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Abstract. LetX1, . . . , Xd be sigma-martingales on (Ω,F ,P). We show that
every bounded martingale (with respect to the underlying filtration) admits

an integral representation with respect to X1, . . . , Xd if and only if there is no
equivalent probability measure (other than P) under which X1, . . . , Xd are
sigma-martingales. From this we deduce the second fundamental theorem of
asset pricing- that completeness of a market is equivalent to uniqueness of

Equivalent Sigma-Martingale Measure (ESMM).

1. Introduction

The (first) fundamental theorem of asset pricing says that a market consisting
of finitely many stocks satisfies the No Arbitrage (NA) property if and only there
exists an Equivalent Martingale Measure (EMM)- i.e. there exists an equivalent
probability measure under which the (discounted) stocks are (local) martingales.
The No Arbitrage property has to be suitably defined when we are dealing in
continuous time, where one rules out approximate arbitrage in the class of admis-
sible strategies. For a precise statement in the case when the underlying processes
are locally bounded, see Delbaen and Schachermayer [5]. Also see Bhatt and
Karandikar [1] for an alternate formulation of a weaker result, where the approxi-
mate arbitrage is defined only in terms of simple strategies. For the general case,
the result is true when local martingale in the statement above is replaced by
sigma-martingale. See Delbaen and Schachermayer [6]. They have an example
where the No Arbitrage property holds but there is no equivalent measure under
which the underlying process is a local martingale. However, there is an equivalent
measure under which the process is a sigma-martingale.

The second fundamental theorem of asset pricing says that the market is com-
plete (i.e. every contingent claim can be replicated by trading on the underlying
securities) if and only if the EMM is unique. Interestingly, this property was
studied by probabilists well before the connection between finance and stochastic
calculus was established (by Harrison–Pliska [9]). The completeness of market is
same as the question: when is every martingale representable as a stochastic inte-
gral with respect to a given set of martingales {M1, . . . ,Md}. When M1, . . . ,Md

is the d-dimensional Wiener Process, this property was proven by Ito [10]. Jacod
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and Yor [13] proved that if M is a P-local martingale, then every martingale N
admits a representation as a stochastic integral with respect to M if and only if
there is no probability measure Q (other than P) such that Q is equivalent to P
and M is a Q-local martingale. The situation in higher dimension is more com-
plex. The obvious generalisation to higher dimension is not true as was noted by
Jacod–Yor [13].

To remedy the situation, a notion of vector stochastic integral was introduced-
where a vector valued predictable process is the integrand and vector valued mar-
tingale is the integrator. The resulting integral yields a class larger than the linear
space generated by component wise integrals. See [12], [2]. However, one has to
prove various properties of the vector stochastic integrals once again.

Here we achieve the same objective in another fashion avoiding defining integra-
tion again from scratch. In the same breath, we also take into account the general
case, when the underlying processes need not be bounded but satisfy the property
NFLVR and thus one has an equivalent sigma-martingale measure (ESMM). To the
best of our knowledge, the martingale representation property in the framework of
sigma-martingales is not available in literature. Indeed, most treatments deal with
square integrable martingales where the notion of orthogonality of martingales is
available which simplifies the treatment.

For a semimartingale X, let L(X) denote the class of predictable processes f
such that the stochastic integral

∫
f dX is defined. A semimartingale Z is said to

admit an integral representation with respect to semimartingales (X1, X2, . . . , Xd)
if there exists a semimartingale Y and predictable processes f, gj such that f ∈
L(Y ), gj ∈ L(Xj)

Yt = Y0 +
d∑
j=1

∫ t

0

gjsdX
j
s , ∀t ≥ 0

and

Zt = Z0 +

∫ t

0

fsdYs, ∀t ≥ 0.

In Theorem 5.3 we will show that for a multidimensional sigma-martingale
(X1, X2, . . . , Xd) all bounded martingales admit a representation with respect to
Xj , 1 ≤ j ≤ d if and only if the ESMM is unique.

The most critical part of its proof is to show that the class of martingales
that admit representation with respect to (X1, X2, . . . , Xd) is closed under L1

convergence : If Mn are martingales such that there exist fn, gn,j , Y n with

Y nt = Y n0 +
d∑
j=1

∫ t

0

gn,js dXj
s , ∀t ≥ 0

and

Mn
t =Mn

0 +

∫ t

0

fns dY
n
s , ∀t ≥ 0

and if E[|Mn
t −Mt|] → 0, then we need to show that M also admits a representa-

tion with respect to (X1, X2, . . . , Xd). When (X1, X2, . . . , Xd) is d-dimensional
Brownian motion, or when Xj and Xk are orthogonal as martingales, one can
deduce that for each j, {gn,j : n ≥ 1} is Cauchy in an appropriate norm and
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thereby complete the proof. This step fails in general, as the Jacod–Yor example
shows. So we need to do an orthogonalisation of (X1, X2, . . . , Xd) to achieve the
same. However, (X1, X2, . . . , Xd) may not be square integrable and thus we need
to change the measure to a measure Q (equivalent to the underlying probability
measure P) to make it so. Under Q, (X1, X2, . . . , Xd) need not be martingales.
This part is delicately managed by keeping both P,Q in the picture.

The rest of the argument is on the lines of Jacod–Yor [13].
When X1, X2, . . . , Xd represent (prices of) stocks, Y can be thought of as (the

price of) a mutual fund or an index fund and the investor is trading on such a
fund trying to replicate the security Z.

In this framework, Theorem 5.3 gives us the second fundamental theorem of as-
set pricing : Market is complete if and only if ESMM (equivalent sigma-martingale
measure) is unique.

2. Preliminaries and Notation

Let us start with some notations. (Ω,F ,P) denotes a complete probability
space with a filtration (F�) = {Ft : t ≥ 0} such that F0 consists of all P-null sets
(in F) and

∩t>sFt = Fs ∀s ≥ 0.

Thus, we can (and do) assume that all martingales have r.c.l.l. paths.
For various notions, definitions and standard results on stochastic integrals, we

refer the reader to Meyer [15], Jacod [11] or Protter [16].
Let M denote the class of martingales and Mloc denote the class of local mar-

tingales. For M ∈ Mloc, let L1
m(M) be the class of predictable processes f such

that there exists a sequence of stopping times σk ↑ ∞ with

E[{
∫ σk

0

f2s d[M,M ]s}
1
2 ] <∞.

For such an f , N =
∫
f dM is defined and is a local martingale.

For a semimartingale X, let L(X) denote the class of predictable process f such
that X admits a decomposition X = N + A with N ∈ Mloc , A being a process
with finite variation paths with f ∈ L1

m(N) and∫ t

0

|fs|d|A|s <∞ a.s. ∀t <∞. (2.1)

For f ∈ L(X), the stochastic integral
∫
f dX is defined as

∫
f dN +

∫
f dA. It can

be shown that the decomposition X = N + A is not unique, the definition does
not depend upon the decomposition. See [11].

For M1,M2, . . . ,Md ∈ M let C(M1,M2, . . . ,Md) denote the class of martin-
gales Z ∈ M such that ∃f j ∈ L1

m(M j), 1 ≤ j ≤ d with

Zt = Z0 +
d∑
j=1

∫ t

0

f js dM
j
s , ∀t ≥ 0.

For T <∞, let

K̃T (M1,M2, . . . ,Md) = {ZT : Z ∈ C(M1,M2, . . . ,Md)}.
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For the case d = 1, Yor [18] had proved that K̃T is a closed subspace of

L1(Ω,F ,P). The problem in case d > 1 is that in general K̃T (M1,M2, . . . ,Md)
need not be closed. Jacod–Yor [13] gave an example whereM1,M2 are continuous

square integrable martingales and K̃T (M1,M2) is not closed. Jacod [12] defined
the vector stochastic integral and Memin [14] proved that with the modified defi-
nition of the integral, this space is closed. We will follow a different path.

For martingalesM1,M2, . . . ,Md, let F(M1, . . . ,Md) be the class of martingales
Z ∈ M such that ∃Y ∈ C(M1, . . . ,Md) and f ∈ L1

m(Y ) with

Zt = Z0 +

∫ t

0

fsdYs, ∀t ≥ 0.

Let

KT (M1,M2, . . . ,Md) = {ZT : Z ∈ F(M1,M2, . . . ,Md)}.
The main result of the next section is

Theorem 2.1. Let M1,M2, . . . ,Md be martingales. Then KT (M1,M2, . . . ,Md)
is closed in L1(Ω,F ,P).

This will be deduced from

Theorem 2.2. LetM1,M2, . . . ,Md be martingales and Zn ∈ F(M1,M2, . . . ,Md)
be such that E[|Znt − Zt|] → 0 for all t. Then Z ∈ F(M1,M2, . . . ,Md).

When M1,M2, . . . ,Md are square integrable martingales, the analogue of The-
orem 2.1 for L2 follows from the work of Davis–Varaiya [4]. However, for the EMM
characterisation via integral representation, one needs the L1 version, which we
deduce using change of measure technique.

We will need the Burkholder–Davis–Gundy inequality (see [15]) (for p = 1)
which states that there exist universal constants c1, c2 such that for all martingales
M and T <∞,

c1E[([M,M ]T )
1
2 ] ≤ E[ sup

0≤t≤T
|Mt|] ≤ c2E[([M,M ]T )

1
2 ].

After proving Theorem 2.1, in the next section we will introduce sigma-martingales
and give some elementary properties. Then we come to the main theorem on
integral representation of martingales. This is followed by the second fundamental
theorem of asset pricing.

3. Proof of Theorem 2.1

In this section, we fix martingales M1,M2, . . . ,Md. We begin with a few aux-
iliary results.

Lemma 3.1. Let Cb(M1, . . . ,Md) be the class of martingales Z such that ∃
bounded predictable processes f j , 1 ≤ j ≤ d with

Zt = Z0 +
d∑
j=1

∫ t

0

f js dM
j
s , ∀t ≥ 0.
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Let Fb(M1, . . . ,Md) be the class of martingales Z ∈ M such that ∃f ∈ L1
m(Y ) and

Y ∈ Cb(M1, . . . ,Md) with

Zt = Z0 +

∫ t

0

fsdYs, ∀t ≥ 0.

Then Fb(M1, . . . ,Md) = F(M1, . . . ,Md).

Proof. Since bounded predictable process belong to L1
m(N) for every martingale

N , it follows that Cb(M1, . . . ,Md) ⊆ C(M1, . . . ,Md). Thus Fb(M1, . . . ,Md) ⊆
F(M1, . . . ,Md).

For the other part, let Z ∈ F be given by

Zt = Z0 +

∫ t

0

fsdYs, f ∈ L1
m(Y ),

where

Yt = Y0 +
d∑
j=1

∫ t

0

gjsdM
j
s

with gj ∈ L1
m(M j). Let

ξs = 1 +

d∑
j=1

|gjs|, hjs =
gjs
ξs

and

Vt =

d∑
j=1

∫ t

0

hjsdM
j
s .

Since hj are bounded, it follows that V ∈ Cb(M1,M2, . . . ,Md). Using gjs = ξsh
j
s

and gj ∈ L1
m(M j), it follows that ξ ∈ L1

m(V ) and

Yt = Y0 +

∫ t

0

ξsdVs.

Since f ∈ L1
m(Y ), it follows that fξ ∈ L1

m(V ) and
∫
f dY =

∫
fξdV . □

Lemma 3.2. Let Z ∈ M be such that there exists a sequence of stopping times
σk ↑ ∞ with EP[

√
[Z,Z]σk

] < ∞ and Xk ∈ F(M1,M2, . . . ,Md) where Xk
t =

Zt∧σk
. Then

Z ∈ F(M1,M2, . . . ,Md).

Proof. Let Xk = Z0 +
∫
fkdY k for k ≥ 1 with Y k ∈ Cb(M1,M2, . . . ,Md) and

fk ∈ L1
m(Y k). Let ϕk,j be bounded predictable processes such that

Y kt = Y k0 +
d∑
j=1

∫ t

0

ϕk,js dM j
s .

Let ck > 0 be a common bound for ϕk,1, ϕk,2, . . . , ϕk,d. Let us define ηj , f by

ηjt =
∞∑
k=1

1

ck
ϕk,jt 1{(σk−1,σk]}(t).
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ft =
∞∑
k=1

ckf
k
t 1{(σ−1,σk]}(t).

Yt =
d∑
j=1

∫ t

0

ηjsdM
j
s .

By definition, ηj is bounded by 1 for every j and thus Y ∈ Cb(M1,M2, . . . ,Md).
We can note that

Zt∧σk
− Zt∧σk−1

= Xk
t∧σk

−Xk
t∧σk−1

=

∫ t

0

fks 1{(σk−1,σk]}(s)dY
k
s

=

∫ t

0

fs1{(σk−1,σk]}(s)dYs.

Thus

Zt∧σk
= Z0 +

∫ t

0

1[0,σk](s)fsdYs

and hence

[Z,Z]σk
=

∫ σk

0

(fs)
2d[Y, Y ]s.

Since by assumption, for all k

EP[
√
[Z,Z]σk

] <∞

it follows that f ∈ L1
m(Y ). This proves the required result. □

Lemma 3.3. Let Zn ∈ M be such that E[|Znt − Zt|] → 0 for all t. Then there
exists a sequence of stopping times σk ↑ ∞ and a subsequence {nj} such that for
each k ≥ 1,

E[
√
[Z,Z]σk

] <∞

and writing Y j = Zn
j

,

E[
√
[Y j − Z, Y j − Z]σk

] → 0 as j ↑ ∞. (3.1)

Proof. Let n0 = 0. For each j, E[|Znj − Zj |] → 0 as n → ∞ and hence we can

choose nj > n(j−1) such that

E[|Zn
j

j − Zj |] ≤ 2−j .

Then using Doob’s maximal inequality we have

P(sup
t≤j

|Zn
j

t − Zt| ≥
1

j2
) ≤ j2

2j
.

As a consequence, writing Y j = Zn
j

, we have

ηt =
∞∑
j=1

sup
s≤t

|Y js − Zs| <∞ a.s. for all t <∞. (3.2)
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Now define

Ut = |Zt|+
∞∑
j=1

|Y jt − Zt|.

In view of (3.2), it follows that U is r.c.l.l. adapted process. For any stopping time
τ ≤ m, we have

E[Uτ ] = E[|Zτ |] +
∞∑
j=1

E[|Y jτ − Zτ |]

≤ E[|Zm|] +
∞∑
j=1

E[|Y jm − Zm|]

≤ E[|Zm|] +
m∑
j=1

E[|Y jm − Zm|] +
∞∑

j=m+1

2−j

<∞.

Here, we have used that Z, Y j − Z being martingales, |Z|, |Y j − Z| are sub-
martingales and τ ≤ m. Now defining

σk = inf{t : Ut ≥ k or Ut− ≥ k} ∧ k

it follows that σk are bounded stop times increasing to ∞ with

sup
s≤σk

Us ≤ k + Uσk

and hence

E[ sup
s≤σk

Us] <∞. (3.3)

Thus, for each k fixed E[sups≤σk
|Zs|] <∞ and thus by Burkholder–Davis–Gundy

inequality (p = 1 case), we have E[
√

[Z,Z]σk
] <∞. In view of (3.2)

lim
j→∞

sup
s≤σk

|Y js − Zs| = 0 a.s.

and is dominated by (sups≤σk
Us) which in turn is integrable as seen in (3.3). Thus

by dominated convergence theorem, we have

lim
j→∞

E[ sup
s≤σk

|Y js − Zs|] = 0.

The result (3.1) now follows from the Burkholder–Davis–Gundy inequality (p = 1
case). □

Lemma 3.4. Let V ∈ F(M1,M2, . . . ,Md) and τ be a bounded stopping time such
that

E[
√
[V, V ]τ ] <∞.

Then for ϵ > 0, there exists U ∈ Cb(M1,M2, . . . ,Md) such that

E[
√

[V − U, V − U ]τ ] ≤ ϵ.
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Proof. Let Vt = V0 +
∫ t
0
f dX where f ∈ L1

m(X) and X ∈ Cb(M1,M2, . . . ,Md).
Since

[V, V ]t =

∫ t

0

|fs|2d[X,X]s,

the assumption on V gives

E[
√∫ τ

0
|fs|2d[X,X]s] <∞. (3.4)

Defining fks = fs1{|fs|≤k}, let

Uk =

∫
fkdX.

Since X ∈ Cb(M1,M2, . . . ,Md) and fk is bounded, it follows that

Uk ∈ Cb(M1,M2, . . . ,Md).

Note that as k → ∞,

E[
√

[V − Uk, V − Uk]τ ] = E[
√∫ τ

0
|fs|21{|fs|>k}d[X,X]s] → 0

in view of (3.4). The result now follows by taking U = Uk with k large enough so
that

E[
√
[V − Uk, V − Uk]τ ] < ϵ.

□

Lemma 3.5. Suppose Z ∈ M and τ is a bounded stopping time such that Zt =
Zt∧τ for all t ≥ 0 and E[

√
[Z,Z]τ ] < ∞. Let Un ∈ Cb(M1,M2, . . . ,Md) with

Un0 = 0 be such that

E[
√
[Un − Z,Un − Z]τ ] ≤ 4−n.

Then there exists X ∈ Cb(M1,M2, . . . ,Md) and f ∈ L1
m(X) such that

Zt = Z0 +

∫ t

0

fsdXs. (3.5)

Proof. Since Un ∈ Cb(M1,M2, . . . ,Md) with Un0 = 0, get bounded predictable
processes {fn,j : n ≥ 1, 1 ≤ j ≤ d} such that

Unt =
d∑
j=1

∫ t

0

fn,js dM j
s . (3.6)

Without loss of generality, we assume that Unt = Unt∧τ and fn,js = fn,js 1[0,τ ](s).
Let

ζ =

∞∑
n=1

2n
√

[Un − Z,Un − Z]τ .

Then E[ζ] <∞ and hence P(ζ <∞) = 1. Let

η = ζ +
√

[Z,Z]τ +
d∑
j=1

√
[M j ,M j ]τ
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Let c = E[exp{−η}] and let Q be the probability measure on (Ω,F) defined by

dQ

dP
=

1

c
exp{−η}.

Then it follows that α = EQ[η
2] <∞. Noting that

η2 ≥ [Z,Z]τ +
d∑
j=1

[M j ,M j ]τ +
∞∑
n=1

22n[Un − Z,Un − Z]τ

we have EQ[[Z,Z]τ ] < ∞, EQ[[M
j ,M j ]τ ] < ∞ for 1 ≤ j ≤ d. Likewise, EQ[[U

n −
Z,Un − Z]τ ] < ∞ and so EQ[[U

n, Un]τ ] < ∞. Note that Z,M j are no longer
martingales under Q, but we do not need that.

Let Ω̃ = [0,∞)×Ω. Recall that the predictable σ-field P is the smallest σ field

on Ω̃ with respect to which all continuous adapted processes are measurable. We
will define signed measures Γij on P as follows: for E ∈ P, 1 ≤ i, j ≤ d let

Γij(E) =

∫
Ω

∫ τ

0

1E(s, ω)d[M
i,M j ]s(ω)dQ(ω).

Let Λ =
∑d
j=1 Γjj . From the properties of quadratic variation [M i,M j ], it follows

that for all E ∈ P, the matrix ((Γij(E))) is non-negative definite. Further, Γij is
absolutely continuous with respect to Λ ∀i, j. It follows (see appendix) that we
can get predictable processes cij such that

dΓij
dΛ

= cij

and that C = ((cij)) is a non-negative definite matrix. By construction |cij | ≤ 1
and are predictable. We can diagonalise C (i.e. obtain singular value decomposi-
tion) in a measurable way (see appendix) to obtain predictable processes bij , dj

such that for all i, k, (writing δik = 1 if i = k and δik = 0 if i ̸= k),

d∑
j=1

bijs b
kj
s = δik, (3.7)

d∑
j=1

bjis b
jk
s = δik, (3.8)

d∑
j,l=1

bijs c
jl
s b

kl
s = δikd

i
s. (3.9)

Since ((cijs )) is non-negative definite, it follows that dis ≥ 0. For 1 ≤ j ≤ d, let

Nk =

d∑
l=1

∫
bkls dM

l.

Then Nk are P- martingales since bik is are bounded predictable processes. Fur-
ther,

[N i, Nk] =
∑
j,l=1

bijs

∫
bkls d[M

j ,M l]
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and hence for any bounded predictable process h and i ̸= k, we have

EQ[

∫ τ

0

hsd[N
i, Nk]] =

∫
Ω

∫ τ

0

hs

d∑
j,l=1

bijs b
kl
s d[M

j ,M l]dQ(ω)

=

∫
Ω̄

h
d∑

j,l=1

bijbkldΓjl

=

∫
Ω̄

h

d∑
j,l=1

bijbklcjldΛ

= 0,

where the last step follows from (3.9). As a consequence, for bounded predictable
processes hi, 1 ≤ i ≤ d, it follows that

EQ[

d∑
i,k=1

∫ τ

0

hish
k
s d[N

i, Nk]s] = EQ[

d∑
k=1

∫ τ

0

(hks)
2d[Nk, Nk]s]. (3.10)

Let us observe that (3.10) holds for any predictable processes {hi : 1 ≤ i ≤ d}
provided the RHS is finite: we can first note that it holds for h̃i = hi1{|h|≤c} where

|h| =
∑d
i=1|hi| and then let c ↑ ∞. Note that for n ≥ m√

[Un − Um, Un − Um]τ ≤
√
[Un − Z,Un − Z]τ +

√
[Um − Z,Um − Z]τ

≤ 2−mη

and hence

EQ[[U
n − Um, Un − Um]τ ] ≤ 4−mα. (3.11)

Let us define gn,k =
∑d
j=1 f

n,jbkj . Then note that

d∑
k=1

∫
gn,kdNk =

d∑
k=1

d∑
j=1

∫
fn,jbkjdNk

=
d∑
k=1

d∑
j=1

d∑
l=1

∫
fn,jbkjbkls dM

l

=
d∑
j=1

∫
fn,jdM j

= Un,

(3.12)

where in the last but one step, we have used (3.8). Using (3.10) for n ≥ m we
have

EQ[ [U
n − Um, Un − Um]τ ] = EQ[

d∑
k=1

∫ τ

0

(gn,ks − gm,ks )2d[Nk, Nk]s] (3.13)
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and using (3.11), we conclude

Q(
d∑
k=1

∫ τ

0

(gn,ks − gm,ks )2d[Nk, Nk] ≥ 1

m4
) ≤ m4EQ[ [U

n − Um, Un − Um]τ ]

≤ αm44−m.

(3.14)

Since EQ[ [M
i,M i]τ ] < ∞ and gn,i are bounded for all n, i, it follows that

EQ[ [N
i, N i]τ ] <∞. Thus defining a measure Θ on P by

Θ(E) =

∫ [ d∑
k=1

∫ τ

0

1E(s, ω)d[N
k, Nk]s(ω)

]
dQ(ω)

we get (using (3.11) and (3.13))∫
(gm+1,k − gm,k)2dΘ ≤ α4−m

and as a consequence, using Cauchy–Schwartz inequality, we get∫ ∞∑
m=1

|gm+1,k − gm,k|dΘ ≤
√
Θ(Ω̄)α <∞.

Defining

gks = lim sup
m→∞

gm,ks ,

it follows that gm,k → gk a.s. Θ and as a consequence, taking limit in (3.14) as
n→ ∞, we get

Q(
d∑
k=1

∫ τ

0

(gks − gm,ks )2d[Nk, Nk]s ≥
1

m4
) ≤ m44−m. (3.15)

Since Q and P and equivalent measures, it follows that

P(
d∑
k=1

∫ τ

0

(gks − gm,ks )2d[Nk, Nk]s ≥
1

m4
) → 0 as m→ ∞. (3.16)

In view of (3.12), we have for m ≤ n

[Un, Un]τ =
d∑

i,j=1

∫ τ

0

gn,is gn,js d[N i, N j ]s (3.17)

and

[Un − Um, Un − Um]τ =
d∑

i,j=1

∫ τ

0

(gn,is − gm,is )(gn,js − gm,js )d[N i, N j ]s. (3.18)

Taking limit in (3.17) as n→ ∞, we get (using Fatou’s lemma)

EP[
√∑d

i,j=1

∫ τ
0
gisg

j
sd[N

i, N j ] ] ≤ EP[
√
[Z,Z]τ ] (3.19)
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(since (3.1) implies EP[
√

[Un, Un]τ ] → EP[
√
[Z,Z]τ ]). Let us define bounded

predictable processes ϕj and predictable process hn, h and a P-martingale X as
follows:

hs = 1 +

d∑
i=1

|gis|, (3.20)

ϕjs =
gjs
hs
, (3.21)

Xt =
d∑
j=1

∫ t

0

ϕjsdN
j
s . (3.22)

Since ϕj is predictable, |ϕj | ≤ 1 it follows that X ∈ Cb(M1,M2, . . . ,Md) and

[X,X]t =

d∑
j,k=1

∫ t

0

ϕjsϕ
k
s d[N

j , Nk]s. (3.23)

Noting that gjs = hsϕ
j
s by definition, we conclude using (3.19) that

∫ t

0

(hs)
2d[X,X]s =

d∑
j,k=1

∫ t

0

gjsg
k
s d[N

j , Nk]s

and hence that

EP[
√∫ τ

0
(hs)

2d[X,X]s] ≤ EP[
√
[Z,Z]τ ]. (3.24)

Since h = h1[0,τ ], we conclude that h ∈ L1
m(X) and Y =

∫
hdX is a martingale

with Yt = Yt∧τ for all t. Observe that

[Un, X]t =
d∑

k,j=1

∫ t

0

gn,ks ϕjsd[N
k, N j ]s

and hence

[Un, Y ]t =

∫ t

0

hsd[U
n, X]s

=
d∑

k,j=1

∫ t

0

gn,ks hsϕ
j
sd[N

k, N j ]s

=

d∑
k,j=1

∫ t

0

gn,ks gjsd[N
k, N j ]s.
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As a consequence

[Un − Y, Un − Y ]t = [Un, Un]t − 2[Un, Y ]t + [Y, Y ]t

=

d∑
k,j=1

∫ t

0

gn,ks gn,js d[Nk, N j ]s − 2

d∑
k,j=1

∫ t

0

gn,ks gjsd[N
k, N j ]s

+

d∑
k,j=1

∫ t

0

gks g
j
sd[N

k, N j ]s

=
d∑

k,j=1

∫ t

0

(gn,ks − gks )(g
n,j
s − gjs)d[N

k, N j ]s

and thus using (3.10) we get

EQ[[U
n − Y, Un − Y ]τ ] = EQ[

d∑
k=1

∫ τ

0

(gn,ks − gks )
2d[Nk, Nk]s. (3.25)

Taking lim inf as n→ ∞ on the RHS in (3.13) and using (3.11), we conclude

EQ[
d∑
k=1

∫ τ

0

(gks − gm,ks )2d[Nk, Nk]s] ≤ α4−m

and hence (3.25) yields

EQ[[U
n − Y, Un − Y ]τ ] ≤ α4−n.

Thus [Un − Y, Un − Y ]τ → 0 in Q-probability and hence in P-probability. By
assumption, [Un − Z,Un − Z]τ → 0 in P-probability. Since

[Y − Z, Y − Z]τ ≤ 2([Y − Un, Y − Un]τ + [Z − Un, Z − Un]τ )

for every n, it follows that

[Y − Z, Y − Z]τ = 0 a.s. P. (3.26)

Since Y, Z are P-martingales such that Zt = Zt∧τ and Yt = Yt∧τ , (3.26) implies
Yt − Y0 = Zt − Z0 for all t. Recall that by construction, Y0 = 0, Y =

∫
hdX and

h ∈ L1
m(X), X ∈ Cb(M1,M2, . . . ,Md). Thus (3.5) holds. □

We now come to the proof of Theorem 2.2. Let Zn ∈ F(M1,M2, . . . ,Md) be
such that E[|Znt −Zt|] → 0 for all t. We have to show that Z ∈ F(M1,M2, . . . ,Md).

Using Lemma 3.3, get a sequence of stopping times σk ↑ ∞ and a subsequence

{nj} such that Y j = Zn
j

satisfies for each k ≥ 1, E[
√
[Z,Z]σk

] <∞ and

E[
√
[Y j − Z, Y j − Z]σk

] → 0 as j ↑ ∞.

Fix k and let Z̃t = Zt∧σk
. We will show that Z̃ ∈ F(M1,M2, . . . ,Md). This

will complete the proof in view of Lemma 3.2. By relabelling, we assume that

E[
√

[Zn − Z,Zn − Z]σk
] → 0 as n ↑ ∞. (3.27)
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Since Zn ∈ F(M1,M2, . . . ,Md) and E[
√
[Zn, Zn]σk

] <∞ (at least for large n, say

n ≥ n∗), using Lemma 3.4, for n ≥ n∗ we can get Un ∈ Cb(M1,M2, . . . ,Md) such
that

E[
√
[Un − Zn, Un − Zn]σk

] ≤ 1

n
. (3.28)

(3.27) and (3.28) give

E[

√
[Un − Z̃, Un − Z̃]σk

] → 0.

Thus Z̃ ∈ F(M1,M2, . . . ,Md) in view of Lemma 3.5
Now we turn to proof of Theorem 2.1. Let ξn ∈ KT be such that ξn → ξ

in L1(Ω,F ,P). Let ξn = Xn
T where Xn ∈ F(M1,M2, . . . ,Md). Let us define

Znt = Xn
t∧T . Then Z

n ∈ F(M1,M2, . . . ,Md) and the assumption on ξn implies

Znt → Zt = E[ξ | Ft] in L1(Ω,F ,P) ∀t.

Thus Theorem 2.2 implies Z ∈ F(M1,M2, . . . ,Md) and thus ξ = ZT belongs to
KT .

4. Sigma-martingales

Let M be a martingale, f ∈ L(M) and Z =
∫
f dM . Then Z is a local mar-

tingale if and only if f ∈ L1
m(M). In answer to a question raised by P. A. Meyer,

Chou [3] introduced a class Σm of semimartingales consisting of Z =
∫
f dM

for f ∈ L(M). Emery [7] constructed example of f,M such that f ∈ L(M)
but Z =

∫
f dM is not a local martingale. Such processes occur naturally in

mathematical finance and have been called sigma-martingales by Delbaen and
Schachermayer[6].

Definition 4.1. A semimartingaleX is said to be a sigma-martingale if ∃ϕ ∈ L(X)
such that ϕ is (0,∞) valued and

Mt =

∫ t

0

ϕsdXs (4.1)

is a martingale. Our first observation is:

Lemma 4.2. Every local martingale N is a sigma-martingale.

Proof. Let ηn ↑ ∞ be a sequence of stopping times such that Nt∧ηn is a martingale,

σn = inf{t ≥ 0 : |Nt| ≥ n or |Nt−| ≥ n} ∧ n

and τn = σn ∧ ηn. It follows that Nt∧τn is a uniformly integrable martingale and

an = E[
√

[N,N ]τn ] <∞.
Define

hs =
1

1 + |N0|
1{0}(s) +

∞∑
n=1

1

2n(1 + an)
1(τn−1,τn](s).

Then h being bounded belongs to L(N) and M =
∫
hdN is a local martingale

with

sup
t<∞

E[
√

[M,M ]t] <∞. (4.2)
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ThusM is a uniformly integrable martingale. Since h is (0,∞) valued by definition,
it follows that N is a sigma-martingale. □

This leads to

Lemma 4.3. A semimartingale X is a sigma-martingale if and only if there exists
a uniformly integrable martingale M satisfying (4.2) and a predictable process
ψ ∈ L(M) such that

Xt =

∫ t

0

ψsdMs. (4.3)

Proof. Let X be given by (4.3) with M being a martingale satisfying (4.2) and
ψ ∈ L(M), then defining

gs =
1

(1 + (ψs)2)
, Nt =

∫ t

0

gsdXs

it follows that N =
∫
gψdM . Since gψ is bounded by 1 and M satisfies (4.2), it

follows that N is a martingale. Thus X is a sigma-martingale.
Conversely, given a sigma-martingale X and a (0,∞) valued predictable process

ϕ such that N =
∫
ϕdX is a martingale, get h as in Lemma 4.2 and let M =∫

hdN =
∫
hϕdX. Then M is a uniformly integrable martingale that satisfies

(4.2) and hϕ is a (0,∞) valued predictable process. □

From the definition, it is not obvious that sum of sigma-martingales is also a
sigma-martingale, but this is so as the next result shows.

Theorem 4.4. Let X1, X2 be sigma-martingales and a1, a2 be real numbers. Then
Y = a1X

1 + a2X
2 is also a sigma-martingale.

Proof. Let ϕ1, ϕ2 be (0,∞) valued predictable processes such that

M i
t =

∫ t

0

ϕisdX
i
s, i = 1, 2

are uniformly integrable martingales. Then, writing ξ = min(ϕ1, ϕ2) and ηis =
ξs
ϕi
s
,

it follows that

N i
t =

∫ t

0

ηisdM
i
s =

∫ t

0

ξsdX
i
s

are uniformly integrable martingales since ηi is bounded by one. Clearly, Y =
a1X

1 + a2X
2 is a semimartingale and ξ ∈ L(Xi) for i = 1, 2 implies ξ ∈ L(Y ) and∫ t

0

ξsdYs = a1N
1
s + a2N

2
s

is a uniformly integrable martingale. Since ξ is (0,∞) valued predictable process,
it follows that Y is a sigma-martingale. □

The following result gives conditions under which a sigma-martingale is a local
martingale.
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Lemma 4.5. Let X be a sigma-martingale with X0 = 0. Then X is a local
martingale if and only if there exists a sequence of stopping times τn ↑ ∞ such
that

E[
√
[X,X]τn ] <∞ ∀n. (4.4)

Proof. Let X be a sigma-martingale and ϕ, ψ,M be such that (4.1), (4.2) holds.
Let ψs =

1
ϕs

and as noted above, (4.3) holds. Then

[X,X]t =

∫ t

0

(ψs)
2d[M,M ]s.

Defining ψks = ψs1{|ψs|≤k}, it follows that

Xk =

∫ t

0

ψks dMs

is a uniformly integrable martingale. Noting that for k ≥ 1

[X −Xk, X −Xk]t =

∫ t

0

(ψs)
21{k<|ψs|}d[M,M ]s

the assumption (4.4) implies that for each n fixed,

E[
√

[X −Xk, X −Xk]τn ] → 0 as k → ∞.

The Burkholder–Davis–Gundy inequality (p = 1) implies that for each n fixed,

E[ sup
0≤t≤τn

|Xt −Xk
t | ] → 0 as k → ∞.

and as a consequence X
[n]
t = Xt∧τn is a martingale for all n and so X is a local

martingale. Conversely, if X is a local martingale with X0 = 0, and σn are stop
times increasing to ∞ such that Xt∧σn are martingales then defining ζn = inf{t :
|Xt| ≥ n} and τn = σn ∧ ζn, it follows that E[|Xτn |] <∞ and since

sup
t≤τn

|Xt| ≤ n+ |Xτn |

it follows that E[supt≤τn |Xt|] < ∞. Thus, (4.4) holds in view of Burkholder–
Davis–Gundy inequality (p = 1). □

The previous result gives us:

Corollary 4.6. A bounded sigma-martingale X is a martingale.

Proof. Since X is bounded, say by K, it follows that jumps of X are bounded by
2K. Thus jumps of the increasing process [X,X] are bounded by 4K2 and thus
X satisfies (4.4) for

τn = inf{t ≥ 0 : [X,X]t ≥ n}.
Thus X is a local martingale and being bounded, it is a martingale. □

Essentially the same argument also gives that if a sigma-martingale X satisfies
|Xt| ≤ ξ where ξ is square integrable, then X is a martingale, in fact a square
integrable martingale.

Here is a variant of the example given by Emery [7] of a sigma-martingale
that is not a local martingale. Let τ be a random variable with exponential
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distribution (assumed to be (0,∞) valued without loss of generality) and ξ with
P(ξ = 1) = P(ξ = −1) = 0.5, independent of τ . Let

Mt = ξ1[τ,∞)(t)

and Ft = σ(Ms : s ≤ t). Easy to see that M is a martingale. Let ft =
1
t 1(0,∞)(t)

and Xt =
∫ t
0
f dM . Then X is a sigma-martingale and

[X,X]t =
1

τ2
1[τ,∞)(t).

For any stopping time σ, it can be checked that σ is a constant on σ < τ and thus
if σ is not identically equal to 0, σ ≥ (τ ∧ a) for some a > 0. Thus,

√
[X,X]σ ≥

1
τ 1{τ<a}. It follows that for any stop time σ, not identically zero, E[

√
[X,X]σ] = ∞

and so X is not a local martingale.
The next result shows that

∫
f dX is a sigma-martingale if X is one.

Lemma 4.7. Let X be a sigma-martingale, f ∈ L(X) and let U =
∫
f dX. Then

U is a sigma-martingale.

Proof. Let M be a martingale and ψ ∈ L(M) be such that X =
∫
ψdM (as in

Lemma 4.3). Now U =
∫
f dX =

∫
fψdM . Thus, once again invoking Lemma

4.3, one concludes that X is a sigma-martingale. □
We now introduce the class of equivalent sigma-martingale measures (ESMM)

and show that it is a convex set. Let X1, . . . , Xd be r.c.l.l. adapted processes
and let Es(X1, . . . , Xd) denote the class of probability measures Q such that
X1, . . . , Xd are sigma-martingales with respect to Q. Let

EsP(X1, . . . , Xd) = {Q ∈ Es(X1, . . . , Xd) : Q is equivalent to P}
and

ẼsP(X1, . . . , Xd)

= {Q ∈ Es(X1, . . . , Xd) : Q is absolutely continuous with respect to P}.

Theorem 4.8. For semimartingales X1, . . . , Xd,

Es(X1, . . . , Xd), EsP(X1, . . . , Xd) and ẼsP(X1, . . . , Xd)

are convex sets.

Proof. Let us consider the case d = 1. Let Q1,Q2 ∈ Es(X). Let ϕ1, ϕ2 be (0,∞)
valued predictable processes such that

M i
t =

∫ t

0

ϕisdXs

are martingales under Qi, i = 1, 2. Let ϕs = min(ϕ1s, ϕ
2
s) and let

Mt =

∫ t

0

ϕsdXs.

Noting that Mt =
∫ t
0
ξisdM

i
s where ξs = ϕs(ϕ

i
s)

−1 is bounded, it follows that

M is a martingale under Qi, i = 1, 2. Now if Q is any convex combination of

Q1,Q2, it follows that M is a Q martingale and hence Xt =
∫ t
0
(ϕs)

−1dMs is a
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sigma-martingale under Q. Thus EsP(X) is a convex set. Since Es(X1, . . . , Xd) =
∩dj=1Es(Xj) it follows that Es(X1, . . . , Xd) is convex.

Convexity of EsP(X1, . . . , Xd) and ẼsP(X1, . . . , Xd) follows from this. □
For sigma-martingales M1,M2, . . . ,Md the classes C(M1,M2, . . . ,Md) and

F(M1, . . . ,Md) are defined exactly as they were in case M1, . . . ,Md are mar-
tingales. In particular, they remains subsets of the class of martingales M.

Lemma 4.9. Let M1, . . . ,Md be sigma-martingales and let ϕj be (0,∞) valued
predictable processes such that

N j
t =

∫ t

0

ϕjsdM
j
s (4.5)

are uniformly integrable martingales. Then

C(M1,M2, . . . ,Md) = C(N1, N2, . . . , Nd), (4.6)

F(M1,M2, . . . ,Md) = F(N1, N2, . . . , Nd). (4.7)

Proof. Let ψjs = (ϕjs)
−1. Note that M j =

∫
ψjdN j . If Y ∈ C(M1,M2, . . . ,Md)

is given by

Yt =

d∑
j=1

∫ t

0

f js dM
j
s , f j ∈ L(M j) (4.8)

then defining gj = f jψj , we can see that gj ∈ L(N j) and
∫
f jdM j =

∫
gjdN j .

Thus

Yt =

d∑
j=1

∫ t

0

gjsdN
j
s , gj ∈ L(N j). (4.9)

Similarly, if Y ∈ C(N1, N2, . . . , Nd) is given by (4.9), then defining f j = ϕjgj , we
can see that Y satisfies (4.8). Thus (4.6) is true. Now (4.7) follows from (4.6). □

5. Integral Representation with Respect to Martingales

Let M1, . . . ,Md be sigma-martingales.

Definition 5.1. A sigma-martingale N is said to have an integral representation
with respect to M1, . . . ,Md if N ∈ F(M1,M2, . . . ,Md) or in other words, ∃Y ∈
C(M1,M2, . . . ,Md) and f ∈ L(Y ) such that

Nt = N0 +

∫ t

0

fsdYs ∀t. (5.1)

Here is an observation needed later.

Lemma 5.2. Let M be a P-martingale. Let Q be a probability measure equivalent
to P. Let ξ = dQ

dP and let Z be the r.c.l.l. martingale given by Zt = EP[ξ | Ft].
Then

(i) M is a Q-martingale if and only if MZ is a P-martingale.
(ii) M is a Q-local martingale if and only if MZ is a P-local martingale.
(iii) If M is a Q-local martingale then [M,Z] is a P-local martingale.
(iv) If M is a Q-sigma-martingale then [M,Z] is a P-sigma-martingale.
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Proof. For a stopping time σ, let η be a non-negative Fσ measurable random
variable. Then

EQ[η] = EP[ηξ] = EP[ηE[ξ | Fσ] ] = EP[ηZσ].

Thus Ms is Q integrable if and only if MsZs is P-integrable. Further, for any
stopping time σ,

EQ[Mσ] = EP[MσZσ]. (5.2)

Thus (i) follows from the observation that an integrable adapted process N is a
martingale if and only if E[Nσ] = E[N0] for all bounded stopping times σ. For (ii),
if M is a Q-local martingale, then get stopping times τn ↑ ∞ such that for each n,
Mt∧τn is a martingale. Then we have

EQ[Mσ∧τn ] = EP[Mσ∧τnZσ∧τn ]. (5.3)

Thus Mt∧τnZt∧τn is a P-martingale and thus MZ is a P- local martingale. The
converse follows similarly.

For (iii), note that

MtZt =M0Z0 +

∫ t

0

Ms−dZs +

∫ t

0

Zs−dMs + [M,Z]t (5.4)

and the two stochastic integrals appearing in (5.4) are P local martingales, the
result follows from (ii). For (iv), representing the Q sigma-martingale M as M =∫
ψdN , where N is a Q martingale and ψ ∈ L(N), we see

[M,Z] =

∫ t

0

ψsd[N,Z]s.

By (iii), [N,Z] is a Q sigma-martingale and hence [M,Z] is a Q sigma-martingale.
□

The main result on integral representation is:

Theorem 5.3. Let M1, . . . ,Md be sigma-martingales on (Ω,F ,P). Suppose F0

is trivial. Then the following are equivalent.

(i) All bounded martingales admit representation with respect to M1, . . . ,Md.
(ii) All uniformly integrable martingales admit representation with respect to

M1, . . . ,Md.
(iii) All sigma-martingales admit representation with respect to M1, . . . ,Md.
(iv) P is an extreme point of the convex set Es(M1, . . . ,Md).

(v) ẼsP(M1, . . . ,Md) = {P}.
(vi) EsP(M1, . . . ,Md) = {P}.

Proof. Since every bounded martingale is uniformly integrable and a uniformly
integrable martinagle is a sigma-martingale, we have

(iii)⇒ (ii) ⇒ (i).
(i) ⇒ (ii) is an easy consequence of Theorem 2.2- given a uniformly integrable

martingale Z, let ξ = limt→∞ Zt, so that Zt = E[ξ | Ft]. For n ≥ 1, let us define
martingales Zn as follows:

Znt = E[ξ1{|ξ|≤n}] | Ft]



76 RAJEEVA L. KARANDIKAR AND B. V. RAO

where take the r.c.l.l. version of the martingale. It is easy to see that Zn are
bounded martingales and in view of (i), Zn ∈ F(M1,M2, . . . ,Md). Moreover, for
n ≥ t

E[|Znt − Zt|] ≤ E[ξ1{|ξ|>n}]

and hence for all t, E[|Znt − Zt|] → 0. Thus Z ∈ F(M1,M2, . . . ,Md) by Theorem
2.2. This proves (ii).

We next prove (ii) ⇒ (iii). Let X be a sigma-martingale. In view of Lemma
4.3, get a uniformly integrable martingale N and a predictable process ψ such that

X =

∫
ψdN.

Let Nt = N0 +
∫ t
0
fsdYs where Y ∈ C(M1,M2, . . . ,Md). Then we have

Xt = X0 +

∫ t

0

fsψdYs

and thus X admits an integral representation with respect to M1, . . . ,Md.
Suppose (v) holds and suppose Q1,Q2 ∈ Es(M1,M2, . . . ,Md) and P = αQ1 +

(1− α)Q2. It follows that Q1,Q2 are absolutely continuous with respect to P and

hence Q1,Q2 ∈ ẼsP(M1,M2, . . . ,Md). In view of (v), Q1 = Q2 = P and thus P is
an extreme point of Es(M1,M2, . . . ,Md) and so (iv) is true.

Since EsP(M1,M2, . . . ,Md) ⊆ ẼsP(M1,M2, . . . ,Md), it follows that (v) implies
(vi).

On the other hand, suppose (vi) is true and Q ∈ ẼsP(M1,M2, . . . ,Md). Then
Q1 = 1

2 (Q + P) ∈ EsP(M1,M2, . . . ,Md). Then uniqueness in (vi) implies Q1 = P
and hence Q = P and thus (v) holds.

Till now we have proved (i) ⇐⇒ (ii) ⇐⇒ (iii) and (iv) ⇐ (v) ⇐⇒ (vi). To
complete the proof, we will show (iii) ⇒ (v) and (iv) ⇒ (i).

Suppose that (iii) is true and let Q ∈ ẼsP(M1,M2, . . . ,Md). Now let ξ be
the Radon–Nikodym derivative of Q with respect to P. Let R denote the r.c.l.l.
martingale: Rt = E[ξ | Ft]. Since F0 is trivial, N0 = 1. In view of property (iii),
we can get Y ∈ C(M1,M2, . . . ,Md) and a predictable processes f ∈ L(Y ) such
that

Rt = 1 +

∫ t

0

fsdYs. (5.5)

Note that

[R,R]t =

∫ t

0

f2s d[Y, Y ]s. (5.6)

Since M j is a sigma-martingale under Q for each j, it follows that Y is a Q sigma-
martingale. By Lemma 5.2, this gives [Y,R] is a P sigma-martingale and hence

V kt =

∫ t

0

fs1{|fs|≤k}d[Y,R]s (5.7)

is a P sigma-martingale. Noting that

[Y,R]t =

∫ t

0

fsd[Y, Y ]s
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we see that

V kt =

∫ t

0

f2s 1{|fs|≤k}d[Y, Y ]s. (5.8)

Thus we can get (0,∞) valued predictable processes ϕj such that

Ukt =

∫ t

0

ϕks dV
k
s

is a martingale. But Uk is a non-negative martingale with Uk0 = 0. As a result Uk

is identically equal to 0 and thus so is V k. It then follows that (see (5.6)) [R,R] = 0

which yields R is identical to 1 and so Q = P. Thus ẼsP(M1,M2, . . . ,Md) is a
singleton. Thus (iii) ⇒ (v).

To complete the proof, we will now prove that (iv) ⇒ (i).
Suppose P is an extreme point of Es(M1,M2, . . . ,Md). Since M j is a sigma-
martingale under P, we can choose (0,∞) valued predictable ϕj such that

N j
t =

∫ t

0

ϕjsdM
j
s

is a uniformly integrable martingale under P and as seen in Lemma 4.9, we then
have

F(M1,M2, . . . ,Md) = F(N1, N2, . . . , Nd).

Suppose (i) is not true. We will show that this leads to a contradiction. So suppose
S is a bounded martingale that does not admit representation with respect to
M1,M2, . . . ,Md, i.e. S ̸∈ F(M1,M2, . . . ,Md) = F(N1, N2, . . . , Nd), then for
some T ,

ST ̸∈ KT (N1, N2, . . . , Nd)

We have proven in Theorem 2.1 that KT (N1, N2, . . . , Nd) is closed in L1(Ω,F ,P).
Since KT is not equal to L1(Ω,FT ,P), by the Hahn–Banach Theorem, there exists
ξ ∈ L∞(Ω,FT ,P), P(ξ ̸= 0) > 0 such that∫

ηξdP = 0 ∀η ∈ KT .

Then for all constants c, we have∫
η(1 + cξ)dP =

∫
ηdP ∀η ∈ KT . (5.9)

Since ξ is bounded, we can choose a c > 0 such that

P(c|ξ| < 1

2
) = 1.

Now, let Q be the measure with density η = (1 + cξ). Then Q is a probability
measure. Thus (5.9) yields ∫

ηdQ =

∫
ηdP ∀η ∈ KT . (5.10)

For any bounded stop time τand 1 ≤ j ≤ d, N j
τ∧T ∈ KT and hence

EQ[N
j
τ∧T ] = EP[N

j
τ∧T ] = N j

0 (5.11)
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On the other hand,

EQ[N
j
τ∨T ] = EP[ηN

j
τ∨T ]

= EP[EP[ηN
j
τ∨T | FT ]]

= EP[ηEP[N
j
τ∨T | FT ]]

= EP[ηNT ]

= EQ[NT ]

= N j
0 .

(5.12)

where we have used the facts that η is FT measurable, N j is a P martingale and
(5.11). Now

EQ[N
j
τ ] = EQ[N

j
τ∧T ] + EQ[N

j
τ∨T ]− EQ[N

j
T ] = N j

0 .

Thus N j is a Q martingale and since

M j =

∫ t

0

1

ϕjs
dN j

s

it follows that M j is a Q sigma-martingale. Thus Q ∈ Es(M1, . . . ,Md). Sim-

ilarly, if Q̃ is the measure with density η = (1 − cξ), we can prove that Q̃ ∈
Es(M1, . . . ,Md). Since P = 1

2 (Q + Q̃), this contradicts the assumption that P

is an extreme point of Es(M1, . . . ,Md). Thus (iv) ⇒ (i). This completes the
proof. □

6. Completeness of Markets

Let the (discounted) prices of d securities be given by X1, . . . , Xd. We assume
that Xj are semimartingales and that they satisfy the property NFLVR so that
an ESMM exists. See [6].

Theorem 6.1. (The Second Fundamental Theorem Of Asset Pricing)
Let X1, . . . , Xd be semimartingales on (Ω,F ,P) such that EsP(X1, . . . , Xd) is non-
empty. Suppose F0 is trivial. Then the following are equivalent:

(a) For all T < ∞, for all FT measurable bounded random variables ξ (bounded
by say K), there exist gj ∈ L(Xj) with

Yt =

d∑
j=1

∫ t

0

gjsdX
j
s (6.1)

a constant c and f ∈ L(Y ) such that |
∫ t
0
fsdYs| ≤ 2K and

ξ = c+

∫ T

0

fsdYs. (6.2)

(b) The set EsP(X1, . . . , Xd) is a singleton.

Proof. First suppose that EsP(X1, . . . , Xd) = {Q}. Given a bounded FT measur-
able random variable ξ, consider the martingale

Mt = EQ[ξ | Ft].
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Note thatM is bounded byK. In view of the equivalence of (i) and (v) in Theorem
5.3, we get that M admits a representation with respect to X1, . . . , Xd - thus we
get gj ∈ L(Xj) and f ∈ L(Y ) where Y is given by by (6.1), with

Mt =M0 +

∫ t

0

fsdYs.

Since F0 is trivial, M0 is a constant. Since M is bounded by K, it follows that∫ t
0
fsdYs is bounded by 2K. Thus (b) implies (a).
Now suppose (a) is true. Let Q be an ESMM. Let Mt be a martingale. We

will show that M ∈ F(X1, . . . , Xd), i.e. M admits integral representation with
respect to X1, . . . , Xd. In view of Lemmas 3.2 and 4.9, suffices to show that for
each T <∞, N ∈ F(X1, . . . , Xd), where N is defined by Nt =Mt∧T .

Let ξ = NT . Then in view of assumption (a), we have

ξ = c+

∫ T

0

fsdYs

with Y given by (6.1), a constant c and f ∈ L(Y ) such that Ut =
∫ t
0
fsdYs is

bounded. Since U is a sigma-martingale that is bounded, it follows that U is a
martingale. It follows that

Nt = c+

∫ t

0

fsdYs, 0 ≤ t ≤ T.

Thus N ∈ F(X1, . . . , Xd).
We have proved that (i) in Theorem 5.3 holds and hence (v) holds, i.e. the

ESMM is unique. □

Appendix

I: For a non-negative definite d×d symmetric matrix C, the eigenvalue-eigenvector
decomposition gives us a representation

C = BTDB, (A.1)

where

B is a d× d orthogonal matrix (A.2)

and

D is a d× d diagonal matrix. (A.3)

This decomposition is not unique. Note that for each non-negative definite sym-
metric matrix C, the set ΓC of pairs (B,D) of d×d matrices satisfying (A.1)-(A.3)
is compact. Thus it admits a measurable selection - in other words, for each C,
we can pick θ(C) = (B,D) ∈ ΓC in such a way so that θ is a measurable mapping.
(See [8] or Corollary 5.2.6 [17]). Of course, (A.1) implies that BCBT is a diagonal
matrix.

II: Let D be a σ-field on a non-empty set Γ and for 1 ≤ i, j ≤ d, λij be signed
measures on (Γ,D) such that for all E ∈ D, the matrix((λij(E))) is a symmetric

non-negative definite matrix. Let µ(E) =
∑d
i=1 λii(E). Then for 1 ≤ i, j ≤ d there
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exist versions cij of the Radon–Nikodym derivate
dλij

dµ such that for all γ ∈ Γ, the

matrix ((cij(γ))) is non-negative definite.
To see this, for 1 ≤ i ≤ j ≤ d let f ij be a version of the Radon–Nikodym

derivative
dλij

dµ and let f ji = f ij . For rationals r1, r2, . . . , rd, let

Ar1,r2,...,rd = {γ :
∑
ij

rirjf
ij(γ) < 0}.

Then µ(Ar1,r2,...,rd) = 0 and hence µ(A) = 0 where

A = ∪{Ar1,r2,...,rd : r1, r2, . . . , rd rationals}.

The required version is now given by

cij(γ) = f ij(γ)1Ac(γ).
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