
IJCTA
Vol.8, No.1, Jan-June 2015, Pp.221-236
© International Sciences Press, India

Hybrid PS-ACO Algorithm in Achieving
Multiobjective Optimization for VLSI
Partitioning
Atul Prakash1 and Dr. R. K. Lal2
1Dept. of Electronics & Communication Engg, Birla Instiitute of Technology, Mesra, Ranchi, India
2Asso. Professor, Dept. of Electronics & Communication Engg, Birla Instiitute of Technology, Mesra,
Ranchi, India
Email:-prakashatul.uit@gmail.com; rklal@bitmesra.ac.in;

ABSTRACT

In this paper multiobjective optimization problem simultaneously optimized using hybrid PS-ACO
algorithm has been attempted. The methodology used in this paper is based upon the information sharing
and movement of swarms or particles in a search space, and further applying ACO on the result obtained
by the PSO. Multiobjective optimization problems are present at physical design level at partitioning
process of VLSI circuit optimization. Here present the results of multiobjective optimization of cutsize,
delay and sleep time simultaneously using hybrid swarm technique (PS-ACO). Results in this paper
shows that the NP hard problem effectively solved by PS-ACO algorithm. Here set up the problem as a
simultaneously multiobjective optimization and solve it by programming method. Information of the
circuit has been given in accordance with circuit netlist files used in ISPD’98 circuit benchmark suite.
The proposed approach has a good potential in VLSI circuit partitioning.

Index Terms— PSO, ACO, Cutsize, Sleep time, NP-hard.

1. INTRODUCTION

 Modern VLSI chips contain millions of transistors. This has become possible by
the development of sophisticated design tools, software’s and highly scaled VLSI
fabrication techniques. To deal with such a huge chip complexity and achieve a short
turnaround time, VLSI design tools must not only be computationally fast but also
generate optimal designs. Partitioning is an important step in physical design of
circuits. In order to build complex digital logic circuits it is often essential to subdivide
multi-million transistor circuit designs into manageable pieces. So, Partitioning, on the
one hand, is a design task to break a large system into pieces to be implemented on
separate interacting components and on the other hand it serves as an algorithmic
method to solve difficult and complex combinatorial optimization problems as in logic
or layout synthesis. Partitioning if done in a proper way can solve many design issues
and simultaneously can reduce the delay, overall size of the circuit, the number of
cutsize (or number of connections between two partitions) and can also lead the design
process to design a low power consuming circuits.

222

NP-hard problem of partitioning cannot be effectively solved by deterministic
method. In this paper a heuristic iterative approach to solve the partitioning problem
and simultaneously optimization of power, delay and cutsize is presented.

Kernighan and Lin [1] proposed the first heuristic search algorithm for
bipartitioning with several times randomly generated initial partitions and to obtained
the best solution based on swapping of vertices. Modified version [2] of [1] leading to a
fast linear time algorithm for partitioning and improved time complexity but inefficient
time complexity was improved. Krishnamurthy [3] by modified [2] introduce the
concept of look ahead to choose the cell move. Multiway partitioning problem was
effectively solved by recursive bipartitioning and improved time complexity [3].

 Optimize the power and delay in VLSI with optimal sizing the transistor in a
digital MOS VLSI circuit were proposed [4]. To perform multiway partitioning
modified [3] by developing appropriate data structure and proved that the optimal
number of gain levels necessary depends on the number of blocks to be partitioned net
size and degree of distribution to the circuit network, but not on the size of the network
[5]. One new methodology transforms the circuit optimization into multivariable
optimization problem was shown to provide an optimum design with circuit analysis
accuracy [6].

 Kennedy and Eberhart [7] introduced a concept for the optimization of nonlinear
function using particle swarm methodology, PSO is a robust stochastic optimization
technique based on information sharing and movement of swarms. Another heuristic
technique geometric partitioning were proposed [8] for partitioning of a system to
maximize exploitable sleep time for low power synthesis with deactivate the memory
refresh circuitry ,apply power down or disable clock signal during the inactive periods
of operation of circuit elements and thus maximize the power consumption.

 Various hypergraph partitioning algorithms were proposed based on
successively hypergraph and fixed vertices which reduces the complexity of
partitioning problem [10] [11]. A multiobjective h-metis partitioning were proposed [12]
for simultaneously cutsize and circuit delay minimization using memetic algorithm for
VLSI physical design. Various optimization algorithms were proposed for power and
delay minimization [13] [14].

 Ghafari et al. [15] focused on minimizing the average power consumption in
CMOS circuits. A discrete PSO algorithm was proposed [16] for the optimization of
VLSI interconnections (netlist) bipartitioning and giving good result as compared to
GA. Gill et al. [17] proposed multiway circuit partitioning using genetic algorithm
with objectives of mincut, ratio cut minimization and shows good result. Shanavas et al.
[18] discussed the memetic algorithm was used to optimize the various objective
functions.

The different objective function that may satisfied by partitioning are:

1. Maximization of sleep time due to partitioning.

223

2. Minimization of number of cuts.

3. Minimization of delay due to partitioning.

4. The percentage of saving power should be larger than the percentage of
consumed power during switching activities.

5. To reduce the fabrication cost with minimum area or as a balance constraints.

6. The number of terminals should not exceed the terminals available on PCB.

From the literature review it is found that the various researchers have applied
various optimization techniques for the partitioning optimization problems with mixed
results. In the present work excellent optimization method of Particle Swarm
Optimization has been applied to partitioning optimization problems.

2. PROBLEM FOMULATION

 With the advancements in VLSI technology the chip complexity is increasing,
leading to more and more integration and increased design sizes. A huge chip estate is
being occupied by interconnects, which leads to increased delay. Improved physical
design tools, are necessary to handle these issues. Circuit partitioning plays an
important role in physical design automation of very large scale integration (VLSI)
chips. In VLSI circuit partitioning, the problem of obtaining a minimum cut is of prime
importance. To enhance, other criterion like power, delay and area in addition to
minimum cut is included. Circuit net list partitioning is an important step in VLSI
physical design and involves the division of a circuit into smaller parts for ease of
design and layout. The main objectives of circuit net list partitioning include
minimization of number of interconnections between the partitions, minimization of
delay due to interconnections between partitions & ratio-cut minimization and
minimization of power consumption by maximizing the total sleep time of different
partitions. Present work demonstrates the versatility of PSO for bi-partitioning to
minimize the Interconnections also called cuts, delay and maximizing sleep time.

 Circuit partitioning problem is a non polynomial hard problem cannot be
effectively solved by deterministic methods. PSO is a stochastic algorithm can be used
effectively for circuit partitioning. In this paper a heuristic approach is presented to
optimize the three design issues the cutsize, delay and sleep time. In this paper all the
experiments have been done on MATLAB R2010.

1. Mincut minimization

 The numbers of interconnections among partitions have to be minimized.
Reducing the interconnections not only reduces the delay but also reduces the interface

224

between the partitions making it easier for independent design and fabrication. It is also
called the mincut problem or minimization of the number of cuts.

 The problem involves dividing the circuit net list into two subsets and some of
the connections are also cut. The number of cut belonging in two different partitions is
the cost of a partition, and this cost can be defined as follows

 ∑ ∑ , (1)

where i , j are the vertices (nodes) of an edge (net)

 C= cost of cut

ijC = cost of an edge

The partitioning problem is to partition ′ ′ into , , … …
Where

Figure 1 Circuit partitioning overview [Coe et al. (2004)]

As the problem involves bipartitioning of a circuit, so equality condition must be
satisfied as

 ∑ ∑ (2)

Where, &i jm n are the nodes in two partitions [19].

225

2. Delay Minimization

 The partitioning of a circuit might cause a critical path to go in between
partitions a number of times. As the delay between partitions is significantly larger than
the delay within the partition, it is an important consideration in circuit partitioning.
Important considerations for partitioning constraints include minimization of delay due
to partitioning.

 First of all, the critical paths between the input/output ports (pads) are checked.
The critical path is defined as the path having maximum delay between the I/O pads.

 (3)

Where =No. of times a hyper path, is cut [19].

To calculate this delay we use the well-known Elmore Delay model. Our delay
model has two components. The first component is the gate delay. For all gates we
consider a typical intrinsic delay that is given for a typical input transition and a typical
output net capacitance. The second component is the wire delay, which we approximate
using the Elmore delay model. The Elmore delay for an edge e (an edge corresponds to
the wire connecting the net source to one of its fanout sinks) is given by [12]:

 (4)

 (5)

 (6)

where Re is the wire lumped resistance, eC is the wire lumped capacitance, and tC is
the total lumped capacitance of the source node of each net, which is taken as zero [20].
To compute eR and eC we need the length of each edge. For that, we use the statistical
net-length estimation method, also known as MRST (Minimum Rectilinear Steiner Tree)
model. According to this method the average length of a net, connecting m cells
enclosed in a rectangular area with width a and height b, is given by:

 . . (7)

226

where α, β, and γ are fitting parameters computed as α ≈ 1.1, β ≈ 2.0, and γ ≈ 0.5, m
is the number of nets, and are the net bounding area dimensions. During recursive
partitioning, when a net is cut, it is assigned a certain wire delay that will be used to re-
compute all delays on the paths that include that net. The higher the level in which a net
is cut during recursive partitioning, the greater the back-annotated wire delay has to be.
In our case, any net that is cut during the first bi-partitioning step is assumed to be
bounded by a rectangular area which is the same as the chip area and for simplicity we
consider an aspect ratio equal to 1.The delay of each net is set only the first time when it
is cut. In our experiments we consider a 0.18µ copper process technology (unit length
resistance = 0.115, unit length capacitance = 0.00015) [21].

3. Sleep Maximization

 The idea about the low power consuming circuit partitioning is that for a given
period of time if all the elements in the particular partition is idle then we can send that
partition into sleep mode so that the power is save during the time interval. The idea is
exploited in the Figure 1.It can be notice that higher discrete overlapping of idle time
means greater number of switching and a more complicated control circuitry. Hence the
gain function G(S1, S2) should be an increasing function of ti and a decreasing function
of swi. For a bi-partitioning problem the gain function that needs to be maximized is
defined as:

 (8)

 ,

 Figure 2 Partitioning to maximize sleep time [8]

227

In equation (8), summation of ti’s accounts for the savings in power consumption
due to sleep mode operation the partitions and β (sw1 + sw2) accounts for overhead in
power consumption due to extra control circuitry. Parameter ‘β’ controls relative
significance of power savings (ti) and the overhead terms (swi) and depends on the
available technology and type of circuitry in modules m.

 If ′ be the power consumption with and without using sleep mode then

 2

and ′ 2 (9)

Where be the power consumption of each partition in operating and sleep
mode and T is the operation time.

Then the percentage of power saving can be given by [8],

′
′ 100

For a given memory chip typically we have 25, [8] therefore the percentage of
power consumption would be atleast:

 48 (10)

The combined objective function used to optimization of the above stated quantities is
taken as, ∑ ∑ ∑ ∑ (11)

Where are the weight given to the sleep time and mincut, yij is the inverse of
Cij .

3. SOLUTION METHODOLOGY

 In the present work, a hybrid PS-ACO algorithm for optimization of multimodal
continuous functions is proposed.

PSO is based on the intelligence, which can be applied into both scientific
research and engineering use. It has no overlapping and mutation calculation. The
search in this technique is carried out by the speed of the particle. During the

228

development of several generations, only the most optimist particle can transmit
information onto the other particles, and the speed of the researching is very fast. The
algorithm is comparatively easy than the other intelligence based search algorithm as it
adopts the real number code, and it is decided directly by the solution. The number of
the dimension is equal to the constant of the solution.

The algorithm easily suffers from the partial optimism, which causes the less
exact at the regulation of its speed and the direction. Again it cannot be work out for the
problem having scattering optimization, non-coordinate system such as the solution to
the energy field and the moving rules of the particles in the energy field

 The demerits which have been possessed by the PSO can easily be applying the
ACO algorithm as it has Inherent parallelism and positive Feedback accounts for rapid
discovery of good solutions. Furthermore it can be used in dynamic applications
(adapts to changes such as new distances, etc). Applying ACO can lead to some more
difficulties such as it has random decision making ability which is not independent.
Again the probability distribution changes by iteration.
 So application of PSO and ACO consecutively, leads to faster convergence and it
secures better solution in respect to the previously proposed algorithms.

In this, PSO is applied for global optimization by updating positions of particles
to attain rapid convergence. PSO simulates the behavior of bird flocking. One of the
advantages of PSO is that PSO take real numbers as particles. It is not like GA, which
needs to change to binary encoding, or special genetic operators have to be used. The
searching is a repeat process, and the stop criteria are that the maximum iteration
number is reached or the minimum error condition is satisfied.
 PSO is initialized with a group of random particles (solutions) and then searches
for optima by updating generations. In each iteration, each particle is updated by
following two “best” values. The first one is the best solution (fitness), it has achieved so
far. The fitness value is also stored. This value is called pbest. Another “best” value is
tracked by the particle swarm optimizer is the best value, obtained so far by any particle
in the population. This best value is the global best and called gbest . When a particle
takes part of the population as its topological neighbors, the best value is a local best
and is called lbest .
 After finding the two best values, the particle updates its velocity and positions
with the following equations (12) and (13) (12) (13)
 is the particle velocity, w is inertia weight, is the current particle
(solution). and are defined as stated before. and are
random numbers between 0 and 1. are learning factors. Usually, 2.

229

 Particles’ velocities on each dimension are clamped to a maximum velocity Vmax.
If the sum of accelerations would cause the velocity on that dimension to exceed Vmax
(where Vmax is a parameter specified by user), then the velocity on that dimension is
limited to Vmax. The basic pseudo code for PSO is shown in Figure 3.
 After applying PSO to calculate the pbest for each particle the ACO is applied
taking the pbest for each particle as the initial value of the ants. To calculate the gbest
value the pheromone is initialized.

ACO works in three steps:

1. Construct Ant Solutions(which has been found using PSO)
2. Daemon action and
3. Updating of Daemon

An Ant will move from node i to j with probability

 , , ,∑ , , (14)

Where, , ,

, , 1, , , 0.5

Amount of pheromone is updated according to the equation

 , 1 , +∆ , (15)

Where,

∆ , ,

∆τ , 1 ,0, ,

Where, ′

Pheromone values are updated by all the ants that have completed the tour
 , 1 ∑ ∆τ , (16)

230

Where m is the number of ants.

The proposed algorithm is as follows:

STEP 1. Start at the beginning of netlist and convert it into matrix form.

STEP 2. Bipartition the circuit into 0 and 1 partitions as

0

L k k
li m ni ji o j oi

= +∑ ∑ ∑
= == (17)

Also, from (2),

Figure 3 The basic pseudo code for PSO

0
{0 partition}{1partition}

k k
m ni jj oi

=∑ ∑
==

where l m ni i j= +

STEP 3. Initialize the particles’ positions using some random value and divide this
random value with the length of either partition generated earlier. Use this calculated
random value to swap the node between the two previous partitions to create new
partitions.

 ,
 Represents the PSO particles where i varies from 0 to L (any user defined value)

STEP 4. Create any number of particles using this concept. Calculate their mincut using

 ∑ ∑ (18)

For each particle
Initialize particle
End
Do
For each particle
Calculate fitness value
If the fitness value is better than the best fitness value (pbest) in history

Set current value as the new pbest
End
Choose the particle with the best fitness value of all the particles as the gbest
For each particle
Calculate particle velocity according to equation (a)
Update particle position according to equation (b)
End
While maximum iterations or minimum error criteria is not attained.

231

And delay using the equation (4). Evaluate the sleep time S of the two partitions form
equation (8). Correspondingly evaluate fitness function, Ccij , for all the particles using
(11), taking preference vectors Ys = Yc = 0.5, (for 50% weight to sleep and mincut
objectives).

STEP 5. Take the maximum of these Ccij values as ‘gbest’ and all other values as
individual ‘pbest’ for all the particles.

STEP 6. Initialize the velocity for all the particles.
,Initial velocity = where i varies from 0 to kvid

STEP 7. Assume the initial positions of all the particles as their “pbest” , 0

STEP 8. Using PSO equations, particle velocity, i dv and particle position, idχ are
evaluated. This updated particle position is used further to create new particle using the
same concept as discussed in STEP 3.

STEP 9. Apply PSO equations L number of times.

STEP 10. Calculate number of interconnections, delay, sleep time and combined fitness
function for all the particles using (15), (4),(8) and (11) respectively.

STEP 11. Assume that the new combined fitness function = ′

Compare ′ with for each particle.

If ′ , then accept ′
If ′, then will remain as it is.

STEP 12. Find particle Pi , whose fitness function is maximum and take the position of
this particle as “gbest”.

STEP 13. Calculate new positions for all the particles with their current “pbest” and
“gbest” (the position of the particle having maximum fitness value) using equations 12
& 13..

STEP 15. Apply the above mentioned ACO algorithm for each particle.

STEP 14. If the termination condition is true (i.e. no. of iterations reach a threshold
value set by user), then END of the program, otherwise go to STEP 8.

4. RESULTS AND DISCUSSION

 As the objective of the paper is to optimize the interconnections, the delay and
the sleep time between two partitions (bi-partitioning), all the parameters have been

232

optimized simultaneously in this work. First of all, the interconnections, delay and sleep
time were calculated before applying the proposed PS-ACO approach; then the
proposed approach was applied to optimize all the parameters simultaneously with
50% weight to mincut and the sleep. The coding was done using MATLAB R2010. A
number of netlists consisting of 10-25 nodes were used for this purpose. PS-ACO
algorithm has been applied to all the aforesaid netlists; the results of few (showing the
best results) are shown in the Table 1. From Table 1, it is seen that the proposed
approach has been exhaustively tested and results have been obtained on circuit netlist
files of varying size ranges. The proposed approach performs better overall size ranges.
The computational time for calculation of the sleep time is taken as 100 clock period.

 The interconnection, delay and sleep time when optimized simultaneously as a
multi-objective fitness function, with 50% weight to sleep and mincut, the two quantity
mincut and delay try to minimize and the sleep time try to be maximize and finally
become stagnant as the number of iterations goes on. As shown in Figure 3 the
interconnections minimize, delay minimizes and the sleep time maximizes as the
iteration goes on, and finally become constant. It means that there is no further scope of
optimization and are the ultimate results of interconnections, delay and sleep time.

5. CONCLUSION

 VLSI circuit bi-partitioning using Multi-objective PS-ACO Algorithm have been
proposed for mincut and circuit delay minimization along with maximization of sleep
time. The advantages of the proposed PS-ACO approach are:

(1) It is fast, thus applicable to large-sized circuits.

(2) It performs better suitable partitioning, as it optimizes all the parameters with some
cutsize, delay and sleep time trade-off. The proposed approach is tested on various
circuit partitioning instances (netlists) given in ISPD’98 Benchmark Suite.

 The Particle Swarm Optimization algorithm applied to VLSI partitioning
produces a very good result of these three objectives simultaneously .In this paper the
sleep time maximization along with minimization of cutsize and delay were explored.
This triple objective function was separately formulated and then combined into one
objective function. The combined problem is NP hard, hence heuristic approach was
successfully introduced. There is an average improvement of 38 percent in cutsize, 65.67
percent in delay and in sleep time 43.36 percentage improved simultaneously for the
netlist series used in Table 1.

 As compared to GA the better results shown by this proposed algorithm. The
comparison of results obtained through the proposed algorithm is better than the [15] as
objectives of sleep time and mincut and also one more objective delay find out in this
paper and shows a very good improvement. Moreover, results obtained show the
versatility of the proposed method in solving non-polynomial hard problem of circuit

233

netlist partitioning. It is proved that PSO approach is an excellent method of global
search to achieve better solutions.

6. FUTURE SCOPE

 There are many ways to extend the proposed work. The delay
optimized is the net based delay. The same approach can be used to optimize path
based delay. After finding path delay, combined net and path based delay can be
calculated by giving weights to each delay. Then, the proposed PS-ACO approach can
be applied for mincut and combined delay minimization with sleep time maximization.
This PS-ACO is used to solve two-way circuit partitioning problem. The results can be
improved by combining it with other evolutionary algorithms to make hybrid PS-ACO.
The algorithm can also be improved by multi-way partitioning techniques and multi-
point crossover with different selection methodologies. The efficiency of the proposed
algorithm can be compared with other standard algorithms by solving the same
problem and a comparative study can be done. It may be possible to enhance the
efficiency of the proposed hybrid algorithm by hybridizing it with GA (Genetic
Algorithm) or SA (Simulated Annealing). It may be a good idea to hybridize PSO and
GA as PSO adopts the real number code and it is decided directly by the solution[22],
while GA adopts the binary code to solve the problem.

REFERENCES

 List and number all bibliographical references in 9-point Times, single-spaced, at
the end of your paper. When referenced in the text, enclose the citation number in square
brackets, for example: [1]. Where appropriate, include the name(s) of editors of
referenced books. The template will number citations consecutively within brackets [1].
The sentence punctuation follows the bracket [2]. Refer simply to the reference number,
as in “[3]”—do not use “Ref. [3]” or “reference [3]”. Do not use reference citations as
nouns of a sentence (e.g., not: “as the writer explains in [1]”).

 Unless there are six authors or more give all authors’ names and do not use “et
al.”. Papers that have not been published, even if they have been submitted for
publication, should be cited as “unpublished” [4]. Papers that have been accepted for
publication should be cited as “in press” [5]. Capitalize only the first word in a paper
title, except for proper nouns and element symbols.

For papers published in translation journals, please give the English citation first,
followed by the original foreign-language citation [6].

[1] B.W Kerninghan. and S. Lin, “An efficient heuristic procedure for partitioning graphs”,
Bell System Tech. Journal, Vol.49, pp.291-307,Feb,1970.

234

[2] C.M. Fidduccia and R.M. Mattheyes, “A linear time heuristic for improving network
partitions”, Proceeding of the 19th ACM/IEEE Design Automation Conference,
IEEE Press, Piscataway, NJ, USA, 1982, pp.175-182.

[3] B. Krishnamurthy, “An improved min-cut algorithm for partitioning VLSI circuits”,
IEEE Transactions on Computers, Vol. c-33, Issue: 5, pp.438-446, May, 1984.

[4] Lance A. Glasser and Lennox P. J. Hoyte, “Delay and power optimization in VLSI
circuits” Proc. of 21st IEEE Design Automation Conference, 1984, pp. 529-535.

[5] L.A. Sanchis, “Multiple way network partitioning”, IEEE Transactions on Computers,
Vol.38, No. 1,1989, pp.62-81.

[6] Y. Hsieh, K. Chin., C. Te Chuang, “Power Partition and Emitter Size Optimization
for Bipolar ECL Circuit” in IEEE J. of solid-state circuits, Vol. 28, no. 5, pp. 548-552
,May 1993.

[7] J. Kennedy and R. Eberhart ,“Particle Swarm Optimization”, Proceeding of IEEE
International Conference on Neural Networks ,perth , Austrailia Vol. 4,pp.1942-
1948, 1995.

[8] Farrahi A. H. and Sarrafzadeh M., “Geo_Part: A system partitioning to maximize sleep
time”, Technical Report, Department of Electrical and Computer Engineering,
Northwestern Univ., Evanston, 1995.

[9] Farrahi A. H. and Sarrafzadeh M., “System partitioning to maximize sleep time,” in
Proc. the 1995 IEEE/ACM Int. Conf. on Computer Aided Design, San Jose, California,
USA, 12-16 Jun. 1995, pp.242-247.

[10] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hypergraph
partitioning: Application in the VLSI domain,” in Proc. the 34th Annual Design
Automation Conf., Anaheim, California, USA, 9-13 Jun. 1997, pp. 526-529.

[11] E. Caldwell, B. Kahng and L. Markov, “Hypergraph partitioning with fixed
vertices,” in Proc. the 36th Annual ACM/IEEE Design Automation Conf., New
Orleans, Louisiana, USA, 21-25 Jun. 1999, Article No. 21.3, pp. 355-359.

[12] C. Ababei, N. Selvakkumaran, K. Bazargan, G. Karypis, “Multi-objective Circuit
Partitioning for Cutsize and Path-Based Delay Minimization”, Proceeding of 2002
IEEE/ACM international conference on computer-aided design,Vol.8 No.6,
pp.181-185.

[13] S. Sait, A. Maleh, and R. Abaji, “Enhancing performance of iterative heuristics for
VLSI netlist partitioning,” in Proc. the 10th IEEE International Conference on
Electronics, Circuits and Systems, 2003, pp. 507-510.

[14] M. E. Ekpanyapong and S. K. Lim, “Simultaneous delay and power optimization
for multi-level partitioning and floorplanning with retiming,” in Proc. the Int.
Symp. on Circuits and Systems (ISCAS 2004), Vancouver, Canada, 23-26 May
2003,pp.1-9.

235

[15] P. Ghafari, E. Mirhadi, M. Anis, S. Areibi, and M. Elmasry, “A low power
partitioning methodology by maximizing sleep time and minimizing cut nets,” in
Proc. the Fifth Int. Workshop on System-on-Chip for Real-time-Applications, Banf ,
Alberta, Jul. 2005, pp. 368-371.

[16] S. Peng, G. Chen, W. Guo, “A Discrete PSO for Partitioning in VLSI Circuit” in
Proceeding of 2009 , International conference on computational intelligence and
software engineering, Wuhan, China, 2009, pp.1-4.

[17] S.S Gill., R. Chandel and A.K. Chandel (2010), “Swarm Intelligence Based circuit
partitioning”, Asia Pacific conference on Postgraduate Research in Microelectronics
and Electronics, Shanghai, China.

[18] H. Shanavas, R.K. Gnanamurthy, T.S. Thangaraj, “A Novel Approach to find the
best fit for VLSI Partitioning - Physical Design” in proc. International Conference
on Advances in Recent Technologies in Communication and Computing. Artcom,
2010, pp. 330-332.

[19] N. Sherwani, “Algorithms for VLSI physical Design and Automation”, 3rd Edition,
Private Limited, New Delhi: Springer (India), 2005.

[20] J.J Cong. and K.S. Leung (1995), “Optimal wiresizing under Elmore Delay model”,
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
Vol.14, No.3.

[21] P. Zarkesh, J.A Davis. and J.D. Meindl (2000), “Prediction of Net-Length
Distribution for Global Interconnects in a Heterogeneous System-on-a-Chip”, IEEE
Transactions on VLSI Systems, Vol. 8, No. 6.

[22] Selvi V. and Umarani R. (2010), “Comparative Analysis of Ant Colonyand Particle
Swarm Optimization Techniques” International Journal of Computer Applications
(0975 – 8887) Volume 5– No.4, August 2010

236

Table 1 Mincut, delay and sleep time for different circuits using PS-ACO approach for
partitioning

S.N. File Name Before
optimization

After optimization Percentage improvement

Min
-cut

Delay
(ps)

Slee
p

Min
-cut

Delay
(ps)

Slee
p

Min
-cut

Del
ay

Slee
p

Pow
er

1. Spp_N10_E7_R1_10
25

8 5.7680 14 4 0.2367 38 50 95.8
9

171.4
2

18.2
4

2. Spp_N10_E37_R1_3
228

9 7.8305 21 8 5.7680 36 11.1
1

26.3
4

71.42 17.2
8

3. Spp_N11_E12_R1_3
386

7 3.9179 25 4 0.2367 36 42.8
5

93.9
5

44 17.2
8

4. Spp_N20_E20_R1_1
344

11 12.462
8

38 6 2.3276 39 45.4
5

81.3
2

2.63 18.7
2

5. Spp_N20_E20_R2_9
42

11 12.462
8

33 6 2.3276 46 45.4
5

81.3
2

46 22.0
8

6. Spp_N21_E18_R2_1
659

18 32.160
5

27 6 2.3276 42 66.6
7

92.7
6

55.55 20.1
6

7. Spp_N22_E22_R2_1
232

12 14.986
3

35 9 7.8305 42 25 47.7
5

20 20.1
6

8. Spp_N23_E27_R2_1
796

20 38.459
5

37 12 14.986
3

38 40 61.0
3

2.702
7

18.2
4

9. Spp_N24_E25_R3_8
23

21 41.691
3

21 9 7.8305 32 57.1
4

81.2
3

52.38 15.3
6

10. Spp_N25_E87_R3_8
12

21 41.69 18 17 29.102
6

39 19.0
5

30.1
9

116.6
7

18.7
2

 AVERAGE 13.8 21.143
1 26.9 8.1 7.2974 38.8 40.2

7
69.1

7 58.28 18.6
2

