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Synthesis of Linear Array for Sidelobe
Reduction using Particle Swarm Optimization

Sudheer Kumar Terlapu* and GSN Raju**

Abstract : In radiation patterns of any antenna or array, it is often difficult to control sidelobe level using
conventional technique. In view of this an attempt is made to synthesize linear arrays to yied low sidelobes
using the particle swarm optimization (PSO) algorithm. The array designis first formulated as an optimization
problem with the goal of siddobelevel (SLL) suppression, and the optimum current excitations are determined
by using PSO algorithm. The patterns are numerically computed for small and large arrays and the results
obtained are compared with those of conventional methods in the present paper. These low side lobe patterns
are useful to overcome EMI problems in radar system.
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1. INTRODUCTION

Desgn of antennas with high directive characteristicsis often necessary in many of theradar and wireless
systemswhich may not be possible with asingle antenna. So the above requirement has necessitated the need for
antennaarrayswhich canimprove gain, directivity and radiation characteristics of thefidd pattern. The synthesis of
antennaarraysthat generate adesred radiation patternisahighly nonlinear optimization problem. Many analytical
methods such as Taylor method, Chebyshev have been proposed intheliterature which hastheir own advantages
and disadvantages[1—4].

Reduction of sdelobeswith prescribed beamwidth isachieved with proper current distribution to resemble
the Chebyshev pattern was solved by Dolph [5]. Synthesis of narrow beam with low sidelobeis proposed for
linear arrayswith continuousline source aperture by Taylor [6]. The resultant patterns consist of monotonically
decreasing sidelobes To extend the same objective for discrete arraysusing Taylor’ sdistribution, amethod has
been proposed to determine the element excitations by Villeneuve [ 7]. However Olen and Compton [8] have
proposed atechnique to minimize the difference between the desired pattern and the obtained pattern usng an
iterative process.

Andternativeto thetraditional methods, computationd techniqueslike genetic dgorithms(GA) and smulated
annealing (SA) are proposed and proved to have the capability in handling multi-objective problemsin array
synthesis[9— 11] with enhanced solution space for better optimization. With the application of popular Genetic
Algorithms (GA) for linear array synthessinitsbinary form, morevariety of problemsrelated to array synthesis
[12 —14] werereported intheliterature by several authors. Thistechniqueis effectively implemented on linear
arraysand aswell ascircular arrays[19].

Tabu Searchisanother such stochastic technique whichisverified for its application in array synthesisfor
sdelobereductionfor fixed beamwidth [16]. Therefore, asystematic approach leading to an efficient search over
the entirespace withiterative processisrequired. Compared to GA and SA, particle svarm optimization (PSO)
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agorithmismuch easier to implement asit requires minimum mathematical preprocessing [17] andischosenin
this paper to achieverequired goal. Application of PSO to linear array antennadesign was proposed by Rahmat
Samii [18].

However, synthesisof radiation patternsusing PSO for small and large arrayswith reduced sdelobes hasnot
beenreported so far. Therefore, inthis paper an attempt is made to use PSO for the synthesis of the amplitude
excitation coefficientsto yield adesired radiation pattern of alinear antennaarray with reduced sdelobes.

The paper isorganized asfollows. In Section 2, thearray synthesisusing Taylor method isdiscussed. Section
3 dealswith concept of particle svarm optimization dgorithm. Insection 4, Array Synthesisusing particleswarm
optimization and formulationof fitnessfunctionisexplained. The synthesized radiation patternswith reduced sdelobes
arepresentedin section 5. Findly, conclusionsare drawn in section 6.

2.ARRAY SYNTHESISUSINGTAYLOR'SMETHOD

Taylor synthesisisan analytica technique used for the reduction of sidelobe of array beam pattern. But the
disadvantage of thisapproach isthat sidelobe levels are maintained as of constant valuein case of some of the
sidelobesonly. Ingeneral in antennadesign, it is often desired to achieve the narrowest beam widths, besdes
low sidelobe level. Considering thelinear array of N elements, the Taylor amplitude excitation coefficientsare
givenby [19]
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Here, n isthe number used to decidethe number of closein sidelobeto be set with aconstant level whichis
consdered as6 inthispaper. The other parts of the equation (1) aregiven by
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Thecoefficients f (n,A,ﬁ) arethe samples of Taylor line source pattern and isgiven by
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The scding factor aisdetermined by making the zero location, and isgiven by
n

T A%+ (n-05) ®
Here, the parameter A isrelated to the maximum desired sidelobelevel R by

A = 1cosyiTlR (6)

R = 1090 (7)

Using equation (1), the Taylor amplitude excitation coefficients are computed for number of array elements
N =10to 90 in steps of 20.
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3. PARTICLE SWARM OPTIMIZATION

Kennedy and Eberhart proposed particle swarmoptimization (PSO) based onthe socia behavior of flock of
birdsin 1995 [20]. Every bird isa particlein hyper-dimensiona search space. Also every particle has some socio-
psychologica natureby which it triesto enhanceits scope of other particles. InPSO the swarmisacollection of
particlesinmotion. And every particle concernsapotential solution. The solution approachesthedesired valueas
the particle moves with its knowledge of personal experience aswell asglobal. To accomplish for thisit has2
parametersi.e. postion and velocity of the particle.

x(t) = i" particlepositionat timesot ‘t'. (8)
v(t) = i" particlevelocity at timeslot ‘t'. 9)

Inaparticular iterationthe positionis updated as
X(t+1) = x(t) +v(t+1) (10)

It can be understood from above expression that the velocity updates the position with the knowledge of
globally exchanged information. Updating velocity, there are many methods for adopting PSO, I ndividual Best
PSO, Globa best PSO and L ocal Best PSO. However, inthe present work, global best PSO isconsidered asit
issupposed to have good convergence criterion. In Global Best PSO, the velocity isupdated withincluding the
knowledge of thebest particle'spostionintheflock.

Vi(t+1) = V(D) + Py X ot = X (D) + PoXgpe = X(D) (12)
For above all the three casesthe personal best isupdated initeration asfollows
if Fitness (x(t)) < pbest(x)
then Xiobesty = %(0)

dsex(pba) remainswithitsvaue

Also in Globa Best method thexgba isupdated as
if Fitness (x (t)) < gbest
then Xobest = X (t)

elsexgba will retainitsvaue
A.PSO with Inertial factor

Eberhart and Shi [21] proposed amethod of multiplying arandomnumber (called inertial weight) with previous
velocity. Thisismethod iscalled asPSO with I nertia. The concept of inertiaisto allow the particleto moveinthe
samedirection asit wasin the previousiteration. The modified positionfor thismethodisgiven as

x(t+1) = % (1)+0(E)V; 1)+t (X =% (1) + P2 (X =% (1)) (12
thew(t) isvarying with iteration (time dots) and should be decreasing asit progresseswithit. Typicaly w(t) sarts
with 0.9 and endswith 0.4.

B. PSO with Constriction Factor

Clerc[22] in 2000 mimicked PSO and suggested PSO with constriction factor. In some casesthe particles
converge asthereis no more changeisobserved in velocity over iterationintime. In such casesthe congriction
factor preventsthis collapseif theright socia conditionsarein place.

x(t +1) = % (1) +x| v ()6 o (X =% (D) 40 (% (1) | (23

where X
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and ¢ =c+c,and>4 (15)
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2.Array synthessusing pso

The smplest configuration of alinear array isthe array of isotropic radiatorsequally spaced dlong aline. AnN
element broadsidelinear array isshowninFig. 1.

Fig. 1. Linear Array Geometry.

The dementsareexcited around the center of thelinear array. For even numbered linear array the array factor
with the above consideration can bewritten as

N
E@©) = 2D A,cos[n(n-0.5)sin6] (16)
n=1
Here, g = anglebetweentheline of observer and broadside
A, = excitationof current for the nthelement on either
sideof thearray.
N = Number of Elements
Normalized far field can be expressedindB as
E(6)|
E®) = 20lo |— 1
Y g, *

For thelinear array optimization for sidelobe reduction, the objective function must quantify theentire array

radiation pattern. Thefitnessfunctionto be minimized with particle swarmoptimizationisexpressed as
FitnessFunction = max (E(q)) for q=0 (18)

Astheoptimization problem hereisminimization one, aninertial weight strategy in PSO anticipating for an
accelerated processisused. The population (svarmsize) isinitidized with certain number of birdswhereeach bird
refersto an array of excitation coefficients. Each bird representsthe amplitude excitation coefficientsof an N
element linear array.

The gbest and the pbest are selected based on the problem, from the current generation and the memorized
datafromthe previous generations. Theinertia weight parameter ‘w isinitialized with optimum vaue asproposed
inmost of theliterature. Thevelocity (v) and thearray weights (x) are updated accordingly withthe expressions
mentioned inequations(11) & (13). Thenumber of generations and thetarget Sdelobeleve areinitialized according
to the problem and the executionterminates on either for aspecified Sdelobe level isachieved or the completion of
number of iterations.

4. RESULTS

Inthe present work, Particle Swam Optimization isapplied to determinethe amplitude excitation coefficients
to obtain the optimized radiation patternswith a maximum sidelobelevel less than -50dB. Here, an equally
placed linear array with one-half-wavelength-spaced isotropic elementsis considered. For number of array
elements equal to 10 to 90 insteps of 20, the amplitude excitation coefficients are determined using PSO.
Applying these coefficientsfor the array elements, the respective radiation patternsare numerically computed.
The optimized Amplitudedistributions computed using PSO and their respective radiation patternsare presented
inFigures2 —11.
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Fig. 2. Normalized Amplitude Excitations for an array of N= 10 Elements using Taylor Amplitude Distribution and PSO
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Fig. 3. Radiation Patternsfor Number of Elements N = 10 using Taylor Amplitude Distribution for nbar =7, SLL =- 50 dB and
with a reduced SLL of -52.82 dB using Particle Swarm Optimization
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Fig. 4. Normalized Amplitude Excitations for an array of N= 30 Elements using Taylor Amplitude Distribution and PSO
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Fig. 5. Radiation Patterns for Number of Elements N = 30 using Taylor Amplitude Distribution for nbar = 7,
SLL =-50dB and with areduced SLL of -51.46 dB using Particle Swarm Optimization
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Fig. 6. Normalized Amplitude Excitations for an array of N= 50 Elements using Taylor Amplitude Distribution and PSO
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Fig. 7. Radiation Patterns for Number of Elements N=50 using Taylor Amplitude Distribution for nbar =7, SLL = -50 dB
and with a reduced SLL of -55.36 dB using Particle Swarm Optimization
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Fig. 8. Normalized Amplitude Excitations for an array of N=70 Elements using Taylor Amplitude Distribution and PSO
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Fig. 9. Radiation Patterns for Number of Elements N=70 using Taylor Amplitude Distribution for nbar = 7,SLL =-50 dB
and with areduced SLL of -51.51 dB using Particle Swarm Optimization
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Fig. 10. Normalized Amplitude Excitations for an array of N = 90 Elements using Taylor Amplitude Distribution and PSO
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Fig. 11. Radiation Patternsfor Number of Elements N = 90 using Taylor Amplitude Distribution for nbar =7, SLL= - 50 dB

and with a reduced SLL of -51.08 dB using Particle Swarm Optimization

5.CONCLUSION

The synthess of excitation distribution for aspecified far-field sidelobe envelope hasbeen presented using
particle swarm optimization algorithm. The algorithmfor linear arraysisapplied to obtain thelowes possible
relativesdelobelevel. The merit of theagorithmisthat it can optimizealarge number of discrete parameters. The
PSO searcheseffectively for the best current amplitude excitations that produce the low sidelobes. The results
reveal that the design of non-uniform excited linear antennaarray with optimized amplitude weights offersa
condderable sdelobeleve reduction without deteriorating the beamwidth. The method can be extended to other
geometriesand condraints.
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