IJAMAA January-June 2014, Volume 9, No. 1, pp. 17-20

SOME MORE RESULTS ON THE ALGEBRA (C_0, C_0) OF INFINITE MATRICES IN NON-ARCHIMEDEAN FIELDS

P. N. NATARAJAN

ABSTRACT: In this note, we record briefly some more results regarding the algebra (c_0, c_0) of infinite matrices in complete, non-trivially valued, non-archimedean fields.

AMS Subject Classification: 40, 46.

Keywords: Non-archimedean Banach algebra, K-convex semigroup, Mercerian theorem.

In this note, we supplement a few more results to an earlier paper of the author [1]. Throughout this note, K denotes a complete, non-trivially valued, non-archimedean field. Sequences and infinite matrices have entries in K. Following the notations and techniques used in the proofs of the theorems in [1], we prove the following theorems which are worth recording in the context of the algebra (c_0, c_0) considered in [1].

Theorem 1: (c_0, c_0) is a non-archimedean Banach algebra, with identity, under the norm

$$||A|| = \sup_{n,k} |a_{nk}|, A = (a_{nk}) \in (c_0, c_0)$$
(1)

under the usual matrix addition, scalar multiplication and multiplication.

Proof: Let $A = (a_{nk}), B = (b_{nk}) \in (c_0, c_0)$. Let $AB = (c_{nk})$ and $\{x_k\} \in c_0$.

Then,

$$\lim_{n \to \infty} y'_n = 0, \quad \text{where} \quad y'_n = \sum_{k=0}^{\infty} b_{nk} x_k,$$
$$\lim_{n \to \infty} y''_n = 0, \quad \text{where} \quad y''_n = \sum_{k=0}^{\infty} a_{nk} y'_k.$$

Now,

$$\sum_{k=0}^{\infty} c_{nk} x_k = \sum_{k=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{ni} b_{ik} \right) x_k$$
$$= \sum_{i=0}^{\infty} a_{ni} \left(\sum_{k=0}^{\infty} b_{ik} x_k \right),$$

rearranging the double sum (see [2], p.133)

$$= \sum_{i=0}^{\infty} a_{ni} y_{i}$$
$$= y'',$$

so that $\lim_{n \to \infty} \sum_{k=0}^{\infty} c_{nk} x_k = \lim_{n \to \infty} y_n'' = 0$. Thus $AB \in (c_0, c_0)$ and so (c_0, c_0) is closed under

matrix multiplication. Also,

$$|c_{nk}| = \left| \sum_{i=0}^{\infty} a_{ni} b_{ik} \right|$$

$$\leq \left(\sup_{n,k} |a_{nk}| \right) \left(\sup_{n,k} |b_{nk}| \right)$$

$$= ||A|| ||B||, n, k = 0, 1, 2, \dots$$

so that

$$\sup_{n,k} |c_{nk}| \le ||A|| ||B||,$$

i.e.,

$$||AB|| \le ||A|| ||B||.$$

The identity matrix $I = (e_{nk})$, where

$$e_{nk} = \begin{cases} 1, & \text{if } k = n; \\ 0, & \text{if } k \neq n, \end{cases}$$

is in (c_0, c_0) and it is the identity element of (c_0, c_0) under matrix multiplication. It was proved in Theorem 1 of [1] that (c_0, c_0) is complete under the norm defined by (1). Thus (c_0, c_0) is an algebra, completing the proof of the theorem.

Theorem 2: $(c_0, c_0; P)$, as a subset of (c_0, c_0) , is a closed K-convex semigroup with identity.

Proof: It was shown in Theorem 2 of [1] that $(c_0, c_0; P)$ is a closed, K-convex subset of $(c_0, c_0; C_0)$. The identity matrix I is the identity element of $(c_0, c_0; P)$. We shall now prove that $(c_0, c_0; P)$ is closed under matrix multiplication. If $A = (a_{nk}), B = (b_{nk}) \in (c_0, c_0; P)$, we have proved in Theorem 1 that $AB \in (c_0, c_0)$.

Further,

Some More Results on the Algebra (c_0, c_0) of Infinite Matrices... 19

$$\sum_{n=0}^{\infty} (AB)_{nk} = \sum_{n=0}^{\infty} \left(\sum_{i=0}^{\infty} a_{ni} b_{ik} \right)$$
$$= \sum_{i=0}^{\infty} b_{ik} \left(\sum_{n=0}^{\infty} a_{ni} \right), \text{ rearranging the double sum as before}$$
$$= \sum_{i=0}^{\infty} b_{ik}$$
$$= 1,$$

since $\sum_{n=0}^{\infty} a_{nk} = \sum_{n=0}^{\infty} b_{nk} = 1$, k = 0, 1, 2, ..., which proves that $AB \in (c_0, c_0; P)$, completing the proof.

We now prove a Mercerian theorem for the algebra (c_0, c_0) under matrix multiplication.

Theorem 3: If $y_n = x_n + \lambda (\alpha^n x_0 + \alpha^{n-1} x_1 + \dots + \alpha x_{n-1} + x_n)$, $\alpha \in K$, $|\alpha| < 1$ and $\{y_n\} \in c_0$, then $\{x_a\} \in c_0$, provided $|\lambda| < 1$.

Proof: Since (c_0, c_0) is an algebra under matrix multiplication, if $|\lambda| < \frac{1}{\|A\|}$, then $I + \lambda A$ has an inverse in (c_0, c_0) . We note that the equations

$$y_n = x_n + \lambda (\alpha^n x_0 + \alpha^{n-1} x_1 + \dots + \alpha x_{n-1} + x_n), \quad n = 0, 1, 2, \dots$$

can be written as

$$(I + \lambda A)x' = y',$$

where

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ \alpha & 1 & 0 & 0 & \cdots \\ \alpha^2 & \alpha & 1 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix},$$
$$x' = \begin{pmatrix} x_0 & 0 & 0 & 0 & \cdots \\ x_1 & 0 & 0 & 0 & \cdots \\ x_2 & 0 & 0 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix},$$

$$y' = \begin{pmatrix} y_0 & 0 & 0 & 0 & \cdots \\ y_1 & 0 & 0 & 0 & \cdots \\ y_2 & 0 & 0 & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

Note that $A \in (c_0, c_0)$ with ||A|| = 1: So, if $|\lambda| < 1$; as observed earlier, $I + \lambda A$ has an inverse in (c_0, c_0) . Thus

$$x' = (I + \lambda A)^{-1} y'.$$

Since $(I + \lambda A)^{-1}$, $y' \in (c_0, c_0)$, we have $x' \in (c_0, c_0)$. It now follows (see [1], Theorem A) that $\lim_{n \to \infty} x_n = 0$, i.e., $\{x_n\} \in c_0$. Proof of the theorem is now complete.

References

- [1] P. N. Natarajan, (2003), On the Algebra (c_0, c_0) of Infinite Matrices is Non-Archimedean Fields, *Indian. J. Math.*, **45**, 79-87.
- [2] A. C. M. Van Rooij, and W. H. Schikof, (1971), Non-Archimedean Analysis, *Nieuw Arch. Wisk.*, 29, 120-160.

P. N. Natarajan

Old No.2/3, New No.3/3 Second Main Road, R. A. Puram Chennai 600 028, India

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.

This page will not be added after purchasing Win2PDF.

http://www.win2pdf.com/purchase/