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ABSTRACT

Gravitational inquiry calculation (GSA) is a recently created and promising calculation in view of the law of gravity
and communication between masses. This paper proposes an enhanced gravitational hunt calculation (IGSA) to
enhance the execution of the GSA, and first applies it to the field of element neural system identification. The IGSA
utilizes experimentation technique to upgrade the ideal specialist amid the entire inquiry handle. Also, in the late
time of the pursuit, it changes the circle of the poor operator and quests the ideal specialists position assist utilizing
the organize drop strategy. For the trial verification of the proposed calculation, both GSA and IGSA are testified
on a suite of four surely understood benchmark capacities and their complexities are looked at. It is demonstrated
that IGSA has much better efficiency, improvement accuracy, meeting rate and strength than GSA. From that point,
the IGSA is connected to the nonlinear auto backward exogenous (NARX) repetitive neural system identification
for an attractive levitation framework. Contrasted and the framework identification in light of gravitational pursuit
calculation neural system (GSANN) and other traditional strategies like BPNN and GANN, the proposed calculation
demonstrates the best execution.

Keywords: Gravitational search algorithm, orbital change, optimization, neural network, system identification.

1. INTRODUCTION

Gravitational pursuit calculation (GSA) is a novel meta-heuristic stochastic streamlining calculation
motivated by the law of gravity and mass interactions[1]. Tests have demonstrated that GSA exhibits a
solid upgrading abil-ity contrasted and genuine hereditary calculation (RGA), molecule swarm streamlining
(PSO) and focal constrain improvement (CFO). So far this calculation has been quickly and broadly connected
to filter modeling[2], anticipating future oil request in Iran[3], pipeline scheduling[4], slant steadiness
analysis[5], dispatch problems[6, 7] and numerous other research fields.

Nonlinear framework identification in view of element neural system is dependably the difficulty and
hotspot in the control hypothesis look into. The substance of framework identification in view of neural
system is to pick the best possible neural system parameters in order to estimated the genuine framework.
The vast majority of the system plan efforts have been on calculation choice for negligible cycles and better
joining in computa-tion. Yang and Lee[8] connected the back-spread (BP) calculation to three neural systems
for framework identification. Hereditary calculation (GA) has been connected to feedforward[9] and
outspread premise work neural networks[10]. Combination of GA with conjugate angle, fluffy rationale
and Newton-Raphson technique has likewise been proposed[11, 12]. Be that as it may, acquire ing better
union and abstaining from catching into the nearby least during the time spent recognizing non-straight
framework in view of neural system has dependably been an open prob-lem. As an effective worldwide
streamlining calculation, GSA can possibly be utilized for preparing a neural net-work. In any case, its
application investigate in this viewpoint is still uncommon at this point.
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The course of preparing neural system weights is additionally to look for the base of a high-measurement
multimodal function. Regarding the high-measurement multimodal work, it is essential to complete the
exact nearby pursuit in the late time of advancement for improving the improvement precision[13]. Be that
as it may, GSA is not ready to efficiently understand this for without an effective nearby inquiry system.
There-fore, the execution of GSA still should be enhanced hide their and in this way an enhanced gravitational
inquiry calculation (IGSA) is proposed. In IGSA, experimentation strategy is received to redesign the ideal
operator in the entire pursuit prepare keeping in mind the end goal to encourage the worldwide investigation.
What’s more, at the final phase of emphasess, IGSA changes the circle of the poor operators and ventures
the ideal specialists position encourage utilizing the organize drop strategy to enhance the nature of the
arrangement. Numerical reproduction aftereffects of enhancement of four acclaimed benchmark capacities
and a neural system identification issue show that the proposed methodologies can significantly enhance
the GSAts union execution.

Whatever is left of the paper is sorted out as takes after. A brief survey of GSA and the proposed IGSA
calculation are exhibited in Section 2. In Section 3, the trial of the proposed IGSA through four benchmark
capacities is completed and recreation results are contrasted and those acquired by means of GSA. The
reproduction results and investigation on neural net-work identification are displayed in Section 4. At long
last, the conclusion is displayed in Section 5.

2. IMPROVED ALGORITHM OF GSA

2.1. GSA

GSA is a heuristic optimization algorithm based on the law of gravity among objects. In GSA, the search
agents are a collection of masses, and their interactions are based on the Newtonian laws of gravity and
motion. The gravity force is an acting force drawing objects closely. In the pre liminary stage of the universe
formation, various objects were disorderly distributed all around the universe. Due to the existence of the
universal gravitation, the objects with higher gravitation gathered together and then evolved into the galaxy.

In GSA, each agent has four variables: position, inertial mass, active gravitational mass and passive
gravitational mass. Now consider a system with N agents in the search scope. We define the position of the i-

th agent (agent i) by � �1,..., , ...d N
i i i iX x x x� , i = 1, 2, ·· · , N , where d

ix  is the d-th dimension value of agent i.

At time t, the force applied on agent i by agent j is
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(t) is the active gravitational mass
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(t) is Euclidean distance between agent i and agent j, tt(t) is
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The resultant force acting on agent i in the d-th dimension is
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j Kbes�



Gravitational Search Algorithm for Dynamic Neural Network 741

According to Newton second law, the acceleration of agent i at time t in direction of the d-th dimension
is
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� �
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F t
a t

M t
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where M
ii
(t) is the inertial mass of agent i. M

ii
(t) = M

pi
(t) = M

ai
(t) = M

i
, i = 1, 2, ··· , N. The gravitational and

inertia masses are updated by the following equations.
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After the acceleration is calculated, the speed and posi- tion of agent can be updated as

� � � � � �1 ,d d d
i i iV t rand V t a t� � � (8)

� � � � � �1 1d d d
i i iX t X t V t� � � � (9)

where rand
i
 is a uniform random variable between 0 and 1. For the minimum problem, there are

� � � � � �min
,..., jj i Nbest t fit t�� (10)

� � � � � �max
1,..., jj Nworst t fit t�� (11)

For the maximum problem, there are

� � � � � �max
1,..., jj Nbest t fit t�� (12)

� � � � � �min
1,..., jj Nworst t fit t�� (13)

2.2. Main improved strategies of IGSA

2.2.1. Orbital change of poor agentst positions

During GSA searching process, all agents gradually converge to a small local zone, which results in a low
search- ing efficiency in the late period, so an effective mechanism should be established to help poor
agents jump out of the local minimum. Influenced by the gravitational attraction, artificial satellites and
space ships (including space station) fall at a speed of 100 m/d, which will hamper their normal operation.
So during the flying, orbital change is always required. Based on the concept mentioned above, the paper
performs an orbital change operation upon the poor agents (in the paper, the worst 10 agents are chosen
according to the fitness) in the late search period of the algorithm in order to prevent them from falling into
the local minimum and improve the algorithm performance.

Using (14), orbital change operation is able to enlarge or contract the positions of poor agents at a
certain probability (named jump rate). The positions change adaptively along with its original value, and is
called orbital change radius. That is, if agentst positions converge to a smaller value, the orbital change
radius will be smaller, on the contrary, if agentst positions converge to a bigger value, the orbital change
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radius will be bigger, too. The orbital change op- eration is good for jumping out of the local minimum and
improving the convergence speed, and yet not making a big disturbance upon the global.

xm
i
 = x

i
 + rands x

i
, i = 1, 2, ..., N (14)

where rands is a random number between “1 and 1.

2.2.2. Further search of optimal agent position

The GSA algorithm generally converges quickly in the early 70% iterations, and then the convergence
speed becomes slow. In order to further intensify the optimal searching ability of the algorithm in the late
period, the optimal agent is further optimized by coordinate descent method[14] and it transforms the
multi-variable optimization problem into some single-variable sub-problems. It helps optimize further the
position of the optimal agent, establish an effective local search mechanism and thus improve the algorithm
performance further. The detailed steps for coordinate descent method are as follows.

Step 1. The variable that needs further optimization is the optimal agents t position x
best

. Define the
initial unit orthogonal search direction, generally the coordinate axis direction, as the candidate, i.e., d

i
, d

di
;

the range of the variable x
best

 is [low, up]dim, where dim is the dimension of x
best

.

Step 2. Solving sub-problem

For (j = 1, j ™ dim, j + +) (15)

min : f (x
best,j

 + �
j
d

j
) (16)

where �
j
 is the coordinate parameter in the direction of the j-th coordinate and is required to meet the

feasible condi- tion:

low – x
best,j

 ™ �
j
 ™ up – x

best,j
. (17)

Step 3. By precise linear search, we can obtain the op- timal solution and update the position of optimal
agent by

x
best

 = x
best

 + �
j
d

j
. (18)

2.2.3. Update optimal agent using trial-and-error method

In GSA, all current agents change at each step; if the optimal agentts fitness becomes bad, the next search
will begin from a worse position. The optimal position of those his- torical search steps, L

best
, and its fitness

F
best

, only play a role for comparison, rather than participate into each step of iterative search. In order to
utilize the information of L

best
, the optimal agent is updated using the trial-and-error method, i.e., after each

iteration, the search will continue to the next step if the fitness of the optimal agent turns better. Otherwise,
the position of optimal agentts position and fitness will be replaced by L

best
 and F

best
.

2.3. Steps of IGSA algorithm

The steps of IGSA algorithm are as follows:

Step 1. Initialization of parameters.

Step 2. Fitness evaluation of agents.

Step 3. Update gravitational coefficient tt(t), best value best(t) and worst value worst(t).

Step 4. Update the optimal fitness F
best

(t) in the his- tory record group and its corresponding position
L

best
(t), and the trial-and-error method is adopted for the updating of optimal agent.

Step 5. Calculate the inertial mass, resultant force, ac- celeration and velocity of agents.
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Step 6. Update the position of agents.

Step 7. If it has run 70% of the maximum iterative steps, the orbital change operation should be carried
out for those agents whose fitness values are bad.

Step 8. If it has run 70% of the maximum iterative steps, the coordinate descent method should be
carried out for the optimal agent.

Step 9. Repeat Steps 2 to 8 until the stop criteria is reached.

3. TEST AND ANALYSIS FOR ALGORITHM PER- FORMANCE

3.1. Benchmark functions

In order to verify the improvement of IGSA algorithm for multimodal function optimization, four classic
bench- mark functions[1, 15] are chosen for comparison test shown in Table 1, where F

1
 and F

2
 are the famous

Rastrigin and Griewank functions, respectively, and their dimensions are both 30 (n = 30).

3.2. Optimization results and analysis

The parameter setting for IGSA is as follows: The agent scale N is 30, maximum number of iterations max it
is 500, and the orbital change probability (jump rate) J

r
 is 0.5. In order to decrease the influence of random

factors used in the algorithm, fifty independent experiments are carried out for each function minimum
optimization simulation and the average evolution curves for the fifty experiments are shown in Fig. 1.

The evaluation indexes of an algorithmts performance include the optimization precision, convergence
speed and ro- bustness. The robustness is evaluated by computing the ra- tio of the test times that the
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algorithm reaches the regulated threshold value to the total test times[16], i.e., the success rate in Table 2.
The thresholds of F

1
, F

2
, F

3
, and F

4
 are set respectively as e–5, e–5, 0.999 and 10.1531. From Table 2, we can

clearly find that each index of IGSA is better than that of GSA, and its optimization precision is improved
by over 60% compared with GSA, and the robustness is also increased by 100%.

From Fig. 1, we can find that the convergence speed of IGSA is similar to GSA in the preliminary stage
of evolu- tion. In the middle stage of evolution, both GSA and IGSA show a tendency to premature
convergence and the evolu- tion speed declines, but since IGSA has utilized the infor- mation of those
historical search steps, the evolution space is exploited further in F

3
 and F

4
, and the IGSA begins to exhibit

a certain advantage. In the later stage of evolution, the difference between these two algorithmst performance
becomes distinctive: The gravitational constant decreases with the increase of iteration, and the evolution
is very difficult to be optimized further using GSA. However, based on the orbital change for the poor
agents and the further search for the optimal agent, the convergence speed of IGSA is accelerated greatly
and thus IGSA presents the “two-section” evolution characteristic. The IGSA helps solve the premature
convergence problem of GSA and enhances the exploitation capability.

Khajehzadeh et al.[5] proposed the MGSA (modified GSA) algorithm, which adopts the self-adaptation
maxi- mum speed restriction strategy to control the global ex- ploration ability of the GSA algorithm. However,
the re- striction parameter of the MGSA algorithm is not easy to regulate. The function F

4
 in the reference

paper and the function F
1
 in this paper are both Rastrigin functions, and optimization result in the reference

paper is 0.796 on aver- age, the worst value is 2.985 and the best value is 0. Com- pared with the experimental
result in Table 2, the IGSA algorithm proposed in the paper shows better optimization precision and performance.

Figure 1: Optimization evolution curves of test functions based on GSA and IGSA
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3.3. Analysis of complexity

In the practical application of GSA, the calculation burden is mainly concentrated on the calculation of
fitness function value, whose calculation complexity is O(N × max it). However, in the IGSA, further
search for the optimal agent also adds computation burden to the ex- ternal circulation complexity, so the
complexity of IGSA turns into O(N × max it) + O(dim × max it × 0.3). But with the improvement of the
optimization performance, the scale of agents or iteration steps become lower, so the com- putation burden
of IGSA should still be decreased and less than GSA.

CPU operation time is an important index to reflect the algorithm complexity. In [1], the group
scale N for all test functions is 50, the maximum number of iterations max it for F

1
 and F

2
 is 1000, and

max it for F
3
 and F

4
 is 500; while in IGSA, N and max it are set to be 30 and 500 for all functions,

respectively. Other parameters are the same. Through the simulation for these four functions by using
the GSA parameters in [1] and the IGSA parameters described above, the CPU operation time for the
two algorithms can be obtained (see Table 3). According to the comparison, we can easily find that
IGSA algorithm uses fewer group scales and iterations, its CPU operation time is less and the result is
better than those in [1].

Neural network training is an optimization problem of high-dimension multimodal function, which is
to optimize the weights and biases by the learning algorithm and min- imize an objective function of errors
between the real and estimated values[18]. In the paper, the root mean square error function (RMES) is
chosen as the objective function described in (20). It is also the fitness function of the IGSA algorithm.

Table 3
Comparison of CPU operation time

F1(s) F2(s) F3(s) F4(s)

GSA 9.3 9.5 5.0 2.7

IGSA 6.3 5.8 4.1 1.9

4. NEURAL NETWORK IDENTIFICATION BASED ON IGSA

4.1. Neural network design

The common neural network types for nonlinear dynamic system identification mainly include nonlinear
autoregres- sive models with exogenous inputs (NARX) regressive neu- ral network[17], proportional-
integral-derivative (PID) neu- ral network, complete feedback neural network and local feedback neural
network. The NARX regressive neural net- work is also called the time delay neural network or the non-
linear auto-regressive filter, which comprises the time delay units plus multi-layer feedforward network. It

Table 2
Optimization precision and robustness comparison of GSA and IGSA

Function Method Average Best Worst Success rate (%)

GSA 29.0528 12.9345 47.7580 0

F
1

IGSA 2.2768×10–9 5.6843×10–13 9.3698×10–8 100

GSA 8.4050 2.6617 24.0624 0

F
2

IGSA 4.4409×10–18 0 2.2204×10–16 100

GSA 3.6446 0.9980 12.9875 4

F
3

IGSA 1.1964 0.9980 3.9683 88

GSA –5.9981 –10.1532 –2.6829 38

F
4

IGSA –9.6461 –10.1532 2.2204×10–16 90
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is generally used for identifying dynamic system that can be described by the nonlinear auto-regressive
moving average (ARMA) model. It has clear and simple structure and is easy to be analyzed.

The neural network structure for dynamic system identification is presented in Fig. 2. The expression
of NARX model is shown in (19). The current output y(k) only has relation to the current input and the
previous input and output.

� � � � � � � � � � � �( 1 ,..., , , 1 ,..., )y k f y k y k n u k u k u k m� � � � � (19)

Neural network training is an optimization problem of high-dimension multimodal function, which is
to optimize the weights and biases by the learning algorithm and min- imize an objective function of errors
between the real and estimated values[18]. In the paper, the root mean square error function (RMES) is
chosen as the objective function described in (20). It is also the fitness function of the IGSA algorithm.

� � � �� �2

min : ny i y i
j

N

� �
� (20)

where y(i) is the i-th real value of the sample, and yn(i) is the i-th network output value of the sample.

NARX regressive neural network structure is n-m-h, where n, m, h denotes the unit numbers of input
layer, hid- den layer and output layer, respectively. In order to make the variable connection between IGSA
and neural network convenient, the bias information is included in the weight value, i.e., increase one
dimension upon the input dimen- sion number, and the constant input of this dimension is –1, and then the
bias will be included in the connection weight w1 between the input layer and hidden layer, so w1 turns into
(n + 1) × m dimensions. For the same reason, in- crease one more hidden unit, and the unit value is constant
1, independent of the input layer. Then incorporate the hid- den unit into the connection weight w2 between
the hidden layer and output layer, so w2 will turn into h × (m + 1) dimensions.

By the encoder and decoder, information is transmitted between IGSA and the neural network, and the
process of encoding and decoding is similar to those of chromosome in GA. As there are too many parameters
in the neural net- work, the data will become too long if binary encoding is adopted, and it will also result
in the decrease of calcula- tion speed and precision. So the decimal encoding scheme is adopted.

Figure 2: NARX regressive neural network structure for dynamic system identification
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4.2. Neural network design

In order to verify the effectiveness of the proposed algorithm for identification of a real process device, a
magnetic levitation system is chosen as the identification object. The structure of the system is shown in
Fig. 3. The equation of motion for this system is

� � � �
� �

� �2 2

2

d y t r t dy t

dt My t Mdt

� �

where y(t) is the distance of the magnet above the electromagnet, i(t) is the current flowing in the
electromagnet, M is the mass of the magnet, and g is the acceleration of gravity. The parameter � is a
viscous friction coefficient that is determined by the material in which the magnet moves, and � is a field
strength constant that is determined by the number of turns of wire on the electromagnet and the strength of
the magnet. The system is a typical non-linear dynamic system, which is appropriate for modeling based on
the NARX regressive neural network.

Figure 3: NARX regressive neural network structure for dynamic system identification

In Fig. 4, samples collected for training the NARX regres- sive neural network are normalized into
[–1, 1], where the dotted line indicates the normalized voltage applied upon the electro magnet and the real
line indicates the normal- ized position that the permanent magnet suspends above the electro magnet. The
sampling period for the system is 0.3 s, and 130 groups of data are sampled. The former 100 groups are
used for training the network, and the latter 30 groups are used for checking the generalization ability of the
network.

The experimental parameters are set as follows.

1) NARX regressive neural network parameters: Network structure is 5-10-1, network input variable
and output vari- able are voltage and position shown in Fig. 4,  respectively; the time delay parameters
are both 2.

2) IGSA algorithm  parameters: The maximum number of iterations max it is 200; group scale N is 50;
dimension number dim is 71; search scope is [ 4, 6]; Jr is 0.5. This parameter setting is also used for
the GSA algorithm.

3) BP algorithm parameters: Learning factor is 0.1; ini- tial values of weights and biases are random
numbers be- tween 0 and 1; the maximum number of iterations is 1500.
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4) GA algorithm parameters: The group number and maximum number of iterations are the same as
IGSA; and the selection, crossover and mutation functions are subject to the roulette, scattered and
uniform types, respectively; and probabilities of crossover and mutation are 0.8 and 0.1, respectively.

GSA, IGSA, BP and GA algorithms are used for train- ing the NARX neural network, respectively, to
fit with the real magnetic levitation system; and different convergence curves of each algorithm are shown
in Fig. 5. The train- ing errors and generalization errors for the four algorithms above are summarized in
Table 4. From Fig. 5 and Table 4, we can find that the training effect for GA model is the worst. In the

Figure 4: NARX regressive neural network structure for dynamic system identification

Figure 5: Convergence curves of NARX regressive neural network based on GSA, IGSA, BP and GA
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preliminary stage, BP model shows the fastest convergence speed, but it is liable to fall into the local opti-
mization. Although its average training error is better than the GSA model, its generalization ability is a
little weaker. Benefiting from the trial-and-error method for the optimal agent in the preliminary stage, the
convergence curves of IGSA model are located under GSA. Benefiting from the further search optimization
for the optimal agent and the orbital change operation of poor agents in the later stage, the optimization
precision of IGSA model is raised quickly. As a whole, the performance of IGSA model is obviously better
than GSA model, and it has the best performance among these four algorithms. The IGSA algorithm is very
effective on the neural network identification for non-linear dynamic system.

Table 4
Performance comparison for four algorithms

Name of neural Type Training network
error Generalization error

Best 0.0578 0.0527

GSANN Average 0.1083 0.0835

Best 0.0350 0.0418

IGSAN Average 0.0432 0.0735

Best 0.0718 0.0838

N Average 0.0937 0.1084

Best 0.1061 0.1261

Average 0.1806 0.1890

BPNN

GANN

5. CONCLUSIONS

In this paper, an improved gravitational search algorithm (IGSA) is proposed and applied to the identification
of dy- namic neural network system. IGSA improves the original algorithm in three main aspects. First,
inspired by the orbit change of satellites, we introduce an orbit change for poor agents to help them jump
out of local minimum. Second, the coordinate descent method is introduced and applied to the optimal
position search to establish an effective local search mechanism. Third, a trial-and-error method is used to
update the optimal agent. The IGSA is easy to imple- ment and can effectively reduce the iterative time.
Com- pared with GSA on optimizing four well-known benchmark functions, our improved algorithm has
been testified to pos- sess excellent performance in terms of accuracy, convergence rate, stability and
robustness. The IGSA together with BP, GA and GSA are applied to the neural network identification of a
magnetic levitation dynamic system. Simulation results show that the IGSA algorithm has the lowest train-
ing error and generation error, which proves that it opens a new effective source for solving the non-linear
dynamic system identification problems based on neural network.
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