
IJCTA, 8(3), 2015, pp. 1041-1051
© International Science Press

Stabilization and Control of Three Pole 
Active Magnetic Bearing: A Sliding mode 
control Approach on Extended System 
Dynamics
V. A. Sherine Jesna*, and Winston Netto 

Abstract: A magnetic bearing is a bearing which supports the load using magnetic levitation, which could provide 
a contact-less, low frictional losses, lubrication free, high speed operations compared to the conventional bearings. 
The contact forces are generated by actively controlling the dynamics of an electromagnet. An Active Magnetic 
Bearing (AMB) system is inherently nonlinear on account of the nonlinearities of its electromagnetic field, which 
considerably make difficulties in designing efficient and effective system controllers. More over the cost of the AMB 
is obstructing the industry from implementing an AMB. The possible solution is to reduce the number of magnetic 
poles, and hence the three pole AMB system is devised. But it has the major disadvantage of magnetic flux coupling, 
an added nonlinearity. This paper studies the feasibility of an extended systems and sliding mode control scheme 
to design a robust controller to control the nonlinear three pole Active Magnetic Bearing (AMB). The simulation 
analysis is done to quantify the robustness of the proposed controller. 

Keywords: Three Pole Active Magnetic Bearing; Current mode control; Sliding mode control: Extended Systems.

1.	 INTRODUCTION 
The concept of stable levitation of a static magnetic body in a magnetic field was identified in 1842 by 
Earshaw[1].The later century had seen tremendous efforts to make use of magnetic suspension. The 
advancements in power electronics, signal processing, identification and control of rotor dynamics 
has resulted in developing magnetic suspension of rotors for industrial purposes. The first of its kind 
commercial use of an Active Magnetic Bearing (AMB) was the suspension system for the COMSAT 
satellite developed by the Societe Europenne de Propulsion, a French firm in 1976 [20]. An active magnetic 
bearing (AMB) system is a bearing system in which there is a collection of electromagnets used to suspend 
an object. The stabilization of the highly inherent nonlinear system owing to its magnetic field is performed 
by feedback control. The AMB systems are composed of a floating mechanical rotor, coated with coated 
with ferromagnetic substance and electromagnetic coils on the stator provide the controlled dynamic 
forces and thus allowing the suspended object to move in its predefined functionality [5]. Some of the 
recent developments in application of active magnetic bearings include: (i) high speed machining such as 
milling, (ii) high temperature applications such as blowers, (iii) vacuum pumps and (iv) turbo-machinery 
(v) cryogenic turbo expanders.

Since the magnetically suspended rotor system is inherently unstable, stabilization and compensation 
of the adverse effects of system nonlinearity, rotor dynamics and external disturbances are addressed with 
feedback controllers which could render robustness also. The eight pole AMBs, which are common in 
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literature, have been modeled and controlled with various aspects stemming from classical control theory 
and further techniques [3] - [5]. The controller modes can be classified as i) current controlled mode 
and, ii) voltage controlled mode [6]. Three class of controllers; class A, class B, class C; depending upon 
the distribution approach of the control current and bias current in the actuator coils of AMB has been 
discussed in [7]. Power amplifiers and sensors have contributed to make the AMB an expensive and rarely 
used mechatronic device in industry. One among the possible ways to cost down the AMB is the reduction 
in the number of magnetic poles. The reduction in poles will reduce the driver requirements and number 
and also leave more room for heat transfer, coil winding and sensor installation. The concept of three pole 
AMB system has been put forward by S.L Chen and others [6] - [11]. The reduction in poles will also 
leave more room for heat transfer, coil winding and sensor installation. But the major shortcoming of the 
three-pole AMB is its magnetic flux coupling. 

The feasibility of design and implementation of the controllers for both the current-controlled and 
voltage controlled three-pole AMB systems are discussed [8] - [10], [20]. Hsu and Chen used integral 
sliding mode controllers designed for the linearized systems and an experimental validation is shown in [8]. 
The nonlinear smooth feedback control, pole placement controls, and inverter fed control of AMB systems 
etc. can be seen in [11]-[12]. The objective of this work is to design a nonlinear stabilizing controller 
obtained by applying the concept of extended systems and feedback linearization. The aim is synthesize a 
controller law to ensure the stability and performance with global convergence.

2.	 THE THREE POLE AMB SYSTEM MODEL 

2.1	 The System Description
An optimal configuration of a three pole AMB [Fig.1] from the viewpoint of energy and cost is discussed 
in [9]. Assuming that the gravitational field acts in the y-direction, the system has its poles been arranged 
at 120o radially displaced to produce an even force distribution in the two-dimensional configuration 
space. The magnetic poles #2 and #3 have opposite winding schemes and share the same current amplifier 
[10]. Hence, the two poles will have equal and opposite coil currents. The rotor position control in x and y 
directions are rendered with the two coil currents i2 and i1 respectively The vertical position is controlled 
by the coil current i1 whereas the rotor’s horizontal position is maintained by coil current i2. To emphasis 
on the nonlinear control, a single three pole AMB system supporting a rigid, disk-like rotating rotor is 
considered [9]. The axial motions are restricted by the thrust bearing and the overall system has two degrees 
of freedom only. At steady state the constant current i20 is provided to support the rotor weight.

 
Figure 1: Three pole AMB system configuration and the coil currents
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Figure 2: Three pole AMB system equivalent magnetic circuit magnetic circuit 

2.2	 Mathematical Model of the Three Pole Amb
The magnetic circuit equivalent of AMB is given in Fig. 2. The reluctances are assumed to be present only 
in the air gap, [Fig. 2] is analyzed and the flux passing through each pole can be obtained as,
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where μ is the magnetic permeability of the air (Hm−1), B is the magnetic field (T) and 
A is the pole face area (m2). 
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The number of coil turns is indicated by N and rLi, i = 1, 2, 3, are the air gap reluctances (H−1) existing 
between the rotor and the magnetic actuator poles [8].

The variation in the position of the rotor results in variation in the reluctances as well. 
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Assuming linear magnetic (B-H) characteristics, and neglecting the flux leakage and the fringing 
effects, then the magnetic force is a function of flux [1] and is given by
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where μ is the magnetic permeability of the air (Hm−1), B is the magnetic field (T) and A is the pole face 
area (m2).

Figure 3: The resultant magnetic force in horizontal and vertical directions
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Relating to Fig.3, the resultant magnetic forces generated can be resolved in both vertical and 
horizontal directions and could be given by 
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By substituting Eq. (1) – (4) into eq.(6) and eq.(7) yields (∅��,∅��) as a function of (i1, i2) as follows 
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where (xr ,yr ) are rotor position co-ordinates, lo the nominal air gap (mm), 𝑍 = 4𝑙�� − (𝑥�� + 𝑦��) is always 
positive since (mm) (𝑥�� + 𝑦��) ≤ 	 𝑙�	. The determinant of the matrix √3/𝑍 is non-zero [8] and hence 
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 The dynamics equations of motion for the 3-pole AMB with simple disc like rotor are given by, 
 

𝑚𝑥̈� = 𝑓� and 𝑚𝑦̈� = 𝑓� −𝑚𝑔 
 

Where m  is the mass of the rotor (kg) and g is the acceleration due to gravity (m/s2). At the steady state, i.e. 
when the rotor is at the center (xr ,yr )= (0,0) and the air gap reluctances are hence equal to the nominal 
values, then  

0xf  and mgf y   

 
Thus, the coil currents at the steady state will be current i10 and i20 are 
   

𝑖�� = 𝑙��2𝑚𝑔 𝛾⁄  and  𝑖�� = 0  
 
Now defining the states of the system as 𝑥� = 𝑥�,𝑥� = 𝑥̇�, 𝑥� = 𝑦� , 𝑥� = 𝑦̇� and the state space model is 
given by 

𝑥̇ = 𝑓(𝑥, 𝑖) = 	

⎣
⎢
⎢
⎡

𝑥�
𝑐�∅��∅��
𝑥�

0.5𝑐��∅��� − ∅���� − 𝑔⎦
⎥
⎥
⎤
 

 
where 𝑐� = 4𝛾 3𝑚⁄ , 𝑥 = [𝑥� 𝑥� 𝑥�			𝑥�]�and 𝑖 = 	 [𝑖� 𝑖�]� . 
 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

V. A. Sherine Jesna, and Winston Netto 



1045

3. 	 SLIDING MODE CONTROL WITH GLOBAL INVARIANCE

3.1 	Design preliminaries  

 
  

For the design of the sliding mode controller [15]-[19], consider the general nonlinear system, 
𝑥̇ = 𝑓(𝑥, 𝑡) +	∆𝑓(𝑥, 𝑡) + [𝑔(𝑥, 𝑡) +	∆𝑔(𝑥, 𝑡)]𝑢 + 𝑑(𝑡) 

𝑦 = ℎ(𝑥,𝑢, 𝑡) 
where ∈ 𝑅� , the state vector and 𝑢 ∈ 𝑅� , 𝑦 ∈ 𝑅�, are the input and the output vectors respectively 
where m ≤ n . f : 𝑅� → 𝑅� ,h : 𝑅� → 𝑅� are nonlinear vector fields , g: 𝑅� → 𝑅�, is the nonlinear input 
gain matrix, ∆𝑓, ∆𝑔 are the uncertainties present in the model, which are continuously differentiable. 
𝑑	 ∈ 	𝑅�  a continuous disturbance vector. 

If an explicit relationship between the output yi and the control input u can be established by 
differentiating yi at least ri times [19], that is, 
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Where, L represents the Lie derivative and ri  is the relative degree. Then the system is standardized 
considering 𝜎��, 𝑖 = 1,2 …𝑚 outputs due to functional output controllability and the relative degree ri for 
each output 𝜎�� is calculated. The standardized state space dynamic equations can be formulated using the 
feedback linearization technique and the concept of extended systems. 
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Where, 𝑗 = 1,2 … 𝑟� − 1	𝑎𝑛𝑑	𝑖 = 1,2. .𝑚 ≤ 𝑛. The controllable canonical form system equations may have 
the order less than that of original systems. In those cases, the stability of the internal dynamics should be 
checked. If it is not internally stable, the order of the standardized equation should be incremented or the 
concerned outputs should be altered. 

3.2 Sliding surface design 
The sliding surface for the extended system in the proposed controller technique is given by, 
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with kij are designed by the system performance specifications or eigen values of A such that Eq.(17) is Hurwitz.  

3.3 Associated control law synthesis 

 The reaching law is chosen as, 

𝑆̇ = 	−𝜂 ∗ 𝑠𝑔𝑛(𝑆) 
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3.3	 Associated control law synthesis
The reaching law is chosen as,
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3.4 Design Features  

(1) Global Invariance - The sliding surface is constructed so that the initial state itself falls on the 
sliding surface, by eq. (16). For chosen dynamics of sliding mode motion, the states will converge to zero 
exponentially. With the proposed control law, the sliding phase motion will occur immediately and the 
invariance property will always hold [19]. 

(2) Chattering Reduction - A continuous control input can be obtained from eq. (21), using the 
extended sliding mode control design scheme, resulting in a reasonably smooth system output response 
[19]. 
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system is a non-affine nonlinear system, there exists a bijective relation between �∅�𝟏,∅�𝟐� and (�̃𝟏, �̃𝟐)	 

and hence the system can be linearized [17]. Defining (�̃𝟏, �̃𝟐)	as virtual inputs  

𝒄𝟎∅�𝟏∅�𝟐 = 	 �̃𝟏 

0.5𝑐��∅��� − ∅���� − 𝑔 = 	 𝚤̃� 
Solving eq. (23) yields 

�	∅
��
∅��
� = 	 �

���
×

⎣
⎢
⎢
⎡ �(𝚤�̃ + 𝑔) + �(𝚤�̃ + 𝑔)� + (𝚤̃�	)�

�−(𝚤�̃ + 𝑔) +�(𝚤�̃ + 𝑔)� + (𝚤̃�	)�⎦
⎥
⎥
⎤
 

where �̃ = 	 [𝚤�̃, 𝚤�̃]�  are the linearizing inputs in feedback. The physical system is always a nominal 
system with bounded uncertain part. The system model could be adapted as, 

𝑥̇ = 𝑓(𝑥,𝛹(𝑥, �̃), 𝑡) +	∆𝑓(𝑥,𝛹(𝑥, �̃), 𝑡) = 	𝐴𝑥 + 𝐵(𝚤̃ + ∆(𝑥, 𝚤̃)) 

where 𝑓(𝑥,𝛹(𝑥, �̃), 𝑡) and ∆𝑓(𝑥,𝛹(𝑥, �̃), 𝑡)	represents the nominal part and the uncertainty part 
respectively. The primary task of the controller is to maintain the rotor disc at the projected center of AMB 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

3.4	 Design Features 
(1) Global Invariance - The sliding surface is constructed so that the initial state itself falls on the 

sliding surface, by eq. (16). For chosen dynamics of sliding mode motion, the states will converge to zero 
exponentially. With the proposed control law, the sliding phase motion will occur immediately and the 
invariance property will always hold [19].

(2) Chattering Reduction - A continuous control input can be obtained from eq. (21), using the 
extended sliding mode control design scheme, resulting in a reasonably smooth system output response 
[19].

4. CONTROLLER DESIGN FOR THREE POLE AMB

4.1 	Feedback Linearization

 

 
  

 

The preliminary step in the controller design is to find a state feedback 𝑖 = 	𝛹(𝑥, 𝚤̃) so that the closed 
loop system given by  

𝑥̇ = 𝑓(𝑥,𝛹(𝑥, 𝚤̃)) = 𝐴𝑥 + 𝐵𝚤̃ 

where the pair (A,B) is controllable and �̃ denotes the vector of new inputs. Although the modeled AMB 

system is a non-affine nonlinear system, there exists a bijective relation between �∅�𝟏,∅�𝟐� and (�̃𝟏, �̃𝟐)	 

and hence the system can be linearized [17]. Defining (�̃𝟏, �̃𝟐)	as virtual inputs  

𝒄𝟎∅�𝟏∅�𝟐 = 	 �̃𝟏 

0.5𝑐��∅��� − ∅���� − 𝑔 = 	 𝚤̃� 
Solving eq. (23) yields 

�	∅
��
∅��
� = 	 �

���
×

⎣
⎢
⎢
⎡ �(𝚤�̃ + 𝑔) + �(𝚤�̃ + 𝑔)� + (𝚤̃�	)�

�−(𝚤�̃ + 𝑔) +�(𝚤�̃ + 𝑔)� + (𝚤̃�	)�⎦
⎥
⎥
⎤
 

where �̃ = 	 [𝚤�̃, 𝚤̃�]� are the linearizing inputs in feedback. The physical system is always a nominal 
system with bounded uncertain part. The system model could be adapted as, 

𝑥̇ = 𝑓(𝑥,𝛹(𝑥, �̃), 𝑡) +	∆𝑓(𝑥,𝛹(𝑥, �̃), 𝑡) = 	𝐴𝑥 + 𝐵(𝚤̃ + ∆(𝑥, 𝚤̃)) 

where 𝑓(𝑥,𝛹(𝑥, �̃), 𝑡)  and ∆𝑓(𝑥,𝛹(𝑥, �̃), 𝑡)	 represents the nominal part and the uncertainty part 
respectively. The primary task of the controller is to maintain the rotor disc at the projected center of AMB 
at (0,0) position inspite of uncertainities. The controller is required to keep the variations of the AMB 
inside the domain of interest, from the physical constraints is defined as within the limit of ± 0.5 ˣ 10-3mm.  

𝐷 = {𝑥 ∈ 	𝑅�; |𝑥�� + 𝑥��| ≤ ���
�

�
�&	𝑥�� + 𝑥�� 	≤ 	���

�

�
} 

The uncertainties can be coined as, 
 

∆(𝑥, 𝚤̃) = �
�𝑐�∅��∅���− 	 𝚤�̃

(0.5𝑐��∅��� − ∅���� − 𝑔) − 	 𝚤̃�
� 

 
The perturbed linearized system could be redefined as:  

𝑥̇ = �

𝑥�
𝚤̃� + 𝛿𝑓�
𝑥�

𝚤̃� + 	𝛿𝑓�

� 

Now	𝑑 = �𝛿𝑓�,𝛿𝑓��
�
is coined as disturbances. 

 
4.2 Extended Sliding Mode Controller Design 
Defining the new system states as, 	[𝜎��, 	𝜎��,𝜎��,𝜎��, 𝜎��	 ,𝜎��]� = �𝑥�	,𝑥�, 𝑥̇�,𝑥�,𝑥�,	𝑥̇��

�  the controllable 
canonical form is given by 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	𝜎��
𝜎̇ = 	 𝚤̃ ̇ + 𝛿𝑓̇ + 𝑑̇
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where 𝑓(𝑥,𝛹(𝑥, �̃), 𝑡)  and ∆𝑓(𝑥,𝛹(𝑥, �̃), 𝑡)	 represents the nominal part and the uncertainty part 
respectively. The primary task of the controller is to maintain the rotor disc at the projected center of AMB 
at (0,0) position inspite of uncertainities. The controller is required to keep the variations of the AMB 
inside the domain of interest, from the physical constraints is defined as within the limit of ± 0.5 ˣ 10-3mm.  

𝐷 = {𝑥 ∈ 	𝑅�; |𝑥�� + 𝑥��| ≤ ���
�

�
�&	𝑥�� + 𝑥�� 	≤ 	���

�

�
} 

The uncertainties can be coined as, 
 

∆(𝑥, 𝚤̃) = �
�𝑐�∅��∅���− 	 𝚤�̃

(0.5𝑐��∅��� − ∅���� − 𝑔) − 	 𝚤̃�
� 

 
The perturbed linearized system could be redefined as:  

𝑥̇ = �

𝑥�
𝚤̃� + 𝛿𝑓�
𝑥�

𝚤̃� + 	𝛿𝑓�

� 

Now	𝑑 = �𝛿𝑓�,𝛿𝑓��
�
is coined as disturbances. 

4.2 Extended Sliding Mode Controller Design 

Defining the new system states as, 	[𝜎��, 	𝜎��,𝜎��,𝜎��, 𝜎��	 ,𝜎��]� = �𝑥�	,𝑥�, 𝑥̇�,𝑥�,𝑥�,	𝑥̇��
�  the controllable 

canonical form is given by 

 

 

 

 

The desired states are represented by (𝑥��� , 𝑥���). Then error states in x direction can be defined as in 
eq.(30). The vertical error states can be also defined similarly.  

 
 

 
 
Designing the sliding surface as defined in Eq.(16) for dynamics in x direction, 

𝑆� = 𝑒�� − 𝑥����(0) + ∫ (	𝑘��𝑒�� + 𝑘��𝑒��
�
� +	𝑘��𝑒��)	𝑑𝑡 

 
The resulting control input can be obtained as, 

𝚤̃�̇ = −𝑑̇�−𝑊�𝑠𝑔𝑛(𝑆�) − 	(𝑘��𝑒�� + 𝑘��𝑒�� + 	𝑘��𝑒��) +	𝑥��� 
 

(26) 

(27) 

(28) 

𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	 𝚤̃�̇ + 𝛿𝑓̇� + 𝑑̇� 
𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	 𝚤̃�̇ + 	𝛿𝑓̇� + 𝑑̇� (29) 

𝑒̇�� = 𝜎�� − 	𝑥�̇�� 
𝑒̇�� = 𝜎�� − 	𝑥�̈�� = 	 𝚤̃� + 𝛿𝑓� + 𝑑� 	− 	𝑥�̈�� 
𝑒̇�� = 𝜎̇�� − 	𝑥���� = 	 𝚤̃�̇ + 𝛿𝑓�̇ + 𝑑̇� 	− 	𝑥���� (30) 

(31) 

(32) 
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The system dynamics in sliding motion is achieved as, 
 

 
 

 
 
 
 
 
4.3 Robust Stability Analysis 

Let the choice of candidate Lyapunov function of the system be 𝑉 = �
�
𝑆�𝑆, and then 𝑉̇ ≤ 0 can be 

ensured by proper choice of 𝜂. i.e, for the horizontal dynamics  

𝑉�̇ = 	𝑆���𝜎̇�� +∑ 𝑘�𝜎���
��� � = 𝑆�� �−

�
��
�∆(𝑥, 𝚤̃)� − 𝜂 ∗ 𝑠𝑔𝑛(𝑆)� ≤ �� �

��
�∆(𝑥, 𝚤̃)�� − 𝜂� |𝑆�| 

Hence choosing the switching gain 𝜂 larger enough than the uncertainties, ensure that the first 
derivative of the Lyapunov function V with respect to time is certainly negative. 

5.  SIMULATION ANALYSIS AND VALIDATION OF THE CONTROLLER 

The initial states are (𝑥� = 0, 𝑥� = 0,𝑥� = 0,𝑥� = 0) and the desired controlled states are given as 
(𝑥��� = 0,𝑥��� = 0,𝑥��� = 0,𝑥��� = 0). Fourth order Runga-Kutta method is used for numerical analysis. The 
eigen values for critical damping response, corresponding to the Hurwitz polynomial or the sliding surface 
are fixed as [-6.5, -5.5, -5]. The switching gains are fixed as W1= 10 and W2= 10.  

 
 
The simulation analysis is conducted on three pole AMB bearing with system parameters as in Table I  

Table 1 
Simulation parameters 

Parameters                           Symbol    Value   Unit 
Mass    m     0.556   kg 
Nominal Air Gap    l0     2×10-3   m 
Clearance between     ¼ l0     0.5×10-3   m 
Auxiliary bearing and Shaft         
Pole Face Area    A     4×10-4   m2 
Acceleration due to gravity    g     9.81    m/s2 
No. of Turns in coil    N     300 
Magnetic Permeability of airgap  μ     4π×10-7   H/m                                                                  
Bias current    i20     1.8    A  

 
Since the system is open loop unstable, feedback controllers are to be implemented by 

default. Fig.4 indicates the nominal response of the system. The simulation response of the 
system for the normal running conditions with sliding mode controller is equivalent to the 

𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	−𝑊�𝑠𝑔𝑛(𝑆�) +	𝑥��� − 	(𝑘��𝑒�� + 𝑘��𝑒�� + 	𝑘��𝑒��) +	 𝑑̇�		 
𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	𝜎�� 
𝜎̇�� = 	−𝑊�𝑠𝑔𝑛(𝑆�) +	𝑥��� 	− 	 (𝑘��𝑒�� + 𝑘��𝑒�� +	𝑘��𝑒��) + 	 𝑑̇�	 (33) 

(34) 

The simulation analysis is conducted on three pole AMB bearing with system parameters as in Table I 

Table 1 
Simulation parameters

Parameters  Symbol Value Unit
Mass m 0.556 kg
Nominal Air Gap l0 2×10-3 m
Clearance between ¼ l0 0.5×10-3 m
Auxiliary bearing and Shaft
Pole Face Area A 4×10-4 m2

Acceleration due to gravity g 9.81 m/s2

No. of Turns in coil N 300
Magnetic Permeability of airgap μ 4π×10-7 H/m
Bias current i20 1.8 A

Since the system is open loop unstable, feedback controllers are to be implemented by default. Fig.4 
indicates the nominal response of the system. The simulation response of the system for the normal running 
conditions with sliding mode controller is equivalent to the nominal response of the AMB with state 
feedback controllers implemented for the given pole locations. The rotor, in the beginning is at rest on the 
auxiliary bearings (0,-0.5mm) and then it traces its position to (0, 0), with rise time: 0.5646 s, settling time: 
0.982, and minimal overshoot.
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Figure 4: The displacement of rotor of undisturbed AMB with sliding mode controller in horizontal and vertical 
directions respectively

The simulation response of the system for the perturbed conditions is compared with the response of 
state feedback controlled system. The disturbance vector is as a vector of periodical signals with known 
bounds, and is given by . The initial condition is (0,-0.0005) and the response is shown in Fig. 5.

Figure 5: The displacement of rotor of perturbed AMB system with sliding mode controller in vertical and horizontal 
directions respectively

The response of the system has considerable reduction chattering which is often present in regular 
sliding mode controllers and the system response falls into the sliding surface specifications instantaneously 
thereby wearying the time spend in reaching phase to a large extent. The proposed sliding mode controller 
pushes the system into the sliding surface designed for the specifications as soon as the control input is 
switched on. 

Figure 6: The response of state feedback controlled system with perturbations in horizontal and vertical  
directions respectively
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The performance of the proposed controller is compared with state feedback controller designed for 
the same system specifications, i.e., to minimize the position error less than 0.01mm. and the velocity error 
and the position error converge within 2 seconds. Fig.6 shows the response of the state feedback controlled 
AMB system. Comparison of the responses Fig.5 and Fig. 6 clearly indicates that the proposed controller 
is superior in handling disturbances.

The extended sliding mode controller shows a critically damped response without any sort of overshoot 
or oscillations despite of the perturbations given to the system, but the settling time lags from that specified. 
The state feedback controller response for a perturbed condition is oscillatory and the amplitude of 
oscillations are considerably large. But the system settles within 2sec, which is desired. 

A continuous control input, the coil current i2 for both the normal AMB system and perturbed system 
AMB system can be obtained as shown in Fig.7 using the extended sliding mode control design scheme, 
which results in a reasonably smooth system output response as shown in Fig.5. The magnitude of the 
control current is within the neighborhood of bias current 1.8A in y direction. 

Figure 7: The coil current i2 generated for sliding mode controller scheme in the normal system and the  
perturbed system respectively 

6.	 CONCLUSIONS
The three pole AMB is a high speed cost effective and efficient bearing system. The stabilization and 
control of a nonlinear three pole AMB model is prerequisite for the rotor to give a desired performance. 
The non-linear, magnetically coupled, current controlled AMB is linearized using feedback linearization. 
The feedback controllers, viz. extended sliding mode and state feedback method, are designed. From the 
simulation analysis, the extended sliding mode controller has obtained a better error convergence. The 
discrete time implementation of sliding mode controllers is the future extend of the work. 
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