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Abstract  

In this paper, we have introduced the Kannan, Zamfirescu and Rhoades type 

contractions in the setting of non Newtonian Calculus. Also, some fixed point 

results are developed using these contractions. 
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1. INTRODUCTION 

The dawn of the fixed point theory starts when in 1912 Brouwer [1] proved a fixed 

point result for continuous self maps on a closed ball. In 1922, Banach [2] gave a 

very useful result known as the Banach Contraction Principle. Kannan [3], then 

relaxed the condition of continuity of the map considered in Banach Contraction 

Principle in his paper in 1968. Zamfirescu [4] and Rhoades[5], consequently 

developed more general contractions for a complete metric space. These 

contractions have been generalised to the other spaces also by various authors [6-

10]. 

The study of non Newtonian calculi have been started in 1972 by Grossman 

and Katz [11]. These provide an alternative to the classical calculus and they 

include the geometric, anageometric and bigeometric calculi, etc. In 2002 Cakmac 

and Basar [12], have introduced the concept of non Newtonian metric space. Also 

they have given the triangle and Minkowski’s inequalities in the sense of non-

Newtonian calculus. Recently, Binbasioglu, denuriz and turkoglu [13] discussed 

some topological properties of the non Newtonian metric space and also introduced 

the concept of fixed point theory in the setting of non Newtonian Calculus. The 

non-Newtonian calculi are alternatives to the classical calculus of Newton and 
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Leibnitz. They provide a wide variety of mathematical tools for use in science, 

engineering and mathematics. 

2. PRELIMINARIES 

Now, we define the non-Newtonian real field and we give the relevant properties 

due to Cakmak and Basar [12]. 

A generator is defined as an injective function with domain ℝ and the range 

of a generator is a subset of ℝ. Each generator generates one arithmetic if and only 

if each arithmetic is generated by one generator. 

Let α be an exponential function defined as 

𝛼: ℝ → ℝ+, 

𝑥 ⟼ 𝛼(𝑥) = 𝑒𝑥 = 𝑦, 

where, ℝ+ is the set of positive real numbers. 

Suppose that this function α is a generator, that is, if 𝛼 = 𝐼, 𝐼(𝑥) = 𝑥 ∀ 𝑥 ∈
ℝ, then β generates the classical arithmetic. If α = exp, then α generates geometrical 

arithmetic. 

Define the set ℝ(𝑁) as 

ℝ(𝑁) ≔ {𝛼(𝑥): 𝑥 ∈ ℝ}, 

Where ℝ(𝑁) is the set of non-Newtonian real numbers. 

All concepts of β-arithmetic have similar properties in classical arithmetic. α-

zero, α-one and all α-integers are formed as 

… , 𝛼(−1), 𝛼(0), 𝛼(1), …. 

Take any generator α with range A. Then define the operations α-addition, α-

subtraction, α-multiplication, α-division and α-order in the following way for 

𝑥, 𝑦 ∈ ℝ, respectively: 

α-addition 𝑥+̇𝑦 = 𝛼{𝛼−1(𝑥) + 𝛼−1(𝑦)}, 

α-subtraction 𝑥−̇𝑦 = 𝛼{𝛼−1(𝑥) − 𝛼−1(𝑦)}, 

α-multiplication 𝑥 ×̇ 𝑦 = 𝛼{𝛼−1(𝑥) × 𝛼−1(𝑦)}, 

α-division 𝑥/̇𝑦 = 𝛼{𝛼−1(𝑥) ÷ 𝛼−1(𝑦)}, 

α-order  𝑥 <̇ 𝑦 ⟺ 𝛼(𝑥) < 𝛼(𝑦). 

Proposition 2.1 [12]: (ℝ(𝑁), +̇,×̇) is a complete field. 

For 𝑥 ∈ 𝐴 ⊂ ℝ(𝑁), a number α-square is described by 𝑥 ×̇ 𝑥 and denoted by 

𝑥2𝑁. The symbol √𝑥
𝑁

 denotes 
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𝑡 = 𝛼 {√𝛼−1(𝑥)} 

which is the unique α nonnegative number whose α-square is equal to 𝑥 and which 

means 𝑡2𝑁 = 𝑥, for each α nonnegative number 𝑡. Throughout this paper, 𝑥𝑝𝑁  

denotes the 𝑝th non-Newtonian exponent. Thus we have 

𝑥𝑝𝑁 = 𝑥(𝑝−1)𝑁 ×̇ 𝑥 = 𝛼{[𝛼−1(𝑥)]𝑝}, 

We denote by |𝑥|𝑁 the α-absolute value of a number 𝑥 ∈ 𝐴 ⊂ ℝ(𝑁) defined 

as 𝛼(|𝛼−1(𝑥)|) and also 

√𝑥2𝑁

𝑁
= |𝑥|𝑁 = 𝛼{|𝛼−1(𝑥)|} 

Thus, 

|𝑥|𝑁 = {

𝑥, 𝑥 >̇ 𝛽(0),

𝛼(0), 𝑥 = 𝛽(0),

𝛼(0)−̇𝑥, 𝑥 <̇ 𝛽(0).

 

For 𝑥1, 𝑥2 ∈ 𝐴 ⊆ ℝ(𝑁), the non-Newtonian distance |∙|𝑁 is defined as 

|𝑥1−̇𝑥2|𝑁 = 𝛼{|𝛼−1(𝑥1) − 𝛼−1(𝑥2)|}. 

This distance is commutative; i.e., |𝑥1−̇𝑥2|𝑁 = |𝑥2−̇𝑥1|𝑁 . 

Take any 𝑧 ∈ ℝ(𝑁), if 𝑧 >̇ 𝛼(0), then 𝑧 is called a positive non-Newtonian 

real number; if 𝑧 <̇ 𝛼(0), then z is called a non-Newtonian negative real number 

and if 𝑧 = 𝛼(0), then z is called an unsigned non-Newtonian real number. Non-

Newtonian positive real numbers are denoted by ℝ+(𝑁) and non-Newtonian 

negative real numbers by ℝ−(𝑁)[4]. 

The fundamental properties provided in the classical calculus are provided in 

non-Newtonian calculus, too. 

Proposition 2.2 [12]: |𝑥 ×̇ 𝑦|𝑁 = |𝑥|𝑁 ×̇ |𝑦|𝑁 for any 𝑥, 𝑦 ∈ ℝ(𝑁). 

Proposition 2.3 [12]: The triangle inequality with respect to non-Newtonian 

distance |∙|𝑁, for any 𝑥, 𝑦 ∈ ℝ(𝑁) is given by |𝑥+̇𝑦|𝑁 ≤̇ |𝑥|𝑁+̇|𝑦|𝑁. 

Definition 2.4 [12]: Let 𝑋 ≠ ∅ be a set. If a function 𝑑𝑁: 𝑋 × 𝑋 → ℝ+(𝑁) satisfies 

the following axioms for all 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

(NM1) 𝑑𝑁(𝑥, 𝑦) = 𝛼(0) = 0̇ if and only if 𝑥 = 𝑦, 

(NM2) 𝑑𝑁(𝑥, 𝑦) = 𝑑𝑁(𝑦, 𝑥), 

(NM3) 𝑑𝑁(𝑥, 𝑦) ≤̇ 𝑑𝑁(𝑥, 𝑧)+̇𝑑𝑁(𝑧, 𝑦), 

then it is called a non-Newtonian metric on 𝑋 and the pair (𝑋, 𝑑𝑁) is called a non-

Newtonian metric space. 
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Definition 2.5 [13]: Let (𝑋, 𝑑𝑁) be a non-Newtonian metric space, 𝑥 ∈  𝑋 and 

𝜀 >̇ 0̇, we now define a set 𝐵𝜀
𝑁(𝑥) = {𝑦 ∈  𝑋 ∶  𝑑𝑁(𝑥, 𝑦)  <̇ 𝜀}, which is called a 

non-Newtonian open ball of radius 𝜀 with center 𝑥. Similarly, one describes the 

non-Newtonian closed ball as 𝐵̅𝜀
𝑁(𝑥) = {𝑦 ∈  𝑋 ∶  𝑑𝑁(𝑥, 𝑦) ≤̇ 𝜀}. 

Example 2.6: Consider the non-Newtonian metric space (ℝ+(𝑁), 𝑑𝑁
∗ ). From the 

definition of 𝑑𝑁
∗ , we can verify that the non-Newtonian open ball of radius 𝜀 <̇ 1̇ 

with center 𝑥0 appears as (𝑥0−̇𝜀, 𝑥0+̇𝜀) ⊂ ℝ+(𝑁). 

Definition 2.7: Let (𝑋, 𝑑𝑋
𝑁) and (𝑌, 𝑑𝑌

𝑁) be two non-Newtonian metric spaces and 

let 𝑓 ∶  𝑋 →  𝑌 be a function. If f satisfies the requirement that, for every 𝜀 >̇ 0̇, 

there exists 𝛿 >̇ 0̇ such that 𝑓(𝐵𝛿
𝑁(𝑥)) ⊂  𝐵𝜀

𝑁(𝑓(𝑥)), then 𝑓 is said to be non-

Newtonian continuous at 𝑥 ∈  𝑋. 

Example 2.8: Given a non-Newtonian metric space (𝑋, 𝑑𝑁), define a non 

Newtonian metric on 𝑋 × 𝑋 by 𝑝((𝑥1, 𝑥2), (𝑦1, 𝑦2)) =  𝑑𝑁(𝑥1, 𝑦1)+̇ 𝑑𝑁(𝑥2, 𝑦2). 

Then the non-Newtonian metric 𝑑𝑁 ∶  𝑋 ×  𝑋 →  (ℝ+(𝑁), |·|𝑁) is non-

Newtonian continuous on 𝑋 × 𝑋. To show this, let us take the points, 
(𝑦1, 𝑦2), (𝑥1, 𝑥2) ∈  𝑋 × 𝑋. Since we have  |𝑑𝑁(𝑦1, 𝑦2) –̇  𝑑𝑁(𝑥1, 𝑥2)|𝑁  

≤̇ 𝑑𝑁(𝑥1, 𝑦2) +̇ 𝑑𝑁(𝑥2, 𝑦2), it is clear that 𝑑𝑁 is non-Newtonian continuous on 

𝑋 × 𝑋. Now, we emphasize some properties of convergent sequences in a non-

Newtonian metric space. 

Definition 2.9 [12]: A sequence (𝑥𝑛) in a metric space 𝑋 = (𝑋, 𝑑𝑁) is said to be 

convergent if for every given 𝜀 >̇ 0̇ there exist an 𝑛0  =  𝑛0(𝜀)  ∈  𝑁𝑎𝑛𝑑 𝑥 ∈  𝑋 

such that 𝑑𝑁(𝑥𝑛, 𝑥) <̇ 𝜀 for all 𝑛 > 𝑛0, and it is denoted by lim
𝑛→∞

𝑥𝑛
𝑁 =  𝑥 or 𝑥𝑛  

𝑁
→  𝑥, as 𝑛 → ∞ . 

Definition 2.10 [13]: A sequence (𝑥𝑛) in a non-Newtonian metric space 𝑋 =

 (𝑋, 𝑑𝑁) is said to be non-Newtonian Cauchy if for every 𝜀 >̇ 0̇ there exists an 

𝑛0  =  𝑛0(𝜀)  ∈ 𝑁 such that 𝑑𝑁(𝑥𝑛, 𝑥𝑚) <̇ 𝜀 for all 𝑚, 𝑛 >  𝑛0. Similarly, if for 

every non-Newtonian open ball 𝐵𝜀
𝑁(𝑥), there exists a natural number n0 such that 

𝑛 > 𝑛0, 𝑥𝑛  ∈  𝐵𝜀
𝑁(𝑥), then the sequence (𝑥𝑛) is said to be non Newtonian 

convergent to 𝑥. 

The space 𝑋 is said to be non-Newtonian complete if every non-Newtonian 

Cauchy sequence in X converges [12]. 

Proposition 2.11. [12]: Let 𝑋 = (𝑋, 𝑑𝑁) be a non-Newtonian metric space. Then 

(i) a convergent sequence in 𝑋 is bounded and its limit is unique, 

(ii) a convergent sequence in 𝑋 is a Cauchy sequence in 𝑋. 

Lemma 2.12. [13]: Let (𝑋, 𝑑𝑁) be a non-Newtonian metric space, (𝑥𝑛) a sequence 

in 𝑋 and 𝑥 ∈ 𝑋. Then 𝑥𝑛  
𝑁
→  𝑥 (𝑛 → ∞ ) if and only if 𝑑𝑁(𝑥𝑛, 𝑥)  

𝑁
→  0̇ (𝑛 → ∞ ). 
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Lemma 2.13 [13]: Let (𝑋, 𝑑𝑁) be a non-Newtonian metric space and let (𝑥𝑛) be 

a sequence in 𝑋. If the sequence (𝑥𝑛) is non-Newtonian convergent, then the non-

Newtonian limit point is unique. 

Theorem 2.14 [13]: Let (𝑋, 𝑑𝑁
𝑋) and (𝑌, 𝑑𝑁

𝑌 ) be two non-Newtonian metric spaces, 

𝑓 ∶  𝑋 →  𝑌 a mapping and (𝑥𝑛) any sequence in 𝑋. Then, 𝑓 is non-Newtonian 

continuous at the point 𝑥 ∈  𝑋 if and only if 𝑓(𝑥𝑛)  
𝑁
→  𝑓(𝑥) for every sequence 

(𝑥𝑛) with 𝑥𝑛  
𝑁
→  𝑥 (𝑛 → ∞ ). 

Theorem 2.15 [13]: Let (𝑋, 𝑑𝑁) be a non-Newtonian metric space and 𝑆 ⊂  𝑋. 

Then 

(i) a point 𝑥 ∈  𝑋 belongs to 𝑆̅ if and only if there exists a sequence (𝑥𝑛) in 𝑆 

such that 𝑥𝑛  
𝑁
→ 𝑥 (𝑛 → ∞ ), 

(ii) the set 𝑆 is non-Newtonian closed if and only if every non-Newtonian 

convergent sequence in 𝑆 has a non-Newtonian limit point that belongs to 𝑆. 

Definition 2.16 [13]: Let 𝑋 be a set and 𝑇 a map from 𝑋 to 𝑋. A fixed point of 𝑇 

is a point 𝑥 ∈  𝑋 such that 𝑇𝑥 =  𝑥. In other words, a fixed point of 𝑇 is a solution 

of the functional equation 𝑇𝑥 =  𝑥, 𝑥 ∈  𝑋. 

Definition 2.17 [13]: Suppose that (𝑋, 𝑑𝑁) is a non-Newtonian complete metric 

space and 𝑇 ∶  𝑋 →  𝑋 is any mapping. The mapping 𝑇 is said to satisfy a non-

Newtonian Lipschitz condition with 𝑘 ∈ ℝ(𝑁) if 𝑑(𝑇(𝑥), 𝑇(𝑦))  ≤̇  𝑘 ×̇  𝑑(𝑥, 𝑦) 

holds for all 𝑥, 𝑦 ∈  𝑋. 

If 𝑘 <̇ 1̇, then 𝑇 is called a non-Newtonian contraction mapping. 

Theorem 2.18 [13]: Let 𝑇 be a non-Newtonian contraction mapping on a non-

Newtonian complete metric space 𝑋. Then 𝑇 has a unique fixed point. 

Main results: 

Theorem 3.1: (A generalisation of the Banach Contraction Principle): Let 
(𝑋, 𝑑𝑁) be a complete non-Newtonian metric space and 𝑇: 𝑋 → 𝑋 be a self map. 

Assume that there exists a right continuous real function 

∆: [0̇, 𝑢]
𝑁
→ [0̇, 𝑢] 

where, 𝑢 is sufficiently large number such that 

 ∆(𝑎) <̇ 𝑎 𝑖𝑓 𝑎 >̇ 0̇,  (3.1) 

and let 𝑇 satisfies 

 𝑑𝑁(𝑇𝑥1, 𝑇𝑥2) ≤̇ ∆(𝑑𝑁(𝑥1, 𝑥2)) (3.2) 
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For all 𝑥1, 𝑥2 ∈ (𝑋, 𝑑𝑁). Then 𝑇 has a unique fixed point 𝑐 ∈ (𝑋, 𝑑𝑁) and the 

sequence 𝑇𝑛(𝑥) converges to 𝑐 for every 𝑥 ∈ 𝑋. 

Proof: Let us take a point 𝑥0 ∈ 𝑋 and define the sequence 𝑇(𝑥𝑛) = 𝑥𝑛+1. For 

𝑛 ∈ ℕ. Thus, the following sequence: 

𝑎𝑛 = 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1). 

Using (3.1) and (3.2), we obtain 

𝑎𝑛+1 = 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ ∆(𝑑𝑁(𝑥𝑛, 𝑥𝑛−1)) <̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) = 𝑎𝑛 

for all 𝑛 ∈ ℕ. Thus the sequence 𝑎𝑛 is decreasing and so it has a limit 𝑎. If we 

assume that 𝑎 > 0, we have 

𝑎𝑛+1 ≤̇ ∆(𝑎𝑛) 

from (3.2). Since ∆ is right continuous, we get 

𝑎 ≤̇ ∆(𝑎) 

But it contradicts with (3.1). as a result, 𝑎𝑛

𝑁
→ 0̇ as 𝑛 → ∞. 

We would like to show that 𝑥𝑛 is Cauchy sequence. Then there exists 𝜖 >̇ 0̇ 

and integers 𝑚 > 𝑛 ≥ 𝑘 for every 𝑘 ≥ 1 such that 

𝑑𝑁(𝑥𝑚, 𝑥𝑛) ≥̇ 𝜖. 

For a smallest 𝑚, we can suppose that 𝑑𝑁(𝑥𝑚, 𝑥𝑛) < 𝜖. If we use the triangle 

inequality, we obtain 

𝜖 ≤̇ 𝑑𝑁(𝑥𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑚, 𝑥𝑚−1)+̇𝑑𝑁(𝑥𝑚−1, 𝑥𝑛) <̇ 𝜖+̇𝑑𝑁(𝑥𝑚, 𝑥𝑚−1). 

Since 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1)
𝑁
→ 0̇ as 𝑛 → ∞, we conclude that 

𝜖 ≤̇ 𝑑𝑁(𝑥𝑚, 𝑥𝑛) <̇ 𝜖 ⇒ 𝑑𝑁(𝑥𝑚, 𝑥𝑛)
𝑁
→ 𝜖 𝑎𝑠 𝑛 ⟶ ∞. 

From the fact that 

𝑚 > 𝑛 ⇒ 𝑑𝑁(𝑥𝑚+1, 𝑥𝑚) ≤̇ 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

And (3.2), we have 

𝜖 ≤̇ 𝑑𝑁(𝑥𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑚, 𝑥𝑚+1)+̇𝑑𝑁(𝑥𝑚+1, 𝑥𝑛+1)+̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

 ≤̇ 𝛼(2) ×̇ 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛)+̇∆(𝑑𝑁(𝑥𝑚, 𝑥𝑛)). 

Taking the limit as 𝑛 → ∞, from these inequalities we get 𝜖 ≤̇ ∆(𝜖) but 

contradicts with (3.1) because 𝜖 >̇ 0. As a result, 𝑥𝑛 is a Cauchy sequence and 

since (𝑋, 𝑑𝑁) is a complete digital metric space, 𝑇𝑛(𝑥) converges in (𝑋, 𝑑𝑁). 

Now, we prove the uniqueness. Let 𝑢1, 𝑢2 be two fixed point of 𝑇. By (3.1) 

and (3.2), we get 

𝑑𝑁(𝑢1, 𝑢2) = 𝑑𝑁(𝑇(𝑢1), 𝑇(𝑢2)) ≤̇ ∆(𝑑𝑁(𝑢1, 𝑢2)) ⇒ 𝑢1 = 𝑢2. 
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Definition 3.2: (Kannan type non-Newtonian contraction): Suppose that 
(𝑋, 𝑑𝑁) is a non-Newtonian metric space and 𝑇: 𝑋 → 𝑋 is any mapping. If there 

exist an 𝜇 ∈ (0̇, 𝛼(1 2⁄ )], such that for all 𝑥, 𝑦 ∈ 𝑋, 𝑑𝑁(𝑇𝑥, 𝑇𝑦) ≤̇ 𝜇 ×̇ 
[𝑑𝑁(𝑥, 𝑇𝑥)+̇𝑑𝑁(𝑦, 𝑇𝑦)], then 𝑇 is called a non-Newtonian Kannan Contraction. 

Remark 3.3: The non-Newtonian contraction mapping defined in [13] requires 𝑇 

to be non-Newtonian continuous mapping. By defining non-Newtonian Kannan 

Contraction, we relax the condition of continuity on 𝑇. 

Definition 3.4: (non-Newtonian Zamfirescu type Contraction): Let, (𝑋, 𝑑𝑁) be 

any non-Newtonian metric space and 𝑇: 𝑋 → 𝑋 be a self map. If there exists 𝜆 ∈

(0̇, 1̇) such that for all 𝑥, 𝑦 ∈ 𝑋, 

𝑑𝑁(𝑇𝑥, 𝑇𝑦) ≤̇ 𝜆 ×̇ 𝑚𝑎𝑥 {𝑑𝑁(𝑥, 𝑦),
{𝑑𝑁(𝑥, 𝑇𝑥)+̇𝑑𝑁(𝑦, 𝑇𝑦)}

𝛼(2)
,
{𝑑𝑁(𝑥, 𝑇𝑦)+̇𝑑𝑁(𝑦, 𝑇𝑥)}

𝛼(2)
}, 

then 𝑇 is called a non-Newtonian Zamfirescu type contraction. 

Definition 3.5: (non-Newtonian Rhoades type contraction) Let, (𝑋, 𝑑𝑁) be 

any non Newtonian metric space and 𝑇: 𝑋 → 𝑋 be a self map. If there exists 𝜆 ∈

(0̇, 1̇) such that for all 𝑥, 𝑦 ∈ 𝑋, 

𝑑𝑁(𝑇𝑥, 𝑇𝑦) ≤̇  𝜆 ×̇  𝑚𝑎𝑥 {𝑑𝑁(𝑥, 𝑦),
{𝑑𝑁(𝑥, 𝑇𝑥)+̇𝑑𝑁(𝑦, 𝑇𝑦)}

𝛼(2)
, 𝑑𝑁(𝑥, 𝑇𝑦), 𝑑𝑁(𝑦, 𝑇𝑥)}, 

then 𝑇 is called a non-Newtonian Rhoades type contraction. 

Theorem 3.6: Let, 𝑇 be a non-Newtonian Kannan type contraction mapping on a 

complete non-Newtonian metric space (𝑋, 𝑑𝑁). Then 𝑇 has a unique fixed point. 

Proof: Let, 𝑥0 be any point of 𝑋. Consider the iterate sequence 𝑇𝑥𝑛 = 𝑥𝑛+1. Using 

induction on 𝑛, we obtain 

𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜇 ×̇ [𝑑𝑁(𝑥𝑛, 𝑥𝑛−1)+̇𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−2)] ≤̇ (𝛼(2) ×̇ 𝜇) ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) 

 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ (2𝜇) ×̇ 𝑑𝑁(𝑥𝑛 , 𝑥𝑛−1) ≤̇ (2𝜇)𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0). 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [(𝛼(2) ×̇ 𝜇)(𝑛+𝑚)𝑁+̇(𝛼(2) ×̇ 𝜇)(𝑛+𝑚−1)𝑁+̇ … +̇(𝛼(2) ×̇ 𝜇)𝑛𝑁]𝑑𝑁(𝑇𝑥0, 𝑥0) 

≤̇
(𝛼(2) ×̇ 𝜇)𝑛𝑁

1 − 𝛼(2) ×̇ 𝜇
𝑑𝑁(𝑇𝑥0, 𝑥0) 

As a result, 𝑥𝑛 is a Cauchy sequence. There is a limit point of 𝑥𝑛 because 
(𝑋, 𝑑𝑁) is a non-Newtonian metric space. Let 𝑐 be the limit of 𝑥𝑛. From the 

continuity of 𝑇 we get 
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𝑇(𝑐) = lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑥𝑛+1 = 𝑐. 

Therefore, 𝑇 has a unique fixed point. 

Assume that 𝑎, 𝑏 ∈ 𝑋 are fixed points of 𝑇. Then we have the following: 

𝑑𝑁(𝑎, 𝑏) = 𝑑𝑁(𝑇𝑎, 𝑇𝑏) ≤̇ 𝜇 ×̇ [𝑑𝑁(𝑎, 𝑎)+̇𝑑𝑁(𝑏, 𝑏)] 

 𝑑𝑁(𝑎, 𝑏) ≤̇ 0 

 𝑎 = 𝑏 

So, our theorem is proved. 

Theorem 3.7: (Zamfirescu contraction principle) Let (𝑋, 𝑑𝑁) be a non- 

Newtonian complete metric space, and 𝑇: (𝑋, 𝑑𝑁) → (𝑋, 𝑑𝑁) be a Zamfirescu 

type non-Newtonian contraction mapping. Then 𝑇 has a unique fixed point in 

𝑋. 

Proof: Let 𝑥0 be any point of 𝑋. Consider the iterate sequence 𝑇𝑥𝑛 = 𝑥𝑛+1. Using 

induction on 𝑛, we obtain 

𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇ 𝑚𝑎𝑥 

{𝑑𝑁(𝑥𝑛, 𝑥𝑛−1),
{𝑑𝑁(𝑥𝑛, 𝑥𝑛−1)+̇𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−2)}

𝛼(2)
,
{𝑑𝑁(𝑥𝑛, 𝑥𝑛−2)+̇𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−1)}

𝛼(2)
}, 

Case 1: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛 , 𝑥𝑛−1) ≤̇ … ≤̇ 𝜆𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0). 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

Case 2: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇
{𝑑𝑁(𝑥𝑛,𝑥𝑛−1)+̇𝑑𝑁(𝑥𝑛−1,𝑥𝑛−2)}

𝛼(2)
 

≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) ≤̇ … ≤̇ 𝜆𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

Case 3: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇ {
𝑑𝑁(𝑥𝑛,𝑥𝑛−2)+̇𝑑𝑁(𝑥𝑛−1,𝑥𝑛−1)

𝛼(2)
} 

≤̇ 𝜆 ×̇
𝑑𝑁(𝑥𝑛, 𝑥𝑛−2)

𝛼(2)
≤̇

𝜆

𝛼(2)
×̇ {𝑑𝑁(𝑥𝑛, 𝑥𝑛−1)

+ 𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−2)} ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) 
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For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

As a result, 𝑥𝑛 is a Cauchy sequence. There is a limit point of 𝑥𝑛 because 
(𝑋, 𝑑𝑁) is a complete non-Newtonian metric space. Let 𝑐 be the limit of 𝑥𝑛. From 

the continuity of 𝑇 we get 

𝑇(𝑐) = lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑥𝑛+1 = 𝑐. 

Therefore, 𝑇 has a fixed point. 

Assume that 𝑎, 𝑏 ∈ 𝑋 are fixed points of 𝑇. Then we have the following: 

𝑑𝑁(𝑎, 𝑏) = 𝑑𝑁(𝑇𝑎, 𝑇𝑏) ≤̇ 𝜆 ×̇ [𝑑𝑁(𝑎, 𝑎)+̇𝑑𝑁(𝑏, 𝑏)] 

 𝑑𝑁(𝑎, 𝑏) ≤̇ 0 

 𝑎 = 𝑏 

So, our theorem is proved. 

Theorem 3.8: Let, 𝑇 be a non-Newtonian Rhoades type contraction mapping on a 

complete non-Newtonian metric space (𝑋, 𝑑𝑁). Then 𝑇 has a unique fixed point. 

Proof: Let, 𝑥0 be any point of 𝑋. Consider the iterate sequence 𝑇𝑥𝑛 = 𝑥𝑛+1. Using 

induction on 𝑛, we obtain 

𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇  𝜆 ×̇  𝑚𝑎𝑥 {
𝑑𝑁(𝑥𝑛, 𝑥𝑛−1),

{𝑑𝑁(𝑥𝑛, 𝑥𝑛−1)+̇𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−2)}

𝛼(2)
,

𝑑𝑁(𝑥𝑛, 𝑥𝑛−2), 𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−1)

}, 

Case 1: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) ≤̇ … ≤̇ 𝜆𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0). 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

Case 2: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇
{𝑑𝑁(𝑥𝑛,𝑥𝑛−1)+̇𝑑𝑁(𝑥𝑛−1,𝑥𝑛−2)}

𝛼(2)
 

≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) ≤̇ … ≤̇ 𝜆𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 
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Case 3: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛 , 𝑥𝑛−2) ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) 

≤̇ … ≤̇ 𝜆𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0), 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

Case 4: 𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛−1, 𝑥𝑛−1) = 0 ≤̇ 𝜆 ×̇ 𝑑𝑁(𝑥𝑛, 𝑥𝑛−1) ≤̇ … 

≤̇ 𝜆𝑛𝑁 ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0), 

For natural numbers 𝑛 ∈ ℕ and 𝑚 ≥ 1, we conclude that 

𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛) ≤̇ 𝑑𝑁(𝑥𝑛+𝑚, 𝑥𝑛+𝑚−1)+̇ … +̇𝑑𝑁(𝑥𝑛+1, 𝑥𝑛) 

≤̇ [𝜆(𝑛+𝑚)𝑁+̇𝜆(𝑛+𝑚−1)𝑁+̇ … +̇𝜆𝑛𝑁] ×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) ≤̇
𝜆𝑛𝑁

1 − 𝜆
×̇ 𝑑𝑁(𝑇𝑥0, 𝑥0) 

As a result, 𝑥𝑛 is a Cauchy sequence. There is a limit point of 𝑥𝑛 because 
(𝑋, 𝑑𝑁) is a non-Newtonian metric space. Let 𝑐 be the limit of 𝑥𝑛. From the 

continuity of 𝑇 we get 

𝑇(𝑐) = lim
𝑛→∞

𝑇𝑥𝑛 = lim
𝑛→∞

𝑥𝑛+1 = 𝑐. 

Therefore, 𝑇 has a fixed point. 

Assume that 𝑎, 𝑏 ∈ 𝑋 are fixed points of 𝑇. Then we have the following: 

𝑑𝑁(𝑎, 𝑏) = 𝑑𝑁(𝑇𝑎, 𝑇𝑏) ≤̇ 𝜆 ×̇ [𝑑𝑁(𝑎, 𝑎)+̇𝑑𝑁(𝑏, 𝑏)] 

 𝑑𝑁(𝑎, 𝑏) ≤̇ 0 

 𝑎 = 𝑏 

So, our theorem is proved. 
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