
Generation and Optimization of Test Paths Using Modified ACO

Generation and Optimization of Test Paths Using Modified ACO

Nisha Rathee1 and Rajender Singh Chhillar2

1 Department of Information Technology, Indira Gandhi Delhi Technical University For Women, Delhi, India.
2 Department of Computer Science and Application, M.D.U Rohtak, Haryana , India.

Abstract: Model based testing has been the most preferred technique for generation of test cases by software

practitioners. It helps in early detection of faults during the design phase, thus reducing development and testing cost.

Various testing techniques are available for the generation of test paths using UML diagrams, but finding the optimized

path is a challenge. Thus, optimization of test path at an early stage is required to find the best test suite which covers

maximum faults with minimum time and minimum redundancy. In this paper, we have proposed an approach for the

generation and optimization of test paths by updating the basic features of ACO algorithm using the concept of

Backward Slicing and the basic properties of Graph Theory. Priority is set according to the proposed approach and

test paths with highest priority are scheduled first. The Modified ACO algorithm has been shown to reduce the

redundancy in the test paths, thus reducing the cost, time and effort for the generation of test cases. The modified

ACO algorithm has been applied on a UML Activity diagram using the case study of a Library management system.

Keywords: Software testing, Cyclomatic Complexity, Automatic test path generation, Ant Colony Optimization, UML

Diagram, Activity Diagram.

1. INTRODUCTION

Due to the extensive use of software designed systems and their increasing complexity, emphasis has been given on

object oriented software design for the efficient development of software systems. The most difficult and most important

component of software development life cycle is software testing [1,16,20]. The activity of software testing has

become more cumbersome, time consuming and costly because of the increasing complexity and scope of software

based systems. To cope with these complications, UML model-based testing approach for structural software testing

has evolved. In model- based testing technique the test cases are derived from a model that describes the functionality

of software systems. Unified Modeling Language (UML) is the standard modeling language for describing the features

of a system visually and helps in understanding the behavior of the system clearly. Unified modeling language

encompasses a diagram suite to represent different aspects of the system. UML transition sequences serve as a blueprint

for the software systems [3,17]. The adaptation of UML specifications for testing purposes helps in early identification

of faults and therefore minimizing the cost of testing efforts at later stages of the SDLC.

UML model based testing is well-liked by software developers for consistency and modelling of object

oriented software systems [2]. Generation of test paths and corresponding test cases during the design phase of

the Software Development Life Cycle (SDLC) enhances the confidence of a developer by detecting faults and

Nisha Rathee and Rajender Singh Chhillar

errors at an early stage in the development of software. Though, derivation of test cases from UML diagrams is

very complex task. The size of test case suite increases with the size and complexity of software systems [4].

Thus, exhaustive testing covering the complete test suite becomes impossible. We should be able to remove the

redundant test cases and also those which are not feasible. This leads to the problem of automatic generation and

optimization of test paths. Till now, various testing techniques have been proposed and implemented for the

automatic test paths generation using UML diagrams such as genetic algorithms [8], Ant Colony Optimization

[6,7], Tabu search[8] based method, Cuckoo search [5] based methods and many more. All of these algorithms

have been implemented successfully for the automatic generation of test paths, but the generation of adequate

amount of test paths with the minimum number of redundant nodes from UML diagrams needs suitable techniques.

This paper presents an approach using Modified Ant Colony Optimization algorithm for the automatic

generation of test paths with the minimum number of redundant nodes. The proposed approach deals with the

case study of library management system using UML activity diagram. UML activity diagram is used for

describing the functionality of the software system by representing the sequence of actions with the help of

parallel and conditional activities [2,3].

1.1. Related Concepts

Ant Colony Optimization is a population based meta-heuristic technique that can be used to discover solutions for

optimization problems [18]. ACO takes motivation from the tracking behavior of the ant species and their enhanced

abilities such as memory of past actions and knowledge about the distance to other locations [18]. These ants while

travelling on the paths leave a chemical substance known as pheromone. This pheromone attracts other ants, thus

reinforcing the existing path and is also evaporated with time. The basic idea behind ACO is that shorter paths are

better since the ants can travel these paths faster and the amount of pheromone would be more on these paths [9].

Thus, we estimate probability of each and every path with the help of which we assign priority to these paths [10].

The basic ant colony optimization algorithm depends upon the following factors [7]:

I. Feasibility of Path (Fij): It contains all the edges which are connected from node i to node j [16].

II. Pheromone value ([i,j]): It is the chemical substance which is released by an ant [16]. It allows an

ant to form a conclusion in prospect.in the search of food. It keeps a trace of the path between two

nodes. The value of pheromone is updated whenever an edge is traversed.

III. Heuristic value ([i,j]): It indicates the visibility of a path for an ant at current vertex i to j. Visited

Status (Vs): It shows the status of all nodes traversed by any ant for any state i.

IV. Probability: Probability value of the path depends upon two factors :(i) pheromone value [i, j] and

heuristic information [i,j] (p) of path for ant p [15].The choice of edge to be selected next in the path

is depends upon the probabilistic value of the edge from node ‘i’ to node ‘j’, for an ant p.

We have also used the concept of cyclomatic complexity to identify the extreme number of independent

paths in the input graph. Cyclomatic Complexity is a very popular technique proposed by McCabe in 1976 and

is widely used for finding the maximum number of independent paths in a graph [11]. It is denoted by V(G).

Here, V stands for the Cyclomatic number in graph theory and G signifies the complexity function of the graph

[12]. V (G) can be calculated using the following formula:

V (G) = E-N+2 (1)

Where ‘E’ is the total number of edges and ‘N’ is total number of nodes in the graph ‘G’ [21].

This paper proposes and presents a modified Ant Colony Optimization approach with the help of a UML

activity diagram. This will enable us to prioritize the feasible paths on the basis of strength assigned and thus

discard the less feasible test cases. This paper is described as follows: Section II represents an outline of the

related work done in this field. In Section III, the proposed approach is discussed along with the calculations and

observations. Section IV describes the conclusion of the paper and gives an outline of our future work.

Generation and Optimization of Test Paths Using Modified ACO

2. RELATED WORK

Several algorithms have been proposed for the optimization of test paths and corresponding test cases.

In [7], Srivastava et.al have used the basic concept of Ant Colony Optimization algorithm for the generation

of optimal test paths. After transforming the source code into a control flow graph, the number of feasible paths

has been calculated using the simple principle of ACO. Calculated test paths have been verified using McCabe’s

cyclomatic complexity. This paper proposes a model for basis path testing technique using ant colony optimization

algorithm. The proposed approach provides complete branch coverage for the generation of test cases.

Liping Li et. al. [13] proposed an extenics-based approach for the automatic generation of test cases using

UML Activity Diagram. In the paper, they have proposed a Euler Circuit algorithm for the automatic generation

of test cases. The Activity Diagram is transformed into a Euler Circuit by formalizing it using the concepts of n-

dimensional matter elements. They have mainly focused on transition coverage between the activities in Euler

Circuit algorithm for generation of test cases. This helps in a reduction in fault detection therefore reduces

testing time and improves the quality of test cases.

Philip Samuel and Mall [14] have proposed a technique for the generation of test cases from UML

Activity Diagrams using the concept of dynamic slicing and edge marking. A flow dependency graph (FDG)

is formed from the UML Activity Diagram for the generation of dynamic slices. The transformation from one

state of activity to another is represented by a corresponding node in FDG. Each and every edge of FDG is

noted as ‘stable’ or ‘unstable’. For each node in FDG, a dynamic slicing value for each conditional edge

between activities (nodes) has been generated using the slicing criteria. Then by using function minimization

method, test case data is created with respect to each and every generated sliced value. The proposed approach

automatically generates the test cases corresponding to the sliced conditional value by using the case study of

an ATM withdrawal system.

Chengying Mao et.al [9] has proposed an algorithm TDG_ACO by combining the features of Test Driver

and ACO for test case generation with maximum branch coverage. The basic ACO algorithm has been redefined

by reforming three rules: local transfer rule, pheromone update rule and global transfer rule. Five real world

problems are used for the implementation and validation of the practicability and efficiency of the proposed

algorithm. Results show that the updated algorithm outperforms the existing technologies.

Saurabh Srivastava et.al [10] has presented an extension of the Ant Colony Optimization which can be

helpful in providing a better prioritization of test cases. It uses a popular way of structural testing known as

Control Flow testing. A Control Flow Diagram is thus derived from the program source code and the independent

paths are prioritized. The proposed approach allows the tester to find the probability of each path and then

prioritize according to the calculated values.

3. PROPOSED METHODOLGY

This section illustrates the details of our proposed methodology for path prioritization by applying a modified

ACO approach on UML activity diagram using the case study of a library management system. In our work, we

have used behavioral UML models which are considered as a de facto standard in software industry to represent

the requirements and dynamic nature of the system. The proposed methodology converts the UML Activity

Diagram in to an Activity Diagram Graph with the help of the Activity Diagram Table. The modified ACO

approach uses the concept of backward slicing for getting a clear visibility of an ant towards the food. Backward

Slice of an ant calculates the number of nodes to be traversed between the current node and the end node in

search of food. Cyclomatic complexity has been calculated to identify the maximum number of independent

paths in the graph [19]. It is very difficult to generate test cases for all the test paths in graph. Therefore,

optimization of test paths with minimum redundant nodes and maximum code coverage is required for the

resourceful generation of test cases. The proposed approach is used for the generation and optimization of

Nisha Rathee and Rajender Singh Chhillar

independent test paths with minimum redundancy. We consider the scenarios, beginning with the start node,

traversing through all the intermediate nodes, up to the end node. The steps involved are as follows:

i. Consider the case study of a library management system.

ii. Create the activity diagram for the system using Rational Rose suite as shown in figure 1.

iii. Generate an Activity Diagram Table (ADT) from the activity diagram. The table gives a symbolic

representation of all the activities. Symbolic information of all the nodes is shown in Table 1.

iv. Generate an activity diagram graph (ADG) with the help of ADT as shown in figure 2. The ADG

represents the activities as nodes and flow between activities as edges of the graph.

v. Calculate backward slice of each node in the graph as shown in Table 2.

vi. Calculate the cyclomatic complexity (CC) of the graph.

vii. Generation and optimization of test paths using the modified ACO algorithm.

Table 1

Symbolic representation of Nodes

Activity Name SymbolNumber Activity Name SymbolNumber

Start node 1 Check numberof books issued to member 9

Enquiry aboutBooks 2 Book notIssued 11

Checkavailability ofbooks 3 Issue Book 12

DecisionNodes 4,7,10 Add member,book & Issue detail 13

Books notAvailable 5 Update bookStatus 14

ValidateMember 6 End Node 15

RegisterMember 8

Figure 1: Activity diagram of library Management System

Enquiry about books

Check Availability ...

Book not available

Available

Validate Member

Valid

Not Valid

Not Available

Register Member

Check number of

books issued ...

Book Not issued

Max. quote exceeded

Issue Book

Add member, b...

Update Book Status

Generation and Optimization of Test Paths Using Modified ACO

Table 2

Cost of Backward Slice of nodes

Node BackwardSlice Cost of BackwardSlice

1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 15

2 2,3,4,5,6,7,8,9,10,11,12,13,14,15 14

3 3,4,5,6,7,8,9,10,11,12,13,14,15 13

4 4,5,6,7,8,9,10,11,12,13,14,15 12

5 5,15 2

6 6,7,8,9,10,11,12,13,14,15 10

7 7,8,9,10,11,12,13,14,15 9

8 8,15 2

9 9,10,11,12,13,14,15 7

10 10,11,12,13,14,15 6

11 11,15 2

12 12,13,14,15 4

13 13,14,15 3

14 14,15 2

15 15 1

3.1. Approach of the Algorithm

Algorithm_Modified_ACO (start, end_node, G):

Figure 2: Activity Diagram Graph of library Management System

Nisha Rathee and Rajender Singh Chhillar

1. For all v in V[G] do

2. Visited[v]=false;

3. End for.

4. Initialize stack S // Empty Stack

5. Initialize strength [start]=0;

6. For all v in V[G] do

7. Calculate BackwardSlice (v) // Cost of BackwardSlice of each vertex.

8. End for

9. Push (S, start); // Push the start vertex to the Stack s.

10. Weight[start] = 1.

11. Initialize count= cyclomatic complexity of Graph G

12. While count>0 && not empty(S)

13. do int i=pop(S);

14. If visited[i]==0 then set visited [i] = 1;

15. Evaluate feasibility set F[i] for current vertex i.

16. If F[i] ==0, then goto step 23.

17. Else Calculate weight of each node which are associated in the F[i] for node i.

W[i,j]= Number of nodes incoming to node ‘i’ + Number of nodes outgoing from ‘j’.

Set weight of node ‘j’ associated to node ‘i’ as W[j] = W[i] + W[i,j];

18. Update pheromone [i,j] = (W[i] + W[i,j])/ W[i]

19. Update visibility [i,j] = W[i] + W [i,j];

20. If there is single vertex in F[i] i.e only node ‘j’ then push (S,j) and go to step 22.

Else calculate probability and cost of traversing (CTR) of every non- visited node ‘j’ in

F[i] ;

Pij =([i,j]*[i,j])/
k
i ([i,j]* [i,j]); // Calculate probability

CTR = Pij * BackwardSlice(j); // Calculate cost of traversing.

21. push vertex in Stack S according to highest cost of traversing values.

If CTR [i,j] > CTR [i,k] then push(S,j) and then Push(S,k)

Else if CTR [i,j]= CTR [i,k] then

a. Check if feasibility set entry equals end_node, then push (S,k) and push (S, end_node).

b. If F[i] does not contain any end node, then select the path which has next state not

visited yet. Push (S, j) and then push (S, k) // If ‘k’ is not visited yet.

c. If same status then select any path randomly.

22. Calculate strength for all ‘j’ nodes in feasibility set of node ‘i ’.

Strength[j] = strength[i] + ([i,j]*[i,j])

23. If (i != end_node) then goto step 12 ;

Else update count= count-1 and print the path with its strength value and goto step 12.

24. End While.

Generation and Optimization of Test Paths Using Modified ACO

3.2. Demonstration of proposed approach

The proposed approach utilizes the basic operations of stack and graph theory. Cost of backward slice of every

node is calculated from the Activity Diagram Graph. Cost of backward slice of a node is the number of nodes

associated to that node till the end node. It helps ants to identify the number of intermediate nodes between the

current stage of the ant and the food. Cost of Traversing ‘CTR’, as defined in the algorithm above, is used for the

optimization of test paths. The cost of traversing is a product of the probability of edges ‘i’ to ‘j’ and the cost of

backward slice. An ant selects the edge that has the maximum Cost of Traversing, thereby proceeding further

towards the food. Strength is calculated for optimization of test paths. The path having highest strength value is

the most optimized path.

The algorithm takes the activity diagram graph with the start node and end node as input. In this graph start

node and end nodes are ‘1’ and ‘15’ respectively. Initially the visited status of all the nodes in the graph is set to

‘zero’. Strength of node’1’ is set to zero. Backward slice of each and every node in the graph is calculated.

Initially start node is pushed in the stack ‘S’. Weight of start node is set to ‘1’. Total number of vertices in the

graph is 15 and total number of edges in the graph is 16. Therefore, cyclomatic complexity of the graph is 17-

15+2= 4.

The cyclomatic complexity of the graph is stored in the ‘count’ variable. While count is greater than zero

and the stack is not empty, the proposed approach will pop an element that is node ‘1’ from the stack and change

its visited status to ‘1’. Feasibility set of node ‘1’ is {2} i.e node ‘2’ only. Weight of edge (1,2) is 0+1=1, as total

number of nodes incoming to node 1 is 0 and total number of nodes outgoing from 2 is only 1. Set weight of

node 2 is W [1] + W [1,2] i.e 1+1=2. Pheromone value [1,2] for edge (1,2) is 2 and visibility value [1,2] is

also calculated as 2. As there is only node 2 in feasibility set of node 1 therefore, there is no need to calculate the

probability and directly push node 2 in to the stack S. Strength of node 2 is calculated as strength [1] + ([1,2]*

[1,2]), i.e 4. As node 1 is not equals to end node therefore, go back to step 12. Now the count is still greater than

‘0’ and stack is not empty therefore it will again pop an element i.e node 2 from the stack. Feasibility [2] = {3}.

Weight (2,3) = 2 and W[3]= 2+2=4. [2,3] = {(2+2)/ 2}= 2 and [2,3]= (2+2)=4. As there is single node in

feasibility set of node 2 therefore, push node 3 in to stack S. Strength [3]= {4+(2*4)}= 12. As node 2 is not

equals to end node therefore again go back to step 12. Now again count is greater than zero and stack is not

empty therefore, pop an element i.e node 3 from the stack ‘S’.

Feasibility [3] = {4}. W[3,4]= 3 and W[4] = 7. [3,4]={(4+3)/4}= 1.75 and [3,4]=7. Pheromone value of

an edge decreases and the visibility of an ant increases as the ant moves towards the food. Here pheromone value

decreases to 1.75 and visibility increases to 7 as we move further towards the end node. As there is single node

in F[3] therefore, push node 4 to Stack S. Strength[4] = {12+(1.75*4)}=24.25. Node 3 is not equals to end node

therefore, again go back to step 12. Now it will again pop an element from the stack S i.e node 4. F[4] = {5,6}.

W[4,5] = 2, W[4,6] = 2, W[5]=9, W[6] = 9. [4,5]={(7+2)/7}= 1.28 and [4,5]= 9 , similarly [4,6]= 1.28 and

[4,6]= 9.

Now the feasibility set is containing more than one node therefore, we the ant will select higher priority

node. Priority of a node is assigned according to the value of Cost of Traversing (CTR). Least CTR valued node

is the most prior node. Highest priority is assigned is assigned to least CTR valued node, because this node is

more close to the end node. The value of CTR is based upon two parameters, one is the probability of the edge

(i,j) and other is backward slice of ‘j’ node. Here CTR [4,6] > CTR[4,5] therefore , the most prior node is node

5 and it should be pushed on the top of the stack. The ant will select the edge (4,5) for further traversing. Push (S,

6) and then Push(S,5). Strength [5] = 35.77 and Strength [6]= 35.77. Now 4is not equals to end node, therefore,

it will again go back to step 12 and pop the node 5 from the stack. F {5} = {15}, W [5, 15] =1 and W [15] =10.

 [5,15]= 1.11 and [5,15]= 10. As there is single node in feasibility set of node 5 therefore push (S, 15).

Strength [15] = 46.9. As node 5 is not equals to end node therefore again go back to step 12 and pop node 15

from the stack S.

Nisha Rathee and Rajender Singh Chhillar

Now F{15}= empty, therefore go to step 23. It will check whether the node is end node or not. Now node

15 is the end node, therefore it will update the count parameter by deceasing its value by 1and print the path with

its strength value. It will print the path 1: 1,2,3,4,5,15 with its strength value 46.9 and go back to step 12. Now

the value of count is 3 and the stack is still not empty as it is containing node 6, therefore, it will pop node 6 from

the stack and follow the similar steps as discussed above for rest of the paths.

In above graph, on ‘x’ axis we are having edges traversed by an ant p during the path 1and on ‘y’ axis we

are having calculated values of ‘’ and ‘’ during path 1 . As shown in above graph, the value of pheromone

keeps on decreasing and the visibility of an ant towards the food keeps on increasing while traversing on path 1.

The proposed algorithm is implemented on the UML activity diagram using the case study of library

management. The algorithm is implemented using C++ language. A strength parameter is calculated at the

end of each path. Test paths are optimized using strength parameter. The path with highest strength value is

optimized and should be tested at a higher priority. Figure 3, shows the results of the implemented algorithm.

Test paths generated using the proposed methodology on the case study of a library management system are

shown in table 3.

Figure 3: Updation of pheromone and visibility during

path 1.

Figure 4: Implementation of modified _ ACO

algorithm

Table 3

Test paths generated using the proposed approach

Paths Strength priority

Path 1: 1->2->3->4->5->15->end 46.9325 4

Path 2: 6->7->8->15->end 84.2262 3

Path 3: 9->10->11->15-end 131.086 2

Path 4: 12->13->14->15->end 183.477 1

As shown in table above: Path 4 has highest priority with maximum coverage.

Let us compare this proposed methodology with existing technique as defined in [7]. They presented an

approach based upon ACO for the generation of test paths. The existing technique converts the source code into

a control flow graph and then implements the ACO algorithm for the generation of optimal test paths. Test paths

generated using the existing approach are as follows:

Path1:1,2,3,4,5,15,end

Path2 1,2,3,4,6,7,8,15,end

Generation and Optimization of Test Paths Using Modified ACO

Path3:1,2,3,4,6,7,9,10,11,15,end

Path4 1,2,3,4,6,7,9,10,12,13,14,15,end

Path 1 generated from the existing approach is same as that generated by our proposed methodology. But

other paths generated from their approach have various redundant nodes. 1, 2,3,4,6 and 7 are redundant nodes in

paths 2,3 and 4. Therefore, the existing approach will cost more in time due to the generation of test cases for

these redundant nodes. While designing test cases for these test paths, each time we have to generate test cases

for theses redundant nodes. Therefore, proposed methodology is very useful and fruitful as compared to the

existing approach for the generation of test cases as it has minimum redundancy as shown in figure 3.

4. CONCLUSION AND FUTURE WORK

The paper has proposed and implemented a modified approach for the generation and optimization of test paths

using the basic concepts of graph theory and ACO algorithm on a UML Activity Diagram.

This approach has also used the concept of cyclomatic complexity and backward slicing for the generation

and optimization of test paths. Backward slice of a node can be calculated from the Activity Diagram Graph to

find the number of intermediate nodes between the food and the current stage of an ant. The proposed approach

generates independent test paths with maximum coverage and minimum redundancy. Test paths generated from

the proposed approach have no redundant nodes thus reducing the cost, time and testing efforts for the generation

of test cases and also help in early identification of faults in the system software. I n future work, we will try to

integrate this approach with other evolutionary techniques for the optimization of test paths.

REFERENCES

[1] Ian Sommerville, Software Engineering ,eight Edition, Pearson Edition,2009.

[2] Ajay Kumar Jena, Santosh Kumar Swain, Durga Prasad Mohapatra, “A Novel Approach for Test Case Generation from

UML Activity Diagram”, IEEE International Conference On Issues and Challenges In Intelligent Computing Techniques

(ICICT), pp. 621-629, 2014.

[3] Anbunathan , Anirban Basu, “Dataflow test case generation from UML Class diagrams”, Computational Intelligence and

Computing Research (ICCIC), 2013 IEEE International Conference ,pp 1-9, 2009

[4] Monalisa Sarma, Debashish Kundu, Rajib Mall, “Automatic Test Case Generation from UML Sequence Diagram”, 15th

International Conference on Advanced Computing and Communications.

[5] Praveen Ranjan Srivastava, Monica Chis, Suash Deb, Xin-She Yang, “ Path optimization for software testing: an intelligent

approach using cuckoo search”, in proceedings of the 4th Indian International Conference on Artificial Intelligence, IICAI

2011, Bangalore, India, pp. 725–732, ISBN:978-0-9727412-8-6.

[6] Li Huaizhong C. Peng Lam, An ant colony optimization approach to test sequence generation for state based software

testing, i n: Proceedings of the Fifth International Conference (IEEE) on Quality Software, QSIC, 2005,pp. 255–264.

[7] P.R. Srivastava, K. Baby, G. Raghurama, “An approach of optimal path generation using ant colony optimization”, in

proceedings of the TENCON 2009 IEEE Region 10 Conference, Singapore, pp. 1–6.

[8] Yong Chen, Yong Zhong, “ Automatic path-oriented test data generation using a multi-population genetic algorithm”, in

proceedings of the Fourth International Conference (IEEE) on Natural Computation, ICNC, vol. 1, 2008, pp. 566–570.

[9] Chengying Mao, Xinxin Yu, and Jifu Chen, Jinfu Chen “Generating Test Data for Structural Testing based on Ant Colony

Optimization”, 12th International Conference on Quality Software (IEEE), 2012.

[10] Saurabh Srivastava, Himanshi Raperia, Jastej Badwal, “ Extended ACO Algorithm for Path Prioritization”, International

Journal of Computer Applications (0975-8887) , Volume 67-No.1, April 2013.

[11] Du Qingfeng, Dong Xiao , “An Improved Algorithm for Basis Path Testing”, 2011 IEEE

[12] Zhang Zhonglin and Mei Lingxia, “An Improved Method ofAcquiring Basis Path for Software Testing”, 5thInternational

Conference on Computer Science and Education, ICCSE 2010, pp.1891-1894.

Nisha Rathee and Rajender Singh Chhillar

[13] Liping Li, Xingsen Li, Tao He & Jie Xiong. “Extenics-based test case generation for UML Activity Diagram”. Proceedings

of Elsevier Information Technology and Quantitative Management, pp. 1186 – 1193, 2013.

[14] Philip Samuel, Rajib Mall, “Slicing Based Test Case Generation from UML Activity Diagrams”. ACM SIGSOFT Software

Engineering Notes, vol. 34, No. 6, 2009.

[15] Bhuvnesh Sharma, IshaGirdhar, Monika Taneja, Pooja Basia, Sangeetha Vadla, and Praveen Ranjan Srivastava, “Software

Coverage : A Testing Approach through Ant Colony Optimization”, B.K. Panigrahi et al. (Eds.): SEMCCO 2011, Part I,

LNCS 7076, pp. 618–625,.© Springer-Verlag Berlin Heidelberg 2011.

[16] Agarwal, Komal, Manish Goyal, and PraveenRanjan Srivastava. “Code coverage usingintelligent water drop (IWD)”,

International Journal of Bio- Inspired Computation, 2012.

[17] Shiorle, Mahesh, and Rajeev kumar. “UML behavioral model based test case generation: a survey”, ACM SIGSOFT Software

Engineering Notes, 2013.

[18] Tan, Xiaoyong, and Yongmei Ren. “Study on the Emergency Rescue VRP Based on AntColony Optimization and Generalized

Distance”, 2013 Fourth Global Congress onIntelligent Systems.

[19] Vivekanandan, K., T. Megala and P.Chandini. “Automatic generation of basis test path using clonal selection algorithm”,

International Conference on Information Communication and Embedded Systems(ICICES), 2016.

[20] Agarwal, Komal, Manish Goyal, and Praveen Ranjan Srivastava. “Code coverage using intelligent water drop (IWD)”,

International Journal of Bio-Inspired Computation, 2012.

[21] Linda M. Laird, M. Carol Brennan, Software Measurement and Estimation: A Practical Approach, John Wiley & Sons, 05-

Jun-2006.

