforms employ
platform agnostic data types and structures that is accessed and understood.

Security

Security is the system’s ability to decrease the malicious chance or unintended actions outside of the
designed procedure disturbing the system and avoid revelation or information loss. Enhancing security
also enhance the system reliability by minimizing the chances of an attack following and impairing
system process. Secure a system should have protected assets and avoid accessing of unauthorized to
or information alteration. The factors disturbing security of the system are integrity, confi dentiality and
availability. The features utilized in protected systems are authenticated, logging, encryption and auditing.

Supportability

Supportability is the capability of the system to give information, supportive for recognizing and resolving
issues as it fails in effort properly.

15Component Based Software Development using Refactoring with Form Method

Testability
Testability is evaluated on how well system or components permit us to make examination criterion and
implement tests to establish if the criterion are met. Testability permits faults in a system to be separated
in a timely and effi cient manner.

Maintainability
Maintainability is the capability of the system to undertake modifi cations with an amount of effortlessness.
These modifi cations can impact features, services, components and interfaces as adding or altering the
functionality of the application in order to fi x bugs or to assemble novel business necessities. Maintainability
also affects the time it gets to reinstate the system to its prepared status subsequent a failure or removal
from operation for improving. Enhancing system maintainability is to enhance availability and reduce the
effects of run-time imperfection.

4. OVERALL PROPOSED SCHEME PROCESS

Start

Requirement Specifications

Component Analysis

System Design to Reuse

System Validation

Feature Model

Reference Architectures

Development of Reusable Components

Code Refactoring Based on the features

Feature Model Refactoring

Provides good Software Quality

Reuse Business Components Effectively

Stop

Refactoring

FORM Method

CBSE

Figure 5: Overall Process Scheme

16 S. Manimekalai

Figure 5 shows the overall process of our proposed scheme. In this process, initially specify the requirement
specifi cations for reuse purpose. The components are analyzed in Component Based Software Engineering.
To construct the architecture or system design to reuse business components after components are analyzed.
The System is validated in CBSE.

The Feature Oriented Reuse Method is performed after CBSE process. In FORM method, the feature
model is utilized and reference architectures are used for the development of reusable components. These
reference architectures are described from three viewpoints such as subsystem, process and module and
it is close involvement with the features. The domain analysis is performed in FORM method in the
refactoring process. The Feature Oriented Reuse Method is applied before the refactoring process. In
this scheme, the components are reused based on their features. Refactoring is applied after the FORM
method is used. Refactoring is the process of modifying the internal structure of code, with changes of
external behaviors. To refactor the code based on their features to provide good quality and to reduce the
complexity. And the feature model has also refactors. Finally, we will get reusable business components.
Our proposed scheme will give good software quality attributes like reusability, testability, security,
supportability and maintainability.

5. CONCLUSION

In this paper, we focus on effi cient refactoring method and this method for single software systems contains
well-established meaning. Refactoring techniques are applied to develop the software quality attribute, but
the refactoring effect on exacting quality attribute is still indefi nite. In this scheme, CBSE with refactoring
is performed using feature oriented reuse model is presented to provide the best software quality attributes
to component based software improvement. The CBSE is used to reuse business components. CBSE
is a reuse-based approach to describing and executing freely united components into systems. In the
CBSE, reusable components are analyzed and architectures are designed to reuse approach. The FORM
method is applied to reuse the feature effectively after CBSE process is completed. With a commonality
analysis amongst applications the FORM method is started. During the analysis the model built is known
as feature model and it takes unity as an AND/OR graph. In this FORM feature model, AND graph
specifi es mandatory features and OR graph specify alternative features selectable for various applications.
After that, this model is utilized to describe parameterized reference architectures and suitable reusable
components during actual software improvement. The reusable components are developed during the
feature model is improved using the FORM method. Finally, refactoring method is applied to refactor the
code effectively to give the quality of the program and also feature models are refactored. This scheme
can provide good software quality attributes. In this scheme, not only is the program quality and also the
quality of the feature model is improved to reuse the business components effi ciently.

6. REFERENCES
 1. Alshayeb M. (2009), “Empirical Investigation of Refactoring Effect on Software Quality”, Information and Software

Technology Journal, vol. 51, PP.1319-1326.

 2. Alshayeb M. (2011), “The Impact of Refactoring to Patterns on Software Quality Attributes”, The Arabian Journal
for Science and Engineering, vol. 36, PP. 1241-1251.

 3. Apel S., Batory D., Kastner C., and Saake G. (2013). “Feature-Oriented Software Product Lines Concepts and
Implementation” .Springer publications.

 4. Apel S., Kastner C., and Lengauer C. (2013), “Language-independent and automated software composition”, The
Feature House experience. IEEE Trans. Software Engineering,Vol.39, No.1, PP.63-79.

 5. Batory D (2005), “Feature models, grammars, and propositional formulas”, 9th International Conference of Software
Product Lines, Vol.3714 of Lecture Notes in Computer Science, PP. 7-20.

 6. Benavides D., Ruiz-Cortes A., and Trinidad P. (2005). “Automated reasoning on feature models”, Advanced
Information Systems Engineering (CAiSE), Vol.3520, PP. 491-503.

17Component Based Software Development using Refactoring with Form Method

 7. Berger C., Rendel H. , and Rumpe B. (2010),“Measuring the ability to form a product line from existing products”,
VaMoS, PP. 151-154.

 8. Bryton S. and Abreu F. (2009), “Strengthening refactoring: towards software evolution with quantitative and
experimental grounds”, 4th International Conference on Software Engineering Advances, PP. 570-575.

 9. Elish K. and AlshayebM. (2011), “A Classifi cation of Refactoring Methods Based on Software Quality Attributes,”
The Arabian Journal for Science and Engineering, vol. 36, PP.1253-1267.

 10. Francisco ZigmundSokal, Mauricio FinavaroAniche and Marco Aurelio Gerosa, (2013), “Does The Act Of
Refactoring Really Make Code Simpler?, A Preliminary Study

 11. Gheyi R., AlvesV.,MassoniT., KuleszaU., BorbaP., and Lucena C. (2006), “Theory and proofs for feature model
refactorings”, Technical ReportTR-UFPE-CIN-200608027, Federal University of Pernambuco.

 12. Gunter Bockle, Klaus PohlanFrank van der Linden (2005), “Software Product Engineering Foundations, Principles
and Techniques”, Springer publications. PP.19-37.

 13. Karim O. Elish and Mohammad Alshayeb (2012), “Using Software Quality Attributes to Classify Refactoring to
Patterns”, Journal of Software, Vol. 7, No. 2, PP.408-419.

 14. Kayarvizhy, N. and Kanmani, S., (2011) “Analysis of quality of object oriented systems using object oriented
metrics,” Electronics Computer Technology (ICECT), vol.5, PP. 203-206.

 15. Liu J., Batory D., and Lengauer C. (2006), “Feature oriented refactoring of legacy applications”, In Proceedings of
the 28th International Conference on Software Engineering, PP.112-121.

 16. Marcel FoudaNdjodo and AmougouNgoumou (2009), “The Feature Oriented Reuse Method with Business
Component Semantics”, International Journal of Computer Science and Applications, Vol. 6, No, 4, PP. 63 – 83.

 17. Manimekalai S, (2016), “State of the Art with Cooperative Approach for Software Product Lines in IC Reengineering”,
Middle-East Journal of Scientifi c Research 24 (2):271-278.

 18. Sven Apel and Christian Kastner (2009), “An Overview of Feature-Oriented Software Development”, Journal of
Object Technology, Vol.8, No.4, PP.1-36.

 19. Wolfram Fenske, Thomas Thum and Gunter Saake (2014), “A Taxonomy of Software Product Line Reengineering”,
Proceedings of the Eighth International Workshop on Variability Modelling of Software-Intensive Systems, No.4.

 20. YaserGhanam and Frank Maurer (2010), “Extreme Product Line Engineering – Refactoring for Variability: A Test-
Driven Approach”, Agile Processes in Software Engineering and Extreme Programming, Vol.48, PP.43-57.

 21. Stefan Ferber, Jurgen Haag and JuhaSavolainen (2002), “Feature Interaction and Dependencies: Modeling Features
for Reengineering a Legacy Product Line”, Springer publications, PP. 235-256.

