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ABSTRACT

This paper addresses the problems of identification and controller for nonlinear systems identified by Takagi and

Seguno (T-S) approach. A T-S modeling method using clustering algorithms is introduced at first. The fuzzy c-

means models algorithm is sensitive to initialization which leads to the convergence to a local minimum of the

objective function. In order to overcome this problem, an adaptive particle swarm optimization is employed to

achieve global optimization of FCM algorithm. The second level is devoted to the synthesis of an optimal control

law in order to ensure the global stability of the closed loop system. Indeed, this synthetic approach is based on the

minimization of a quadratic criterion which leads to calculate the optimal control matrices. Thus, the gradient

technic is applied to the Lagrange function in order to obtain necessary conditions for minimizing the quadratic

criterion. Finally, the developed approach is applied an inverted pendulum system states.
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1. INTRODUCTION

The diversity of problems in automatic, notably in control theory, has evolved considerably during the last

decades. A substantial amount of research has focused on automatic control problems for discrete nonlinear

systems. This is motivated by the fact that the control theory applied to complex systems is the most

important issue in the field of automation. However, before addressing the control problem, a large interest

is devoted to modeling and identification, which reflects the dynamics of studied systems.

For this reason, several researches have focused on the modeling and the control of nonlinear systems

and have lead to the consideration of some particular classes of nonlinear models [13], [14], [16]. Other

attempts were geared towards large systems [6]. Indeed, the difficulty of stability analysis and controller

synthesis is related to the complexity of the considered model [11]. Hence, it looked necessary to think of

simpler models. In this context, several works that aim to represent a nonlinear system by some number of

linear models have been developed, in the last few years. Indeed, the difficulty of stability analysis and

controller synthesis is related to the complexity of the considered model. Hence, it looked necessary to

think of simpler models. In this context, several works that aim to represent a nonlinear system by some

number of linear models have been developed.

In the last few years, fuzzy modeling, especially, the T-S fuzzy model draw the attention of several

researchers in recent decades, because of it excellent ability of describing nonlinear systems [20]. In this

context, several clustering algorithms based on Takagi-Sugeno (T-S) fuzzy model has been proposed in the

literature. Fuzzy c-means (FCM) is one of the most used clustering algorithms because it is efficient,

straightforward, and easy to implement. However, the FCM algorithm suffers from premature convergence,

and it is trapped easily into local minimum of the objective function, which will significantly affect the
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model accuracy. The important issue is how to avoid getting a bad local minimum value to improve the

cluster accuracy. To overcome these drawbacks, Many optimization algorithms has been proposed in the

literature such as genetic algorithm, GA [5], [7] and particle swarm optimization (PSO) [23], [10], [3],

[18]. There is also interest in various methods for control systems [24-27].

Because of the feasibility of the PSO scheme, its efficacy has been demonstrated by many studies. The

most important advantages of the PSO are that PSO is easy to implement and there are few parameters to

adjust. The inertia weight is one of PSO’s parameters to bring about a balance between the exploration and

exploitation characteristics of PSO.

In this paper, we used an adaptive inertia weight in PSO algorithm (APSO) [4]. In order to overcome

the shortcomings of the fuzzy c-means we integrate it with Adaptive particle swarm algorithm. However,

the hybrid algorithm (FCM-APSO) can avoid sinking into local solution and diminish the sensitivity to the

isolated points and the initial parameters. Once the modeling part is completed. The second level in this

paper is devoted to the synthesis of an optimal control law in order to ensure the global stability of the

closed loop system. The basic idea of existing control design methodology is to design a quadratic-optimal

state feedback controller for each local model and then to construct a global controller from these local

gains so that the global stability of the overall fuzzy system is guaranteed. Such a control design approach

easily leads to linear system problems [21], which can be solved through various linear system techniques,

such as linear matrix inequalities (LMI). However, it is easy to see that when the number of rules become

large, the problem may become difficult to solve.Furthermore, the stabilization by quadratic optimal state

feedback is not a convex problem, and thus techniques based on solving linear matrix inequalities (LMIs)

are not directly applicable to solve this problem. Some recent control methods are discussed in [24-28].

The important issue is how to avoid these limitations. To avoid this problem, we will use a approach

based on iterative algorithms. Thus, this work focuses on the synthesis of an optimal state feedback controller

based on minimize a quadratic criterion to satisfy the desired dynamic performance and to reduce the used

energy [2]. The application of the gradient technique to the Lagrange function in order to obtain necessary

conditions for minimizing criterion. The developed approach is applied to ensure an optimal convergence

for inverted pendulum system states.

2. TAKAGI-SUGENO FUZZY MODEL

The Takagi-Sugeno (T-S) fuzzy model is a system described by fuzzy IF-THEN rules which can generate a

local linear representation of the nonlinear system by dividing the whole input space into many partial

fuzzy spaces and representing each output space with a linear equation. Such a model is capable of

approximating a wide class of nonlinear systems. The T-S fuzzy model of this system can be described by

the following IF-THEN fuzzy rules [20]:
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where ( )
ijA jw x  is the membership function of the fuzzy set, ijA  in the antecedent of iR  and ( )i k  are

weighting functions that ensure the transition between sub-models and have the following properties:
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3. FUZZY CLUSTERING ALGORITHMS

3.1. Fuzzy C-Means algorithm

The fuzzy C-mean (FCM) algorithm is proposed by [1], it is a powerful clustering technique with a large

number of applications in various fields including image processing, classification and system identification.

This algorithm is based on the minimization of the following criterion:
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where

ikD  is the square euclidean distance between data object kx  to center iv , m  is a weighting exponent
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the criterion (5) by canceling the derivative of J, with respect to , 
ik 

and v
i

0

0

0

ik

i

J

J

J

v









 




 




(7)

we obtain the following expressions:



152 Jaouher Chrouta, Wael Chakchouk, Abderrahmen Zaafouri and Mohamed Jemli

1

1

( ) .

( )

N
m

ik k

k
i N

m

ik

k

x

v













(8)

2

1

1

1

( )

ik c
ik m

j jk

d

d








 (9)

The FCM clustering algorithm is summarized by (Algorithm 1):
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3.2. Adaptative Particle Swarm Optimisation Algorithm

These metaheuristic solutions became very popular as they are much better than mathematical solutions in

terms of efficiency and complexity. The great benefit of the PSO among other optimization strategies is

that it is easily implemented and there are not many parameters to adjust [8], [15]. This heuristic method is

initialized with a population of random solutions called particles in the goal to get the optimal result. Each

particle has a position represents the special parameter and a velocity to be used in the search space. At each

iteration, the particle positions and velocities were updated. The velocity of each particle is updated using

two best positions, personal best position and global best position. The personal best position, pbest, is the

best position of the particle which has visited and gbest is the best position of the swarm which has visited

from the first time step. For every generation, the velocity and position can be updated by the following

equations [18].
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where kdX  and kdv  are position and velocity of particle respectively in the thd  dimension of the thk  particle,

pbest  and gbest  are the memory of particle searched, pN  is the number of particles in the swarm and 
1

and 
2  represent two random variables defined by
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where the two variables 
1r  and 

2r  are randomly generated between  0 1 .  Also, 
1c  and 

2c  are positive

constants satisfy the following relationship:

1 2 4c c  (12)

The inertia weight  in (10) was introduced by Shi and Eberhart [9]. They showed that is linearly

decreasing with the iterative generations as

max max min

max

( )
t

t
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The selected inertia weight range [
min , max ] is [0.4, 0.9], where 

maxs  and 
mins  are minimum,

maximum respectively values of , t  is the current iteration and maxt  is the maximum number of generations

of the algorithm.

4. FUZZY C-MEANSALGORITHM BASED ON ADAPTIVE PARTICLE SWARM

OPTIMIZATION

The FCM-APSO algorithm combines the advantages of FCM algorithm and APSO algorithm. To evaluate

each particle, the fitness function is given by:

(U, V)FCM

G
Fitness

J
 (14)
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The FCM-APSO clustering algorithm is summarized by the following steps:
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5. QUADRATIC OPTIMAL CONTROL BY STATE FEEDBACK MULTI-MODEL

DISCRETE-TIME SYSTEMS

The local model from the sub-models of the nonlinear system is given by
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where ( ) n

ix k R  is the state vector, ( ) p

iy k R  is the output vector, , ( ) m

iu k R  is the vector control and

,,i iA B iC  are matrices of suitable dimensions.

We suppose that the system (15) is controllable. The problem is to determine an optimal state feedback

control law of the sub-model which will be written as

( ) ( )i i iu k F x k  (16)

where m n

iF R  is the control gain matrix to be determined by minimizing a quadratic criterion.

The substitution of (16) in (15) leads to write the controlled system as
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To determine the optimal control gain matrix, we consider the following local quadratic criterion
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where n nQ R  is a symmetric positive semi-definite matrix and m mR R  is a symmetric positive definite

matrix. The minimization of the proposed criterion presents a compromise between the performances of

the local model ( ( ) ( )
T

i ix k Qx k ) and the control energy ( ( ) ( )T

i iu k Ru k ). The quadratic global criterion is

expressed by [17], [12].
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where ( ( ))i x k  values of membership functions, 1,...,iF i c  is the gain matrix.

We note here that the global quadratic criterion is obtained by melting the different partial criteria J
i
.

Thus, the relation (20) expresses the validity of each criterion relative to the overall quadratic criterion.

The solution of (18) is expressed by

( ) ( ) (0)K

i i i i ix k A B F x  (20)
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where 0(0)i ix x  is the initial condition of the state vector M
i
. Then, the quadratic global criterion is

obtained using relation (20).
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Indeed, it’s clear that the optimization problem (23) depends on the initial condition of the state vector

 0ix . Using the following property:

    0 0T

i i nE x x I (25)

The quadratic global criterion is given by

 
1

( ) ( ( ))
c

i i

i

J E J x k trace P


 
(26)

5.1. Necessary conditions for optimality gain control

To obtain the necessary conditions for minimizing the quadratic criterion with respect of the conditions

(22) and (25), we can apply the gradient matrix operations to the following Lagrangian [12]:
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The necessary conditions for minimizing the quadratic criterion J
i
 are obtained by canceling the gradient

matrix of the Lagrange function (26). Thus, we obtain the following system [17]:
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The first equation of the system (28) expresses the optimal control gain matrix of the local model M
i
.

Where P
i 
are the symmetric positive definite matrices which represent the solutions of the Lyapunov function

from the third equation of the system (27).

6. EXAMPLE

6.1. System Description

To present the availability and the efficiency of the quadratic-optimal controller design for discrete-time

nonlinear systems, we consider the system of an inverted pendulum with a cart. The motion equations for

the proposed pendulum are given by
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1x  is the pendulum angle (in radians) from the vertical, 
2x  is the angular velocity, , 9.8g  is the constant

gravity, 
1m  is the mass of the pendulum, M  is the mass of the cart, 2l  is the length of the pendulum, u  is

the force applied to the cart (Newton) and 0.02Te   is a fixed step of discretization. 1/( 1 )a m M   m1 =

0.1 Kg, M = 1 Kg and .
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6.2. Results of system identification

In this section, we analyze the identification results of the inverted pendulum system. The variables ( )y k

and ( )u k  are output and input data, respectively. We choose ( 1),  ( 2),  ( 1)y k y k u k    as the variables of

the fuzzy model (regression vector). The parameter settings are, N
p
 = 50, the value of weighting exponent

m is set at 2.5 and 
1 2 1.5.c c   The sequences of input and output signal used for the identification process

are shown in Figure 1. Figure 2 shows the real output superposed with the estimated output and the signal

error generated by the difference between the real and estimated outputs. The obtained results show that the

proposed FCM-APSO algorithm provides a good approximation modeling accuracy.

Figure 2: Identification results of FCM-APSO algorithm

Figure 1: Sequences of input-output
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6.3. Model validation

In this part, we discussed the efficiency of the FCM-APSO algorithm. For this reason, we presented statistical

performance indexes formulas which are Entropy Classification (CE), Root Mean Square Error (RMSE)

and Variance Accounting For (VAF) the results offered by each criterion are mentioned by tables (I and II).

6.3.1. Entropy classification

In the beginning, we start by identifying the selection of the clusters numbers. Based in the literature, the

criteria Entropy classification is the best compared to several criteria [4].

1 1

1
( ) log( )

1 ,1

N c

EC ik ik

k i

C C
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i c K N
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The criterion condition is mentioned as follows:

 *

2,.... 1min ( )C N ECC C C  (32)

Therefore, the number of fuzzy rules is summarized in the Table 1.

Table 1

Clusters numbersresults

Clusters numbers C=2 C=3 C=4 C=5

C
CE

(10–4) -3.3657 e3.1620 e3.4657 3.2189

6.3.2. Root Mean Square Error (RMSE)

In this test, we use the average value of the error between real output and estimated output of the system

based the T-S model to compute the Root Mean Square Error.

2

1

1
ˆ( )

N

k k

k

RMSE y y
N 
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where

N is number of observations, ky  is actual output and ˆ
ky  is the estimated output.

6.3.3. Variance Accounting For (VAF)

The VAF criterion can be given by

ˆvar( )
100%. 1

var( )

k k

k

y y
VAF

y

 
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 
(34)

The model will be validated, if the VAF criterion is around. The VAF test and the RMSE test are

summarized in Table 2. The obtained results of the VAF and RMSE tests provide a good performance.

Table 2

Results of model validation

Tests RMSE VAF

FCM-APSO 0.0043 99.99
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6.4. Quadratic Optimal Control

Using the FCM-APSO algorithm, local models are obtained as follows:

1 2

3 4

1.9934 0.9934
1.9876 0.9876

 ;  
1 0
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To obtain the parameters of each model, we solve the system (27). Indeed, the control gains are:

1 2

3 4

[-50.0143-27.9569] ;  [-50.0633-28.0154]

[-50.0797-28.0350] ;  [-50.0879-28.0447]

F F

F F

 

 

In addition, the positive definite matrices are given as below:

1 2

3 4

241.98 70.75 242.98 71.39
 ;  

70.75 91.22 71.39 91.73

243.19 71.61 243.34 71.72
 ;  

71.61 91.91 71.72 92.00

P P

P P

   
    
   

   
    
   

The performance of the developed control approach is illustrated by the numerical simulation. In fact,

Figure (3) and Figure (4) show the evolution of angular position and the evolution of angular velocity,

Figure 3: Angular position
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respectively. According to the fusion of different optimal gains computed for each local model, the evolution

of the global control law is shown in Figure (5).

7. CONCLUSIONS

In this paper, a fuzzy C-means clustering algorithm combined with adaptive particle swarm optimization

algorithm for T-S fuzzy model identification is firstly presented. The second level is devoted to the synthesis

of an optimal control law in order to ensure the global stability of the closed loop system. The developed

approach is implemented via an inverted pendulum system. The simulation showed favorable results for

the modeling of pendulum system. Further, the stability of the system’s states is successfully achieved by

the proposed control low with satisfactory performance which proves the effectiveness and the validity of

the used approach.
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