SQUARE DIFFERENCE PRIME LABELING OF WHEEL GRAPH, FAN GRAPH, FRIENDSHIP GRAPH, GEAR GRAPH, HELM GRAPH & UMBRELLA GRAPH

Sunoj B.S.^{*} and Mathew Varkey T.K.^{**}

Abstract

A graph labeling is an assignment of integers to the vertices or edges or both subject to certain conditions. The graph for which every edge (uv), the labels assigned to u and v are whole numbers and for each vertex of degree at least 2, the g c d of the labels of the incident edges is 1. Here we characterize wheel graph, fan graph, helm graph, gear graph, friendship graph, umbrella graph for square difference prime labeling.

Keywords: Graph labeling, prime labeling prime graphs, wheel graph.

1. INTRODUCTION

All graphs in this paper are finite and undirected. The symbol V(G) and E(G) denotes the vertex set and edge set of a graph G. The graph whose cardinality of the vertex set is called the order of G, denoted by p and the cardinality of the edge set is called the size of the graph G, denoted by q. A graph with p vertices and q edges is called a (p, q)-graph.

A graph labeling is an assignment of integers to the vertices or edges. Some basic notations and definitions are taken from [1], [2], [3] and [4]. Some basic concepts are taken from Frank Harary [1]. In this paper we investigated square difference prime labeling of gear graph, wheel graph, fan graph, helm graph, friendship graph and umbrella graph.

2. MAIN RESULTS

Definition 2.1: Let G = (V(G), E(G)) be a graph with *p* vertices and *q* edges. Define a bijection $f: V(G) \rightarrow \{0, 1, 2, ..., p-1\}$ by $f(v_i) = i - 1$, for every *i* from 1 to *p*

^{*} Department of Mathematics, Government Polytechnic College, Attingal, India. *Email: spalazhi@* yahoo.com

^{**} Department of Mathematics, T.K.M. College of Engineering, Kollam, India. *Email:* mathewvarkeytk@gmail.com

and define a 1 - 1 mapping f_{sdp}^* : E(G) \rightarrow set of natural numbers N by $f_{sdp}^*(uv) = |f(u)^2 - f(v)^2|$. The induced function f_{sdp}^* is said to be a square difference prime labeling, if for each vertex of degree at least 2, the *g c d* of the labels of the incident edges is 1.

Definition 2.2: A graph which admits square difference prime labeling is called a square difference prime graph.

Definition 2.3: A wheel graph is defined as $W_n = C_n + K_1$, where *n* is the number of vertices in the cycle.

Definition 2.4: Helm graphs are extension of wheel graphs. To form a helm graph, denoted here as H_n , we take the wheel graph W_n and append a pendant edge to each vertex of the *n*-cycle.

Definition 2.5: Closed helms are denoted here as CH_n , and they are formed by taking the helm graph, H_n , and placing an edge between each pendant vertex to form a second cycle in the graph.

Definition 2.6: The friendship graph T_n can be constructed by joining n copies of the cycle C_3 with a common vertex.

Definition 2.7: The graph obtained by joining a path P_n to the Fan F_m is denoted by U(m, n) and is called umbrella graph.

Definition 2.8: Gear graph is a Wheel Graph with a vertex added between each pair of adjacent vertices.

Definition 2.9: A fan graph F_n is obtained by joining all vertices of a path p_n to a further vertex called the centre.

Theorem 2.1: Wheel graph W_n admits square difference prime labeling when n is a positive even integer greater than 4.

Proof: Let $G = W_n$ and let $v_1, v_2, ..., v_{n+1}$ are the vertices of G.

Here |V(G)| = n + 1 and |E(G)| = 2n.

Define a function $f: V \rightarrow \{0, 1, 2, ..., n\}$ by

$$f(v_i) = i - 1, i = 1, 2, ..., n + 1$$

For the vertex labeling *f*, the induced edge labeling f_{sdp}^* is defined as follows

$$\begin{split} f^*_{sdp}(v_i, v_{i+1}) &= 2i - 1, & i = 1, 2, ..., n. \\ f^*_{sdp}(v_1, v_n) &= (n - 1)^2. \\ f^*_{sdp}(v_i, v_{n+1}) &= (n + i - 1)(n - i + 1), & i = 1, 2, ..., n - 1. \end{split}$$

According to this pattern, W_n admits square difference prime labeling.

Theorem 2.2: Fan graph F_n admits square difference prime labeling.

Proof: Let $G = F_n$ and let $v_1, v_2, ..., v_{n+1}$ are the vertices of G.

Here |V(G)| = n + 1 and |E(G)| = 2n - 1.

Define a function $f: V \rightarrow \{0, 1, 2, ..., n\}$ by

 $f(v_i) = i - 1, \quad i = 1, 2, ..., n + 1.$

For the vertex labeling f, the induced edge labeling f_{sdp}^* is defined as follows:

$$f_{sdp}^{*}(v_{i}v_{i+1}) = 2i - 1, \quad i = 1, 2, ..., n$$

$$f_{sdp}^{*}(v_{i}v_{n+1}) = (n + i - 1)(n - i + 1), \quad i = 1, 2, ..., n - 1$$

According to this pattern F_n , admits square difference prime labeling.

Theorem 2.3: The helm graph H_n admits square difference prime labeling when n is a positive even integer greater than 4.

Proof: Let $G = H_n$ and let $v_1, v_2, ..., v_{2n+1}$ are the vertices of G.

Here |V(G)| = 2n + 1 and |E(G)| = 3n.

Define a function $f: V \rightarrow \{0, 1, 2, ..., 2n\}$ by

 $f(v_i) = i - 1, \quad i = 1, 2, ..., 2n + 1$

For the vertex labeling f, the induced edge labeling f_{sdp}^* is defined as follows:

$$f_{sdp}^{*}(v_{i}v_{i+1}) = 2i - 1, \quad i = 1, 2, ..., n - 1$$

$$f_{sdp}^{*}(v_{i}v_{n+1}) = (n + i - 1)(n - i + 1), \quad i = 1, 2, ..., n$$

$$f_{sdp}^{*}(v_{i}v_{n+i+1}) = (n + 2i - 1)(n + 1), \quad i = 1, 2, ..., n$$

$$f_{sdp}^{*}(v_{1}v_{n}) = (n - 1)^{2}.$$

According to this pattern H_n , admits square difference prime labeling.

Theorem 2.4: The closed helm graph CH_n admits square difference prime labeling.

Proof: Let $G = CH_n$ and let $v_1, v_2, ..., v_{2n+1}$ are the vertices of G.

Here |V(G)| = 2n + 1 and |E(G)| = 4n.

Define a function $f: V \to \{0, 1, 2, ..., 2n\}$ by $f(v_i) = i - 1$, i = 1, 2, ..., 2n + 1. For the vertex labeling *f*, the induced edge labeling f_{sdp}^* is defined as follows:

$$f_{sdp}^{*}(v_{i}v_{i+1}) = 2i - 1, \quad i = 1, 2, ..., 2n$$

$$\begin{aligned} f_{sdp}^{*}(v_{n+i}v_{2n+1}) &= (3n+i-1)(n-i+1), \quad i=1,\,2,\,...,\,n-1\\ f_{sdp}^{*}(v_{i}v_{2n-i+1}) &= (2n-1)(2n-2i+1), \quad i=1,\,2,\,...,\,n-1\\ f_{sdp}^{*}(v_{1}v_{n}) &= (n-1)^{2}\\ f_{sdp}^{*}(v_{n+1}v_{2n}) &= (3n-1)(n-1) \end{aligned}$$

According to this pattern CH_n , admits square difference prime labeling.

Theorem 2.5: The Friendship graph admits square difference prime labeling.

Proof: Let $G = T_n$ and let $v_1, v_2, ..., v_{2n+1}$ are the vertices of G.

Here |V(G)| = 2n + 1 and |E(G)| = 3n

Define a function $f: V \rightarrow \{0, 1, 2, ..., 2n\}$ by

$$f(u_0) = 0$$

 $f(v_i) = i, i = 1, 2, ..., 2n$

For the vertex labeling f, the induced edge labeling f_{sdp}^* is defined as follows:

$$f_{sdp}^{*}(u_{0}v_{2i-1}) = (2i-1)^{2}, \quad i = 1, 2, ..., n$$
$$f_{sdp}^{*}(u_{0}v_{2i}) = (2i)^{2}, \quad i = 1, 2, ..., n$$
$$f_{sdp}^{*}(v_{2i-1}v_{2i}) = 4i - 1, \quad i = 1, 2, ..., n$$

According to this pattern Fn admits, square difference prime labeling.

Theorem 2.6: The umbrella graph U(n, n), admits square difference prime labeling, when n > 3.

Proof: Let G = U(n, n) and let $v_1, v_2, ..., v_{2n}$ are the vertices of G.

Here
$$|V(G)| = 2n$$
 and $|E(G)| = 3n - 2$

Define a function $f: V \rightarrow \{0, 1, 2, ..., 2n - 1\}$ by

$$f(v_i) = i - 1, i = 1, 2, ..., 2n$$

For the vertex labeling f, the induced edge labeling f_{sdp}^* is defined as follows:

$$f_{sdp}^{*}(v_{i}v_{i-1}) = 2i - 1, \quad i = 1, 2, ..., 2n - 1$$
$$f_{sdp}^{*}(v_{n+1}v_{i}) = (n + i - 1)(n - i + 1), \quad i = 1, 2, ..., n - 1$$

According to this pattern U(n, n), admits square difference prime labeling.

Theorem 2.7: Gear graph G_n admits square difference prime labeling.

Proof: Let
$$G = G_n$$
 and let $v_1, v_2, ..., v_{2n+1}$ are the vertices of G.

Here |V(G)| = 2n + 1 and |E(G)| = 3n

Define a function $f: V \rightarrow \{0, 1, 2, ..., 2n\}$ by

$$f(v_i) = i - 1, i = 1, 2, ..., 2n + 1$$

For the vertex labeling f, the induced edge labeling f_{sdp}^* is defined as follows:

$$f_{sdp}^{*}(v_{i}v_{i+1}) = 2i - 1, \quad i = 1, 2, ..., 2n - 1$$

$$f_{sdp}^{*}(v_{2n+1}v_{2i}) = (2n + 2i - 1)(2n - 2i + 1), \quad i = 1, 2, ..., n$$

$$f_{sdp}^{*}(v_{1}v_{2n}) = (2n - 1)^{2}$$

According to this pattern G_n admits, square difference prime labeling.

References

- [1] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1972).
- Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics(2015), #DS6, Pages 1 – 389.
- [3] S. Uma Maheswari, Dr. K. Indirani, On Triangular Sum Prime Graphs, International Journal of Computer and Mathematical Sciences, Volume 5, Issue 3 March 2016, pages 20-22.
- [4] T.K. Mathew Varkey, Some Graph Theoretic Generations Associated with Graph Labeling, PhD Thesis, University of Kerala 2000.