SOME REMARKS ON COMPLETELY α-IRRESOLUTE FUNCTIONS

Govindappa Navalagi, Abdullah M. Abdul-Jabbar

Abstract

Chae et al. [4] (resp. Navalagi G. B. [14]) have studied the concept of NAcontinuous (resp. completely α-irresolute) functions. Now, the aim of this paper we note that NA-continuous functions and completely α-irresolute functions are the same definitions. Also, we investigate several new properties of completely α-irresolute functions are obtained. It is shown that, if f_{1} and f_{2} are completely α-irresolute functions of a space X into an α-Hausdorff space Y , then the set $\left\{\mathrm{x} \in \mathrm{X}: f_{1}(\mathrm{x})=f_{2}(\mathrm{x})\right\}$ is δ-closed in X .

1. INTRODUCTION

Njastad O. [15] defined an α-set in a space as a set S such that $S \subset \operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(\mathrm{S})))$. Maheshwari S. N. [11] defined a feebly open set as a set S such that there exists an open set U such that $\mathrm{U} \subset \mathrm{S} \subset \mathrm{sCl}(\mathrm{U})$, where $\mathrm{sCl}(\mathrm{U})$ denotes the semi-closure operator. It was shown in [7] that α-sets and feebly open sets are the same sets in any space. Recently, Chae et al. [4] (resp. Navalagi G. B.[14]) have studied the concept of NAcontinuous (resp. completely α-irresolute) functions. Now, in the present paper we note that NA-continuous functions and completely α-irresolute functions are the same definitions. It is known in Chae et al. (1986) that the type of NA-continuous functions is stronger than the class of super-continuous functions due to Munshi [13], and weaker than the class of strongly continuous functions due to Arya S. P.[1].

The purpose of the present paper is to investigate further properties of completely α-irresolute functions.

2. PRELIMINARIES

Throughout the present paper, spaces always mean topological spaces on which no separation axiom is assumed unless explicitly stated. Let S be a subset of a

2000 Maths. Sub Classification: 54A05, 54C08, 54D10.
Key words and phrases: α-open sets, completely α-irresolute functions, regular open sets, α Hausdorff space, α-compact space.
space X . The closure of S and the interior of S are denoted by $\mathrm{Cl}(\mathrm{S})$ and $\operatorname{Int}(\mathrm{S})$, respectively. A subset S is said to be α-open [15] (resp. θ-open [19]) if $\mathrm{S} \subset$ $\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}(\mathrm{S})))($ resp. if for each $\mathrm{x} \in \mathrm{S}$, there exists an open set U in X such that $\mathrm{x} \in$ $\mathrm{U} \subset \mathrm{Cl}(\mathrm{U}) \subset \mathrm{S}[17])$. It is well-known that for a space $(\mathrm{X}, \tau), \mathrm{X}$ can be retopologized by the family τ^{α} of all α-open sets of $\mathrm{X}[10]$ and also the family τ^{θ} of all θ-open set of $\mathrm{X}[19]$, that is, τ^{θ} (called θ-topology) and τ^{α} (called an α-topology) are topologies on X , and it is obvious that $\tau^{\theta} \subset \tau \subset \tau^{\alpha}$.

A subset S of a space X is called regular open (resp. regular closed) set if $\mathrm{S}=$ Int $(\mathrm{Cl}(\mathrm{S}))($ resp. $\mathrm{S}=\mathrm{Cl}(\operatorname{Int}(\mathrm{S}))$. A subset S of a space X is called δ-open [19] for each $x \in S$, there exists an open set U in X such that $x \in U \subset \operatorname{Int}(C l(U)) \subset S$. The family of all α-open (resp. regular open, θ-open and δ-open) sets of X is denoted by $\alpha \mathrm{O}(\mathrm{X})($ resp. $\mathrm{RO}(\mathrm{X}), \theta \mathrm{O}(\mathrm{X})$ and $\delta \mathrm{O}(\mathrm{X})$). The complement of an α-open (resp. regular open, θ-open and δ-open) sets of X is called α-closed (resp. regular closed, θ-closed and δ-closed) set.

A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be α-strongly θ-continuous [5] if for each $\mathrm{x} \in \mathrm{X}$ and each α-open set H of Y containing $f(\mathrm{x})$, there exists an open set U of X containing x such that $f(\mathrm{Cl}(\mathrm{U})) \subset \mathrm{H}$. A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be strongly $\alpha-$ irresolute[6] (resp. NA-continuous [4]) if and only if for each α-open (resp. feebly open) subset H of $\mathrm{Y}, f^{-1}(\mathrm{H})$ is open (resp. δ-open) in X . A space X is said to be an extremely disconnected [18, p.32] if the closure of each open set of X is open in X. A space X is said to be semi-regular if the family of regularly open sets forms a base for the topology of X . A subset S of a space X is said to be N-closed [16] relative to X if each cover $\left\{G_{i}: i \in I\right\}$ of S by open sets of X, there exists a finite subset I_{0} of I such that $S \subset \cup\left\{\operatorname{Int}\left(C l\left(G_{i}\right)\right): i \in I_{0}\right\}$.

3. MAIN RESULTS

DEFINITION 3.1[14]: A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be completely α-irresolute if the inverse image of each α-open set of Y is regular open in X .

THEOREM 3.1: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. Let \mathcal{B} be any basis for σ^{α} in Y . Then f is completely α-irresolute functions if and only if for each $\mathrm{B} \in \mathcal{B}, f^{-1}(\mathrm{~B})$ is a regular open subset of X .

LEMMA 3.1[20]: Let $\mathrm{R} \in \mathrm{RO}(\mathrm{A})$ and $\mathrm{A} \in \mathrm{RO}(\mathrm{X})$, then $\mathrm{R} \in \mathrm{RO}(\mathrm{X})$.
THEOREM 3.2: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be any function. If for each $\mathrm{x} \in \mathrm{X}$, there exists a regular open set R containing x such that $f \mid \mathrm{R}$ is completely α-irresolute function, then f is completely α-irresolute function.

PROOF: Let $\mathrm{x} \in \mathrm{X}$ and let H be any α-open subset containing $f(\mathrm{x})$. Then, there exists a regular open set R containing x such that $f \mid \mathrm{R}$ is completely α-irresolute function. Therefore, by [14, Theorem 3.3], there exists a regular open set W in R containing x such that $\left.f\right|_{\mathrm{R}}(\mathrm{W}) \subset \mathrm{H}$. Since R is regular open. Therefore, by Lemma 3.1, W is regular open in X and hence $f(\mathrm{~W}) \subset \mathrm{H}$. Thus, f is completely α-irresolute function.

LEMMA 3.2: If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α-irresolute function, then $f^{-1}(\mathrm{~V})$ is regular closed for any nowhere dense subset V of Y .

PROOF: Let V be any nowhere dense in Y . Then $\operatorname{Int}(\mathrm{Cl}(\mathrm{V}))=\mathrm{X} \backslash \operatorname{Int}(\mathrm{X} \mid \mathrm{V})$. Thus, we have $\mathrm{X}=\operatorname{Int}(\mathrm{Cl}(\operatorname{Int}((\mathrm{X} \backslash \mathrm{V})))$, for $\operatorname{Int}(\mathrm{Cl}(\mathrm{V}))=\phi$. Thus, $\mathrm{Y} \backslash \mathrm{V}$ is α-open in Y . Hence $f^{-1}(\mathrm{~V})$ is regular closed in X since $f^{-1}(\mathrm{Y} \backslash \mathrm{V})=\mathrm{X} \backslash f^{-1}(\mathrm{~V})$ is regular open and f is completely α-irresolute function.

THEOREM 3.3: (Restricting the range)
If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α-irresolute function and $f(\mathrm{X})$ is taken with the subspsace topology, then $f: \mathrm{X} \rightarrow f(\mathrm{X})$ is completely α-irresolute function.

PROOF: $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α-irresolute function implies $f^{-1}(\mathrm{H})$ is regular open, where H is some α-open subset of Y . Now $f^{-1}[\mathrm{H} \cap f(\mathrm{X})]=f^{-1}(\mathrm{H}) \cap f^{-1}[f$ $(\mathrm{X})]=f^{-1}(\mathrm{H}) \cap \mathrm{X}=f^{-1}(\mathrm{H})$ is regular open. Therefore, $f: \mathrm{X} \rightarrow f(\mathrm{X})$ is completely α-irresolute function.

THEOREM 3.4: Let X be an extremely disconnected. If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α-irresolute function, then it is α-strongly θ-continuous function.

PROOF: Suppose that X is an extremely disconnected and f is completely α irresolute function. Let H be any α-open set of Y. Since f is completely α-irresolute function. Therefore, $f^{-1}(\mathrm{H})$ is regular open in X . But X is an extremely disconnected. Then, by [3, Lemma 2.18], $f^{-1}(\mathrm{H})$ is θ-open. Thus, by [5, Theorem 2], f is α strongly θ-continuous.

DEFINITION 3.2: A space X is said to be r-disconnected if there exists two regular open sets R and W such that $\mathrm{X}=\mathrm{R} \cup \mathrm{W}$ and $\mathrm{R} \cap \mathrm{W}=\phi$, otherwise X is called r-connected.

THEOREM 3.5: If X is r -connected space and $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α irresolute surjection, then Y is α-connected.

PROOF: Suppose Y is not α-connected. Then, there exist non empty α-open sets H_{1} and H_{2} in Y such that $\mathrm{H}_{1} \cap \mathrm{H}_{2}=\phi$ and $\mathrm{H}_{1} \cup \mathrm{H}_{2}=\mathrm{Y}$ and since f is completely
α-irresolute functions, then we have $f^{-1}\left(\mathrm{H}_{1}\right) \cap f^{-1}\left(\mathrm{H}_{2}\right)=\phi$ and $f^{-1}\left(\mathrm{H}_{1}\right) \cup f^{-1}\left(\mathrm{H}_{2}\right)=$ X. Since f is surjection, then $f^{-1}\left(\mathrm{H}_{\mathrm{j}}\right) \neq \phi$ and $f^{-1}\left(\mathrm{H}_{\mathrm{j}}\right) \in \mathrm{RO}(\mathrm{X})$, for $\mathrm{j}=1$, 2. This indicated that X is not r -connected. This is a contradiction.

COROLLARY 3.1: Let A be r-connected subset of a topological space X, and let f be a completely a-irresolute function of X into a topological space Y . Then $f(\mathrm{~A})$ is α-connected.

THEOREM 3.6: For a topological space X to be r-disconnected it is necessary and sufficient that there exists a surjection completely α-irresolute function of X onto a discrete space containing more than one point.

PROOF: The condition is sufficient by Theorem 3.5.
Conversely, if X is r -disconnected, there exist two non empty disjoint regular open subsets R and W whose union is X , and the function f of X onto a discrete space of two elements $\{\mathrm{a}, \mathrm{b}\}$, defined by $f(\mathrm{~A})=\{\mathrm{a}\}$ and $f(\mathrm{~B})=\{\mathrm{b}\}$, is completely α-irresolute function.

THEOREM 3.7: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a strongly α-irresolute function from a semiregular space X into Y . Then f is completely α-irresolute

PROOF: Let $\mathrm{x} \in \mathrm{X}$ and H be an α-open set containing $f(\mathrm{x})$. Then, $f^{-1}(\mathrm{H})$ is open in X since f is strongly α-irresolute. Therefore, there is an open subset U of x such that $\mathrm{x} \in \mathrm{U} \in \operatorname{Int}(\mathrm{Cl}(\mathrm{U})) \subset f^{-1}(\mathrm{H})$, since X is semi-regular. Hence f is completely α-irresolute function.

REMARK 3.1: Every open set in a T_{3}-space can be written as the union of regular open sets.

COROLLARY 3.2: Let X be a T_{3}-topological space and let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be strongly α-irresolute, then f is completely α-irresolute function.

PROOF: Every regular (or T_{3}) space is semi-regular.
DEFINITION 3.3: A space X is said to be α-Hausdorff [6](resp. rT_{2} [2]) if for any $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{x} \neq \mathrm{y}$, there exist α-open(resp. regular open) sets G and H such that x $\in \mathrm{G}, \mathrm{y} \in \mathrm{H}$ and $\mathrm{G} \cap \mathrm{H}=\phi$.

THEOREM 3.8: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be injective and completely α-irresolute function. If Y is α-Hausdorff space, then X is rT_{2}.

PROOF: Let x and y be any two distinct points of X . Since f is injective, $f(\mathrm{x})$ $\neq f(\mathrm{y})$. Now, Y being an α-Hausdorff space, there exist two disjoint α-open sets G
and H such that $f(\mathrm{x}) \in \mathrm{G}, f(\mathrm{y}) \in \mathrm{H}$. Since f is completely α-irresolute function, it follows that $f^{-1}(\mathrm{G})$ and $f^{-1}(\mathrm{H})$ are disjoint regular open sets containing x and y , respectively. Hence X is rT_{2}.

Recall that a space (X, τ), X is called α-compact [8] if every α-open cover of X has a finite subcover.

DEFINITION 3.4: For a space (X, τ), let A be a subset of X . Then A is said to be α-compact relative to $\mathrm{X}[8]$ if every cover of A by α-open sets of X has a finite subcover.

THEOREM 3.9: If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α-irresolute function and F is N closed subspace relative to X , then $f(\mathrm{~F})$ is α-compact relative to Y .

PROOF: Let $\left\{H_{i}: i \in I\right\}$ be a cover of $f(\mathrm{~F})$ by α-open sets in Y. For each $\mathrm{x} \in \mathrm{F}$, there exists an $\mathrm{i}(\mathrm{x}) \in \mathrm{I}$ such that $f(\mathrm{x}) \in \mathrm{H}_{\mathrm{i}(\mathrm{x})}$. Since f is completely α-irresolute function, there exists a regular open set R_{x} of x such that $f\left(\mathrm{R}_{\mathrm{x}}\right) \subset \mathrm{H}_{\mathrm{i}(\mathrm{x})}$. The family $\left\{R_{x}: x \in F\right\}$ is a regular open cover of F. For some finite subset F_{0} of F, we have $F \subset$ $\cup\left\{\mathrm{R}_{\mathrm{x}}: \mathrm{x} \in \mathrm{F}_{0}\right\}$ and hence $f(\mathrm{~F}) \subset \cup\left\{\mathrm{H}_{\mathrm{i}(\mathrm{X})}: \mathrm{x} \in \mathrm{F}_{0}\right\}$. This shows that $f(\mathrm{~F})$ is α-compact relative to Y .

THEOREM 3.10: Let $g: X \rightarrow Y_{1} \times Y_{2}$ be completely α-irresolute function, where $\mathrm{X}, \mathrm{Y}_{1}$ and Y_{2} are any topological spaces. Let $f_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{Y}_{\mathrm{i}}$ defined as follows:

For $\mathrm{x} \in \mathrm{X}, g(\mathrm{x})=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), f_{\mathrm{i}}(\mathrm{x})=\mathrm{x}_{\mathrm{i}}$ for $\mathrm{i}=1,2$. Then $f_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{Y}_{\mathrm{i}}$ is completely α-irresolute function, for $\mathrm{i}=1,2$.

PROOF: Let x be any point in X and H_{1} be any α-open set of Y_{1} containing
$f_{1}(\mathrm{x})=\mathrm{x}_{1}$, then $\mathrm{H}_{1} \times \mathrm{Y}_{2}$ is α-open in $\mathrm{Y}_{1} \times \mathrm{Y}_{2}$, which contain ($\mathrm{x}_{1}, \mathrm{x}_{2}$).
Since g is completely α-irresolute function. Therefore, by [14, Theorem 3.3], there exists a regular open set R containing x such that $g(\mathrm{R}) \subset \mathrm{H}_{1} \times \mathrm{Y}_{2}$. Then $f_{1}(\mathrm{R})$ $\times f_{2}(\mathrm{R}) \subset \mathrm{H}_{1} \times \mathrm{Y}_{2}$. Therefore, $f_{1}(\mathrm{R}) \subset \mathrm{H}_{1}$. Hence f_{1} is completely α-irresolute function. Similar statement for f_{2} is completely α-irresolute function.

THEOREM 3.11: If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α-irresolute function, $g: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous and Y is Hausdorff, then the set $\{\mathrm{y} \in \mathrm{X}: f(\mathrm{y})=\mathrm{g}(\mathrm{y})\}$ is δ-closed in X .

PROOF: Let $\mathrm{A}=\{\mathrm{y} \in \mathrm{X}: f(\mathrm{y})=\mathrm{g}(\mathrm{y})\}$ and $\mathrm{x} \in \mathrm{X} \backslash \mathrm{A}$. Then $f(\mathrm{x}) \neq \mathrm{g}(\mathrm{x})$. Since Y is Hausdorff, there exist open (α-open) sets H_{1} and H_{2} in Y such that $f(\mathrm{x}) \in \mathrm{H}_{1}$, $\mathrm{g}(\mathrm{x}) \in \mathrm{H}_{2}$ and $\mathrm{H}_{1} \cap \mathrm{H}_{2}=\phi$. Since f is completely α-irresolute function. Therefore, by [4, Theorem 2.1], there exists a regular open set R containing x such that $f(\mathrm{R}) \subset$ H_{1}. Since g is continuous, there exists an open set U in X containing x such that g
(U) $\subset \mathrm{H}_{2}$. Now, put $\mathrm{R}^{*}=\mathrm{R} \cap \mathrm{U}$, then by [4, Lemma 2.6], R^{*} is regular open set in the subspace R and hence it is regular open in X containing x and $f\left(\mathrm{R}^{*}\right) \cap \mathrm{g}\left(\mathrm{R}^{*}\right)$ $\subset \mathrm{H}_{1} \cap \mathrm{H}_{2}=\phi$. Therefore, we obtain $\mathrm{R}^{*} \cap \mathrm{~A}=\phi$. This shows that A is δ-closed in X .

THEOREM 3.11: If f_{1} and f_{2} are completely α-irresolute functions of a space X into an α-Hausdorff space Y , then the set $\left\{\mathrm{x} \in \mathrm{X}: f_{1}(\mathrm{x})=f_{2}(\mathrm{x})\right\}$ is δ-closed in X .

PROOF: Let $\mathrm{A}=\left\{\mathrm{x} \in \mathrm{X}: f_{1}(\mathrm{x})=f_{2}(\mathrm{x})\right\}$. If $\mathrm{x} \in \mathrm{X} \backslash \mathrm{A}$, then we have $f_{1}(\mathrm{x}) \neq f_{2}$ (x). Since Y is α-Hausdorff, there exist α-open sets H_{1} and H_{2} in Y such that $f_{1}(\mathrm{x})$ $\in \mathrm{H}_{1}, f_{2}(\mathrm{x}) \in \mathrm{H}_{2}$ and $\mathrm{H}_{1} \cap \mathrm{H}_{2}=\phi$. Since f_{j} is completely α-irresolute functions, there exists a regular open set R_{j} in X containing x such that $f_{\mathrm{j}}\left(\mathrm{R}_{\mathrm{j}}\right) \subset \mathrm{H}_{\mathrm{j}}$, where $\mathrm{j}=1$, 2. Put $\mathrm{R}=\mathrm{R}_{1} \cap \mathrm{R}_{2}$, then R is a regular open set in X containing x and $f_{1}(\mathrm{R}) \cap f_{2}(\mathrm{R})$ $\subset \mathrm{R}_{1} \cap \mathrm{R}_{2}=\phi$. This implies that $\mathrm{R} \cap \mathrm{A}=\phi$ and hence A is δ-closed in X .

LEMMA 3.2[12]: Let X_{1} and X_{2} be topological spaces with topologies τ_{1} and τ_{2}, respectively. Let $\tau_{\delta 1}$ and $\tau_{\delta 2}$ denote the topologies generated by regularly open sets of X_{1} and X_{2}, respectively. If τ denote the product topology of $\mathrm{X}_{1} \times \mathrm{X}_{2}$ and τ_{δ} denote the topology generated by the regularly open sets of $X_{1} \times X_{2}$, then $\tau_{\delta 1} \times \tau_{\delta 2}=\tau_{\delta}$.

THEOREM 3.13: If Y is an α-Hausdorff space and $f: \mathrm{X} \rightarrow \mathrm{Y}$ is completely α irresolute function, then the set $\mathrm{A}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right): f\left(\mathrm{x}_{1}\right)=f\left(\mathrm{x}_{2}\right)\right\}$ is δ-closed in the product space $X \times X$.

PROOF: If $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{X} \times(\mathrm{X} \backslash \mathrm{A})$, then we have $f\left(\mathrm{x}_{1}\right) \neq f\left(\mathrm{x}_{2}\right)$. Since Y is $\alpha-$ Hausdorff, there exist α-open sets H_{1} and H_{2} in Y such that $f\left(\mathrm{x}_{1}\right) \in \mathrm{H}_{1}, f\left(\mathrm{x}_{2}\right) \in \mathrm{H}_{2}$ and $\mathrm{H}_{1} \cap \mathrm{H}_{2}=\phi$. Since f is completely α-irresolute function. Therefore, by [4, Theorem 2.1], there exists a δ-open set U_{j} containing x_{j} such that $f\left(\mathrm{U}_{\mathrm{j}}\right) \subset \mathrm{H}_{\mathrm{j}}$, where $\mathrm{j}=1,2$.

Put $\mathrm{U}=\mathrm{U}_{1} \times \mathrm{U}_{2}$, then by Lemma 3.2, that U is a δ-open set in $\mathrm{X} \times \mathrm{X}$ containing $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ and $\mathrm{A} \cap \mathrm{U}=\phi$. This shows that A is δ-closed in the product space $\mathrm{X} \times \mathrm{X}$.

THEOREM 3.14: If $f_{\mathrm{i}}: \mathrm{X}_{\mathrm{i}} \rightarrow \mathrm{Y}_{\mathrm{i}}$ is completely α-irresolute function, for $\mathrm{i}=1$, 2. Let $f: \mathrm{X}_{1} \times \mathrm{X}_{2} \rightarrow \mathrm{Y}_{1} \times \mathrm{Y}_{2}$ be a function defined as follows:
$f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\left(f_{1}\left(\mathrm{x}_{1}\right), f_{2}\left(\mathrm{x}_{2}\right)\right)$. Then f is completely α-irresolute function.
PROOF: Let $\mathrm{H}_{1} \times \mathrm{H}_{2} \subset \mathrm{Y}_{1} \times \mathrm{Y}_{2}$, where H_{i} is α-open in Y_{i}, for $\mathrm{i}=1$, 2 , then $f^{-1}\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)=f_{1}^{-1}\left(\mathrm{H}_{1}\right) \times f_{2}^{-1}\left(\mathrm{H}_{2}\right)$, since f_{i} is completely α-irresolute function, for $\mathrm{i}=1$, 2. By, Definition 3.1 and Theorem 3.10 of [9], $f^{-1}\left(\mathrm{H}_{1} \times \mathrm{H}_{2}\right)$ is regular open in $\mathrm{X}_{1} \times \mathrm{X}_{2}$. Now if H is any α-open subset of $\mathrm{Y}_{1} \times \mathrm{Y}_{2}$, then $f^{-1}(\mathrm{H})=f^{-1}\left(\cup \mathrm{H}_{\alpha}\right)$, where H_{α} is of the form $\mathrm{H}_{\alpha 1} \times \mathrm{H}_{\alpha 2}$. Therefore, by Lemma 3.2, $f^{-1}(\mathrm{H})=\cup f^{-1}\left(\mathrm{H}_{\alpha}\right)$ is δ-open in $\mathrm{X}_{1} \times \mathrm{X}_{2}$, which completes the proof.

THEOREM 3.15: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a completely α-irresolute function on X into an α-Hausdorff space Y. If M is an α-compact subset of Y , then $f^{-1}(\mathrm{M})$ is a δ closed subset of X.

PROOF: Suppose $f^{-1}(\mathrm{M})$ is not δ-closed in X . Then, there exists an $\mathrm{x} \in \operatorname{IntCl}$ $\left(f^{-1}(\mathrm{M})\right)$, but $\mathrm{x} \notin f^{-1}(\mathrm{M})$, it follows that $f(\mathrm{x}) \neq \mathrm{m}$. Now for each $\mathrm{m} \in \mathrm{M}$, there exist α-open sets $\mathrm{W}_{\mathrm{m}}(f(\mathrm{x}))$ and $\mathrm{H}(\mathrm{m})$ containing $f(\mathrm{x})$ and m , respectively such that $\mathrm{W}_{\mathrm{m}}(f(\mathrm{x})) \cap \mathrm{H}(\mathrm{m})=\phi$ because Y is α-Hausdorff. By construction, $\mathrm{M} \subset \bigcup_{m \in M} \mathrm{H}(\mathrm{m})$, and since M is α-compact. Therefore, there exists a finite subfamily $\left\{H\left(m_{i}\right): i=1\right.$, $2, \ldots, \mathrm{n}\}$ such that $\mathrm{M} \subset \bigcup_{i=1}^{n} \mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)$. Let $\mathrm{H}^{*}=\bigcup_{i=1}^{n} \mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)$ and $\mathrm{W}^{*}=\bigcap_{i=1}^{n} \mathrm{~W}_{m_{i}}(f(\mathrm{x}))$. Then $\mathrm{M} \subset \mathrm{H}^{*}$ and $\mathrm{H}^{*} \cap \mathrm{~W}^{*}=\phi$. Since each $\mathrm{W}_{m_{i}}(f(\mathrm{x}))$ is an α-open set of $f(\mathrm{x})$, it follows that W^{*} is an α-open set of $f(\mathrm{x})$. Since f is completely α-irresolute function. Therefore, by [4, Theorem 3.3], there exists a regular open set U containing x such that $f(\mathrm{U}) \subset \mathrm{W}^{*}$. But $\mathrm{x} \in \operatorname{IntCl}\left(f^{-1}(\mathrm{M})\right)$. Therefore, $\mathrm{U} \cap f^{-1}(\mathrm{M}) \neq \phi$. Hence there exists $\mathrm{z} \in \mathrm{U} \cap f^{-1}(\mathrm{M})$, and $\operatorname{so} f(\mathrm{z}) \in f(\mathrm{U}) \cap \mathrm{M} \subset \mathrm{W}^{*} \cap \mathrm{M} \subset \mathrm{W}^{*} \cap \mathrm{H}^{*}=\phi$, which is contradiction. Hence $f^{-1}(\mathrm{M})$ is δ-closed.

Since every compactness implies α-compactness, we obtain from Theorem 3.15 the following corollary.

COROLLARY 3.3: For completely α-irresolute functions into α-Hausdorff spaces, the inverse image of each compact set is δ-closed.

ACKNOWLEDGEMENT: The First author acknowledges the University Grant Commission (UGC), New Delhi, India, for its Financial Support under M.R.P(S) No.: 013/2004 (Xth Plan) KAKA081/UGC-SWRO dtd. 18.3.2004.

REFERENCES

[1] Arya S.P. and Gupta R., On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131-143.
[2] Arya S.P., Separation Axioms for Bitopological Spaces, Indian J. Pure Appl. Math., 19(1), 42-50, Jan(1988).
[3] Chae G. I. and Noiri T., Weakly completely continuous functions, UOU Report 17(1) (1986), 121-125.
[4] Chae G. I., Noiri T. and Lee D. W., On NA-Continuous Functions, Kyungpook Math.J., 26 (1), June (1986).
[5] Chae G. I., Hatir E. and Yuksel S., α-strongly θ-continuous functions, J. Natural Science, (5) 1 (1995), 59-66.
[6] Faro G. L., On Strongly α-irresolute Mappings, Indian J. Pure Appl. Math., 18 (1) (February 1987), 146-151.
[7] Greenwood Sina and Ivan L. Reilly., On feebly closed mappings, Indian J. Pure Appl. Math.,17(9) (Sept 1986), 1101-1105.
[8] Jangkovic D.S., Reilly I. L. and Vamanamurthy M.K., On strongly compact Topological Spaces, Question and answer in General Topology, 6(1) (1988).
[9] Lee D.W. and Chae G.I., Feebly open sets and feebly continuity in topological Spaces, UIT Report, 15(2) (1984), 367-371.
[10]Maheshwari S.N. and Thakur S.S., On α-irresolute mappings, Tamkang J. Math, 11 (1980), 209-214.
[11] Maheshwari S. N., Chae G. I. and Jain P.C., Almost feebly continuous functions, UIT Report, 13 (10) (1982), 195-197.
[12]Munshi B.M. and Bassan D. S., Almost semi-continuous mappings, The Math. Student, (49) 3 (1981), 239-248.
[13]Munshi B.M. and Bassan D.S., Super continuous mappings, Indian J. Pure. Appl. Math., (13) 2 (1982), 229-236.
[14]Navalagi G. B., On completely α-irresolute functions, http://at.yorku.ca/p/a/a/n/o3,aim/ index.htm.
[15]Njastad O., On some classes of nearly open sets, Pacific J. Math. 15(3) (1965), 961970.
[16]Noiri T., A generalization of perfect functions, J. London Math. Soc., (2) 17 (1978), 540-544.
[17]Prasad R., Chae G. I. and Singth I. J., On weakly θ-continuous functions, UIT Report 14 (1) (1983), 133-137.
[18]Steen L. A. and Seebach J. A., Counter Examples in Topology, Verlag New York. Heidelberg. Berlin (1978).
[19] VeliČo N. V., H-closed topological spaces, Amer. Math. Soc. Trans 2 (1968) 103-118.
[20] Yunis S. H., On some dimension functions and locally dimension functions, M. Sc. Thesis, College of Science, Salahaddin-Erbil Univ. (2001).

Govindappa Navalagi
Department of Mathematics
KLE Society's, G. H. College, Haveri-581110, Karnataka, INDIA
e-mail: gnavalagi@hotmail.com

Abdullah M. Abdul-Jabbar
Department of Mathematics College of Science University of Salahaddin-Erbil, IRAQ e-mail: mlabdullah@yahoo.co.uk

This document was created with the Win2PDF "print to PDF" printer available at http://www.win2pdf.com

This version of Win2PDF 10 is for evaluation and non-commercial use only.
This page will not be added after purchasing Win2PDF.
http://www.win2pdf.com/purchase/

