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Abstract. In this paper we express the tau functions considered by Pöppe
in [23] for the Korteweg de Vries (KdV) equation, as the Laplace transforms

of iterated Skorohod integrals. Our main tool is the notion of Fredholm deter-
minant of an integral operator. A stochastic representation of tau functions
for the N -soliton solutions of KdV has been proved by Ikeda and Taniguchi
in [14]. They express the N -soliton solutions as the Laplace transform of a

quadratic functional of N independent Ornstein-Uhlenbeck processes. Our
first step is to provide the Wiener chaos decomposition of the underlying
functional and to identify the Fredholm determinant of an integral operator
in their representation. Our general result goes beyond the N -soliton case

and enables us to consider a non soliton solution of KdV associated to a
Gaussian process with Cauchy covariance function.

1. Introduction

The solutions of different families of partial differential equations (PDE) can be
expressed as the mean of functionals of a stochastic process by the Feynman-Kac
formula (cf. [7], [22], [26]). We are interested in Korteweg–de Vries (KdV) and
Kadomtsev-Petviashvili (KP) equations and KdV (resp. KP) hierarchies (cf. [18])
which are families of PDE in infinitely many variables that contain KdV (resp.
KP). For these PDE no Feynman-Kac formula exists to represent their solutions.

The KdV equation, used to model the time evolution of waves in shallow waters,
is one of the simplest and most useful nonlinear equations admitting solitary waves.
Two forms of KdV are used classically,

ut − 6uux + uxxx = 0, (1.1)

and

ut =
3

2
uux +

1

4
uxxx. (1.2)

One can go from one form to the other by a linear change of variables. The KP
equation is a generalization to two spatial dimensions x and y of KdV equation
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and is written as
3

4
uyy = ∂x

(
ut −

3

2
uux − 1

4
uxxx

)
. (1.3)

Equation (1.1) is the most encountered in the literature; equation (1.2) is the
form that appears when one is interested in the KdV hierarchy (cf. [18]). Let us
describe what is meant by the KdV and KP hierarchies. Our reference is the book
[18]. Consider a smooth function u of (t, x) ∈ R+ × R, the differential operator

P = ∂2

∂x2 +u(t, x) and fix k. We look for an eigenfunction w satisfying Pw = k2w.
Note first that if u depends only on x, it is possible to find w using the formal
expansion

w = ekx
∑
j∈N

wj

kj
. (1.4)

By considering that k is an independent variable, one can determine the wj itera-
tively given u.

Note moreover that if u depends on x and on t, then w should depend on t also.
Suppose that w evolves according to ∂w

∂t = Bw where B is a linear differential
operator. Lax (cf. [16]) proved that the compatibility condition that w must
satisfy implies the following identity

∂P

∂t
= [B,P ]. (1.5)

Identity (1.5) is an identity between differential operators. If we set B = ∂3

∂x3 +

f2
∂
∂x + f3 and use the fact that ∂P

∂t = ∂u
∂t , then f2 = 3

2u and f3 = 3
4ux and (1.5)

is equivalent to require that u satisfies KdV (cf. [18]).
Consider now the operator L such that L2 = P . It is proved in [18] that L

is a pseudo-differential operator of the form
∑

k∈N fk∂
1−k, with f0 = 1, f1 = 0,

f2 = 1
2u and f3 = −1

4ux. It is also proved there that for any odd integer ℓ the

Lie bracket [P, (Lℓ)+] is a polynomial in u and its derivatives w.r.t. x where the
positive part of a pseudo-differential operator A =

∑
k∈N fk∂

n−k is the classical

differential operator (A)+ =
∑n

k=0 fk∂
n−k. Note that for ℓ = 3, (Lℓ)+ = B and

equation (1.5) can be written as

∂P

∂t
= [(Lℓ)+, P ].

Given an odd integer ℓ let us introduce an additionnal variable xl. We still

denote by u a function which now depends on t, x and xl and P = ∂2

∂x2 + u. The
compatibility condition for the linear system of PDEs{

Pw = k2w,
∂w
∂xℓ

= (Lℓ)+w,

takes the Lax form (see [16])

∂P

∂xℓ
= [(Lℓ)+, P ]. (1.6)

Since ∂P
∂xℓ

= ∂u
∂xℓ

another form of (1.6) is ∂u
∂xℓ

= [(Lℓ)+, P ]. Assume that u depends

on the infinite family of variables (xℓ). Then the family of PDEs (1.6) in u obtained
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when ℓ describes the set of odd integers is called the KdV hierarchy. If we take
ℓ = 3 and set x3 = t equation (1.6) coincides with KdV equation. Let us set
Kℓ(u) = [(Lℓ)+, P ]. Besides the fact that they express compatibility conditions
of linear systems of PDEs as stated above, the KdV hierarchy (1.6) is an infinite

family of commuting symmetries of the KdV equation since ∂Kℓ(u)
∂xj

=
∂Kj(u)
∂xℓ

holds

for any pair ℓ ̸= j (see [18]). The above results can be extended to a pseudo-
differential operator

L = ∂ +
∑
p∈N∗

fp ∂
−p (1.7)

more general than (∂2 + u)
1
2 . One looks for a solution to Lw = kw of the form

w = eξ(k,x)
∑
j∈N∗

wj

kj
, (1.8)

where x = (xj , j ∈ N) is an infinite vector of variables and ξ(k,x) =
∑

j∈N∗ xj k
j ,

assuming for any integer j that the evolution ∂w
∂xj

= (Lj)+w is satisfied. The

compatibility condition for the system{
Lw = kw,

∂w
∂xj

= (Lj)+w,

takes the form
∂L

∂xj
= [(Lj)+, L]. (1.9)

The family of PDEs (1.9) when j ∈ N∗ is called the KP hierarchy.

Remark 1.1. The KP hierarchy is an infinite set of PDEs in the infinite set of
functions fp, p ∈ N∗ and the infinite set of variables xj .

Remark 1.2. If the operator L in (1.7) satisfies (L2)− = 0 the family of PDEs (1.9)
reduces to the KdV hierarchy, where the negative part of a pseudo-differential
operator A is defined by (A)− := A−A+.

In the study of KdV, KP and their hierarchies, the so-called tau functions such
that derivatives of their logarithm are solutions, play a key role. Let us introduce
them on a fundamental example. A similar result, that we detail at the end of this
introduction, holds for KP. The famous method of Inverse Scattering Transform
introduced by Gardner, Greene, Kruskal and Miura in [9] and [10] produces, for
each integer N ≥ 1, solutions to the KdV equation (1.2) of the form

u(x, t) = 2
d2

dx2
log det(I +G(x, t)), (1.10)

where

Gij(x, t) :=

√
mimj

ηi + ηj
e−(ηi+ηj)x−(η3

i+η3
j )t (1.11)

is a N ×N -matrix and mi, ηi > 0, 1 ≤ i ≤ N are constants called scattering data.
In this case

τ(x, t) := det(I +G(x, t)), (1.12)
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is a tau function and the solutions of the form (1.10) are called N -solitons. For
more details we refer the reader to [6].

Another method to obtain tau functions for KdV has been developed by Hirota
in [12] (see details in Section 3 and also [13]). The class of solutions obtained by
this method is larger than the family of N -solitons described in (1.10)-(1.11). In
[23] (see also [24]) Pöppe has proved that these tau functions can be expressed as
Fredholm determinants of some integral operators as a consequence of the dressing
method introduced by Zakharov and Shabat in [29]. Fredholm determinants are an
extension of determinants of finite size matrices to integral operators (see Section
3.2 and [27]).

In this paper we prove a stochastic representation of the tau functions obtained
by Pöppe in [23]. The question of finding a stochastic representation of tau func-
tions has been addressed by Ikeda and Taniguchi in [14] for KdV. Their result was
later extended to the KP hierarchy by Aihara, Akahori, Fujii and Nitta in [1]. Both
papers consider tau functions that generate N -solitons and can be written as the
determinant of a finite size matrix (cf. equation (1.12) for KdV). In both papers a
tau function is expressed as the Laplace transform of a quadratic functional of N
independent Gaussian processes: Ornstein–Uhlenbeck processes in [14] and Lévy
areas in [1].

Fredholm determinant is the key tool to obtain our results. It appears in Proba-
bility Theory in the change of measure formulas on Wiener spaces (cf. for instance
[4] and [28]). Moreover it is proved in [11] and [25] that in some cases a Fredholm
determinant coincides with the Laplace transform of a random variable belonging
to a Wiener chaos (see [20]) of order lower than 2. To start with, we identify
the Fredholm determinant of an integral operator (see Theorem 4.1) in the re-
sult obtained in [14]. We express this operator using the scattering data and we
provide the Wiener chaos decomposition of the underlying variable (cf. Theorem
4.3). Then we prove that the tau functions of [23] admit a stochastic representa-
tion as Laplace transforms of iterated Skorohod integrals of order 2 (see Theorem
4.6). This enables us to show that in some cases the tau function is the Laplace
transform of the integral of the square of a Gaussian process with respect to some
measure (see Theorem 4.8). When this measure is a linear combination of Dirac
massses the associated tau function generates a N -soliton (1.10)-(1.11) (see Corol-
lary 4.10). Thus our representation extends the result of [14] to solutions of KdV
that are not necessarily N -solitons. We extend our results to the KP hierarchy in
Theorem 4.12.

Let us now detail the analogue of (1.10)-(1.11) for the KP hierarchy. In this
case the N -soliton tau function has the form

τ(x1, x2, . . .) = det(I +G(x1, x2, . . .)), (1.13)

where G is the square matrix

G(x1, x2, . . .) :=

(√
mimj

pi − qj
e−

1
2

∑∞
l=1{(p

l
i−qli)+(pl

j−qlj)}xl

)
1≤i,j≤N

, (1.14)

and pi, qi ∈ R with pi ̸= qi and mi > 0, 1 ≤ i ≤ N are constants.
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In particular if we choose x1 = x, x2 = y, x3 = t and xk = 0 for all k ≥ 4, the
function

u(x, y, t) := −2∂2x log τ(x, y, t, 0, . . .),

is a solutions of the KP equation (1.3). Moreover if we consider positive constants
ηi, i = 1, . . . , N and set pi = ηi and qi = −ηi for i = 1, . . . , N , then by choosing
x1 = x, x3 = t, xk = 0 for k ≥ 4, matrix (1.14) reduces to matrix (1.11), (1.13)
becomes (1.12) and we retrieve the solution (1.10) of the KdV equation (1.2).

The paper is organized as follows. In Section 2 we present the stochastic repre-
sentations of soliton tau functions obtained in [14] (Section 2.1) and [1] (Section
2.2). Section 3 is devoted to Hirota’s method (Section 3.1), a short introduction
to Fredholm determinants (Section 3.2) and the related results of Pöppe in [23]
(Section 3.3). Our results are stated and proved in Section 4.

2. Previous Results in the N-soliton Case

2.1. Stochastic representation of the N-soliton tau function of the KdV
hierarchy. The following theorem proved in [14] provides a stochastic represen-
tation of the N -soliton tau functions for the KdV hierarchy. For simplicity we
present it for the KdV equation.

Let N ∈ N⋆, p ∈ RN with pi ̸= pj for i ̸= j, D := diag {p1, . . . , pN}. We denote
by ξp the RN -valued Ornstein-Uhlenbeck process defined as the unique solution of
the stochastic differential equation

dξp(s) = dW (s) +Dξp(s)ds, ξp(0) = 0, (2.1)

where W is a N -dimensional Wiener process. Given a positive vector c ∈ RN we
define the process Xp,c by

Xp,c(s) := ⟨c, ξp(s)⟩, s ≥ 0, (2.2)

and for a > 0 we introduce the symmetric N ×N -matrix

E(a) := D2 + a2c⊗ c, (2.3)

which can be written as UR2U−1, where R (resp. U) is a diagonal (resp. orthog-
onal) matrix. Then we set

ζ(z, t) := zR+ tR3, (2.4)

for (z, t) ∈ R2.

Theorem 2.1. (cf. [14]) Let x and t be positive real numbers. Let

βa,x,t(y) := −((∂zϕa)ϕ
−1
a )(x− y, t), (2.5)

where

ϕa(z, t) := U{cosh(ζ(z, t))− sinh(ζ(z, t))R−1U−1DU}U−1. (2.6)

If we set

Ip,c,a(x, t) := E
[
e−

a2

2

∫ x
0

Xp,c(y)
2dy+ 1

2 ⟨(βa,x,t(x)−D)ξp(x),ξp(x)⟩
]
, (2.7)

then u(x, t) := −4 ∂2x log Ip,c,a(x, t) satisfies the KdV equation (1.2).
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Theorem 2.1 is inspired by a result of Cameron and Martin (cf. [3]). The key
argument in its proof is the identity

Ip,c,a(x, t) = (detϕa(0, t)/detϕa(x, t))
1/2 · e− x

2Tr D, (2.8)

which is a consequence of Girsanov Theorem and of the fact that ϕa satisfies
∂xxϕa − E(a)ϕa = 0.

2.2. Stochastic representation of the N-soliton tau function of the KP
hierarchy. In [1] the N -soliton tau functions of the KP hierarchy (cf. (1.13)-
(1.14)) are related to the Laplace transform of some generalized stochastic area
functionals. This paper provides an extension of the results in [14] since the tau
functions in [14] are particular cases of those in [1].

Let W l = (W l,1,W l,2), l = 1, . . . , N be mutually independent two-dimensional
Brownian motions starting at the origin. The stochastic area of W l is

Sl :=

∫ 1

0

(W l,2
s dW l,1

s −W l,1
s dW l,2

s ).

Let Λ := diag {λ1, . . . , λN} where λl, l = 1, 2, . . . , N are positive numbers. Let
C be a N × N real matrix and C± be its symmetric and skew-symmetric parts

C± = (C ± C⋆)/2. Let us set Wi
t = (W 1,i

t , . . . ,WN,i
t ) for i = 1, 2, and define for

any complex number σ

Ŝ(σ) := σ
N∑
l=1

λlS
l + σ⟨Λ1/2C−Λ1/2W1

1,W
2
1⟩ −

σ2

2

∑
k=1,2

⟨Λ1/2C+Λ1/2Wk
1 ,W

k
1⟩.

(2.9)
In the following we denote by i the complex square root of −1. The result of [1] is
to prove a relationship between the N -soliton tau function given in (1.13)-(1.14)

and E [eŜ(i)] for some Ŝ(i).

Theorem 2.2. (cf. [1]) Let pk ∈ R, qk ∈ R and mk > 0, 1 ≤ k ≤ N , such that
pk ̸= qℓ for all k ̸= ℓ. Let τ(x1, x2, . . .) be the N -soliton tau function defined by
(1.13)-(1.14).
Define P := (1/(pk − qℓ))1≤k,ℓ≤N and assume that mink,ℓ |pk − qℓ| is sufficiently
large so that I + P is invertible.
Define ξk :=

∑∞
n=1(p

n
k − qnk )xn, λk := 1

2 (ξk − logmk) for 1 ≤ k ≤ N and C :=

(I − P )(I + P )−1.

Consider Ŝ(i) associated to (λk; 1 ≤ k ≤ N) and C by (2.9) with σ = i. Then

exp
(
−1

2

∑N
k=1 ξk

)
E [exp Ŝ(i)]

,

is a N -soliton tau function of the KP hierarchy proportional to τ(x1, x2, . . .).



SHORT TITLE FOR RUNNING HEADING 7

Proof. Since G given by (1.14) satisfies G = e−ΛPe−Λ, we have τ = det(I +
e−ΛPe−Λ) = det(I +Pe−2Λ). Moreover, if we set M := coshΛ+C sinhΛ we have

det(M) = det

(
eΛ + e−Λ

2
+ C

eΛ − e−Λ

2

)
= 2−n det((I + C)eΛ + (I − C)e−Λ)

= 2−n det((I + C)eΛ) det(I + (I − C)(I + C)−1e−2Λ)

= 2−n det(I + C) exp

(
N∑

k=1

(ξk + logmk)/2

)
det(I + Pe−2Λ).

The latter equality holds true since C = (I − P )(I + P )−1 is equivalent to P =
(I − C)(I + C)−1. The main step comes from the result of Theorem 2 in [1] that
shows the identity

E[exp Ŝ(i)] = det(coshΛ + C sinhΛ)−1, (2.10)

for maxk |λk| and ||C+|| sufficiently small. □

Corollary 2.3. Let ηk and mk, k = 1, . . . , N, be positive constants. Define P =
(1/(ηk+ηℓ))1≤k,ℓ≤N and λk := ηkx+η

3
kt− 1

2 logmk . If mink,ℓ(ηk+ηℓ) is sufficiently

large so that I +P is invertible and let C := (I −P )(I +P )−1, then the N -soliton

solution (1.10)-(1.11) of the KdV equation is equal to −2∂2x logE [exp Ŝ(i)] where

Ŝ(i) is associated to (λk; 1 ≤ k ≤ N) and C by (2.9) with σ = i.

Proof. Corollary 2.3 is deduced from Theorem 2.2 by choosing pi = ηi and qi = −ηi
for i = 1, . . . , N , x1 = x, x3 = t, xk = 0 for k ≥ 4. □

Note that Theorem 2.2 provides a tau function valid for a whole family of PDE
whereas Corollary 2.3 expresses a tau function for a given equation in this family.

3. Tau Functions of KdV: Hirota’s Method and Fredholm
Determinants

3.1. Hirota’s bilinear operator and tau function. It is easy to check that if
u = −2∂2x log τ is a solution of (1.1) then τ solves

ττxt − τxτt + ττxxxx − 4τxτxxx + 3τ2xx = 0. (3.1)

Hirota’s method (cf. [13]) to construct solutions to the KdV equation consists in
solving (3.1). In order to do so Hirota introduced a bilinear operator (a, b) 7→
Dm

t Dn
x(a · b) defined for two sufficiently smooth functions a and b of two variables

(x, t) and m,n ∈ N by

Dm
t Dn

x(a · b) =
(
∂

∂t
− ∂

∂t′

)m(
∂

∂x
− ∂

∂x′

)n

a(x, t)b(x′, t′)

∣∣∣∣
x′=x, t′=t

. (3.2)

For instance, when n = m = 1,

DtDx(a · b) = axtb+ abxt − atbx − axbt.

With this operator, equation (3.1) takes the simple form

Dx(Dt +D3
x)(τ · τ) = 0. (3.3)
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One obtains N -soliton solutions of KdV by looking for solutions of (3.3) as power
series in a small parameter ϵ,

τ = 1 + ϵτ1 + ϵ2τ2 + · · · . (3.4)

If τ satisfies (3.3) and (3.4) and if moreover we choose τ1 =
∑N

ℓ=1 cℓe
κℓx−κ3

ℓ t for
positive parameters cℓ, κℓ, we find that τℓ must vanish for ℓ > N and we can solve
(3.3) for τ2, . . . , τN iteratively. The solution τ thus obtained coincides with the
determinant of the N ×N matrix (cf. [6])

Akℓ(x, t) = δkℓ + c2i
e−(κk+κℓ)x

κk + κℓ
e8κ

3
kt. (3.5)

For N = 1, τ(x, t) = 1+e8t−2x solves (3.3) and the corresponding solution of KdV
is the 1-soliton solution u = −2∂2x log τ(x, t) = −2sech2(x− 4t).

3.2. Fredholm determinants. Let us now introduce briefly the Fredholm de-
terminants. We refer to [27] for more details. Consider an integral operator

Af(x) :=
∫ b

a

K(x, y)f(y)dy, (3.6)

with continuous kernel K and a < b. The integral equation (I + zA)f = g where
g is a given continuous function admits a unique continuous solution f if and only
if D(z) ̸= 0 where D is the entire function

D(z) := 1 +
∞∑
ℓ=1

zℓ

ℓ!

∫ b

a

. . .

∫ b

a

∣∣∣∣∣∣∣
K(s1, s1) · · · K(s1, sℓ)

...
. . .

...
K(sℓ, s1) · · · K(sℓ, sℓ)

∣∣∣∣∣∣∣ ds1 . . . dsℓ, z ∈ C.

(3.7)
This result was proved by Fredholm in [8].

Definition 3.1. D(z) is called the Fredholm determinant of I+zA and is written
det(I + zA).

Let us moreover denote by J∞(H) the set of compact operators on a complex
separable Hilbert spaceH. IfA ∈ J∞(H), the operator |A| := (A⋆A)1/2 is positive
semidefinite and we denote by (λn(A))Nn=1, N ≤ ∞, the set of its eigenvalues. Let

Jp(H) := {A ∈ J∞(H);
N∑

n=1

λn(A)p <∞}, 1 ≤ p <∞.

The elements of J1(H) (resp. J2(H)) are called trace class (resp. Hilbert-Schmidt)
operators. If A ∈ J1(H),

Tr A :=
N∑

n=1

λn(A), (3.8)

det(I + zA) =
N∏

n=1

(1 + zλn(A)). (3.9)
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If A ∈ J2(H) the right-hand side of (3.9) does not necessarily converge when
N = +∞. However in that case we can define the Carleman-Fredholm determinant

det2(I + zA) :=
N∏

n=1

(1 + zλn(A))e−zλn(A), (3.10)

which satisfies
det2(I + zA) = det(I + zA)e−zTr A. (3.11)

Note that if A ∈ J1(H) is given by (3.6),

Tr A =

∫ b

a

K(x, x)dx. (3.12)

3.3. Tau functions of the KdV equation as Fredholm determinants. In
[23] Pöppe has expressed the tau functions for KdV obtained by Hirota’s method
as Fredholm determinants of integral operators of the form (3.6) with b = +∞.
The interval of integration being unbounded, we need to specify the set of functions
f for which Af is well defined and to provide assumptions on their kernel so that
their trace (3.8) and their determinant (3.7) exist (cf. [19]).

Let 1/2 < ν ≤ 1 and define

Cν := {f ∈ C([0,+∞),C); ||f ||ν := sup
s≥0

|f(s)|(1 + s)ν <∞},

where C([0,+∞[,C) denotes the set of continuous functions from [0,+∞[ to C.
We denote by LCν the set of integral operators of the form (3.6) defined on Cν

such that
sup
s,t≥0

(1 + s)ν(1 + t)ν |K(s, t)| <∞. (3.13)

Then Tr A and det(I+zA) for A ∈ LCν are given by (3.7) and (3.12) respectively,
with b = +∞. Moreover λ 7→ p(λ) := det(I + λA) is analytic on C.

If K depends on a parameter x and is differentiable with respect to x, then p
satisfies

∂x p(λ) = p · Tr (∂x(λA)(I + λA)−1), (3.14)

for all λ ∈ C such that (I + λA) is invertible.

Theorem 3.2. (cf. [23]) Consider a kernel F (t, x) such that F and its derivatives
up to order 4 (resp. 2) in x (resp. t) are in C2ν . Assume moreover that F solves
the linearized KdV equation

Ft + 8Fxxx = 0. (3.15)

Let F(x,t) be the integral operator defined by

F(x,t)f(s) :=

∫ +∞

0

F (s+ u+ 2x, t)f(u)du. (3.16)

Then,
τ(x, t;λ) := det(I + λF(x,t)), (3.17)

solves Hirota equation (3.3) for every λ ∈ C. Moreover, if the function τ is
nowhere vanishing,

u(x, t) := −2
∂

∂x

(τx
τ

)
,
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is a solution of the KdV equation (1.1).

The proof of Theorem 3.2 is interesting since it is rather simple and can be
adapted to other nonlinear equations such as the KP equation. It makes use of
the continuous functional [·] defined on LCν by

[A] := −K(0, 0).

If we denote for simplicity F(x,t) by F , then F belongs to LCν and satisfies

[F ] = Tr (∂x F) and [(I + F)−1F ] = Tr (∂x F)(I + F)−1.

From (3.14) we recognize in the latter identity the derivative with respect to x of
log det(I + F).

4. Main Results

4.1. Identification of a Fredholm determinant in the representation of
the N-soliton tau function of KdV. In this section we keep the notations of
Section 2.1. The stochastic representation of a tau function of KdV given in [14]
actually involves a Fredholm determinant as stated in the following theorem.

Theorem 4.1. Let us define the Volterra integral operator V on the space of
continuous functions from [0, x] to Rd by

V(x,t)(f)(y) :=

∫ y

0

ϕ′a(u, t)ϕ
−1
a (u, t)f(u)du, y ∈ [0, x]. (4.1)

Then u(x, t) := −4 ∂2x log det(I − V(x,t)/2) satisfies the KdV equation (1.2).

Proof. Let Ip,c,a defined in (2.7). We prove that

det(I − V(x,t)/2) = Ip,c,a(x, t).

Then the result follows from Theorem 2.1.
The kernel of V ,

K(x,t)(v, u) := ϕ′a(u, t)ϕa(u, t)
−110≤u≤v≤x,

being continuous, Tr V(x,t) is well defined and given by Tr V(x,t) =
∫ x

0
K(x,t)(s, s)ds.

From [27], the Fredholm determinant of I − λV(x,t), λ ∈ R can be expressed using
the trace of V(x,t) and of its powers as follows

det(I − λV(x,t)) = exp

(
−

∞∑
n=1

Tr V n
(x,t)

n
λn

)
.

Moreover Tr V n
(x,t) = 0 for all n > 1 as a consequence of Lemma 4.2 below. Using

Jacobi’s formula, we obtain

det(I − λV(x,t)) = exp

(
−λTr

∫ x

0

K(x,t)(s, s)ds

)
= exp

(
−λ
∫ x

0

Tr (ϕ′a(s, t)ϕ
−1
a (s, t))ds

)
=

(
det(ϕa(0, t))

det(ϕa(x, t))

)λ

.

We conclude by choosing λ = 1/2 and thanks to identity (2.8). □
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Lemma 4.2. (cf. [15]) Let T1, T2, . . . , Tℓ be Hilbert-Schmidt operators with re-
spective kernels G1, G2, . . . , Gℓ in L2(R2;CN×N ). Then we have for ℓ ≥ 2

Tr (T1T2 · · ·Tℓ) = Tr

∫
Rℓ

G1(s1, s2)G2(s2, s3) · · ·Gℓ(sℓ, s1)dsℓ · · · ds1.

4.2. Fredholm determinant and scattering data. The operator defined in
(4.1) depends on ϕa. It would be preferable to exhibit an integral operator whose
kernel depends explicitly on the parameters a, ci, pi in (2.1), (2.2) and (2.3) that
play the role of scattering data, and such that its Fredholm determinant coincides
with Ip,c,a.

Let ∆ := [0, x] × {1, . . . , N} equipped with µ = λ ⊗ ν the tensor product of
the Lebesgue measure on [0, x] with the counting measure on {1, . . . , N}. We use
the notations of [11] and [20] for the stochastic integration I1(f1) of a function
f1 ∈ L2(∆, µ)

I1(f1) =

∫
∆

f1(η)dWη =

N∑
i=1

∫ x

0

f1(u, k)dW
i
u,

and the double stochastic integral I2(f2) of a symmetric function f2 ∈ L2(∆2, µ2),

1

2
I2(f2) =

∫
∆2

f2(η1, η2)dWη1dWη2

=
N∑

i1,i2=1

∫ x

0

∫ s2

0

f2((s1, i1), (s2, i2))dW
i1
s1dW

i2
s2 ,

where (W i)1≤i≤N are N independent Brownian motions and

∆2 := {((s1, i1), (s2, i2)) ∈ ∆2 ; 0 ≤ s1 ≤ s2 ≤ x}.

Theorem 4.3. Let C denote the integral operator Cψ(·) :=
∫
∆
f2(·, η)ψ(η)dµ(η),

where

f2((v, ℓ), (u, k)) :=a
2 ckcℓ
pk + pℓ

(
e(pk+pℓ)x − e(pk+pℓ)u∨v

)
e−pkue−pℓv

− (βa,x,t(x)−D)k,ℓe
(pk+pℓ)x−upk−vpℓ ,

u ∨ v denotes max(u, v) and βa,x,t was defined in (2.5). Then

u(x, t) := −4 ∂2x log (det(I + C))−1/2

satisfies the KdV equation (1.2).

Proof. Let Ip,c,a defined in (2.7). We prove that (det(I + C))−1/2
= Ip,c,a(x, t).

For simplicity we write the proof in detail only for the case t = 0. The arguments
are similar for t > 0. When t = 0, βa,x,t(x) = D (cf. (2.5)-(2.6)). Let f be the

RN -valued function given by fk(u) := cke
pk(y−u)1[0,y](u). Then, Xp,c defined in

(2.2) satisfies

Xp,c(y) =
N∑

k=1

ck

∫ y

0

epk(y−u)dW k
u = I1(f).
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Denoting by D the Malliavin derivative operator, we have for (u, k) ∈ ∆,

D(u,k)X
2
p,c(y) = 2 D(u,k)Xp,c(y) ·Xp,c(y) = 2 1[0,y](u)cke

pk(y−u)Xp,c(y).

Hence,

D(u,k)

∫ x

0

X2
p,c(y)dy

=

∫ x

0

2 1[0,y](u)cke
pk(y−u)Xp,c(y)dy

=

∫ x

0

2cke
pk(y−u)1[0,y](u)

N∑
ℓ=1

∫ y

0

cℓe
pℓ(y−v)dW ℓ

vdy

= 2

N∑
ℓ=1

∫ x

0

ckcℓ
pk + pℓ

(
e(pk+pℓ)x − e(pk+pℓ)u∨v

)
e−pkue−pℓvdW ℓ

v .

Thus, D(u,k)

∫ x

0
X2

p,c(y)dy = 2I1(f2(·, (u, k))) with

f2((v, ℓ), (u, k)) :=
ckcℓ

pk + pℓ

(
e(pk+pℓ)x − e(pk+pℓ)u∨v

)
e−pkue−pℓv.

Note that f2 is symmetric with respect to its two variables (u, k) and (v, ℓ). We
then obtain the following expansion of

∫ x

0
Xp,c(y)

2dy into a finite sum of multiple
stochastic integrals of a symmetric function∫ x

0

Xp,c(y)
2dy =

N∑
k=1

c2k
4p2k

(
e2pkx − 2pkx− 1

)
+ I2(f2). (4.2)

We can apply Proposition 4.4 below to I2(f2). Indeed thanks to (4.2) we know
that E

[
e−I2(f2)

]
is well defined. Moreover Remark 4.5 following Proposition 4.4

ensures that (I + C) has positive spectrum. Therefore (4.3) is valid and we have

E
[
e−I2(f2)

]
= (det2(I + C))−1/2

.

This implies

E
[
e−

a2

2

∫ x
0

Xp,c(y)
2dy
]
= (det2(I + C))−1/2

e
− a2

2

∑
k

c2k
4p2

k
(e2pkx−2pkx−1)

.

The determination of the trace

Tr(C) =
N∑

k=1

∫ x

0

f2((u, k), (u, k))du =

N∑
k=1

c2k
4p2k

(
e2pkx − 2pkx− 1

)
,

and identity (3.11) enable us to conclude. □

Proposition 4.4. (cf. [11]) Let B ∈ L2(∆, µ) and let C be the kernel of a symmet-
ric Hilbert-Schmidt operator C on L2(∆, µ) such that (I+C) has positive spectrum.
Let Y be a random variable admitting the following Wiener chaos decomposition

Y =

∫
∆

B(η)dWη +

∫
∆2

C(η1, η2)dWη1 dWη2 .
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Then E
[
e−Y

]
is well defined and satisfies

E
[
e−Y

]
= [det2(I + C)]−1/2 exp

[
1

2

∫
∆2

B(η1)(I + C)−1(η1, η2)B(η2)dη1 dη2

]
,

(4.3)
where det2 is the Carleman-Fredholm determinant and we use the same notation
for the operator (I + C)−1 and its kernel.

Remark 4.5. It has been proved in [5] and [11] that the existence of the expectation
(4.3) is actually equivalent to the assumption that (I + C) has positive spectrum.

4.3. Stochastic representation of general tau functions. In this section
we consider the form (1.1) of the KdV equation. We express the tau functions
obtained by Pöppe in [23] (cf. Theorem 3.2) as the Laplace transforms of some
second order Wiener functionals. The fact that these tau functions are Fredholm
determinants is a key tool. The tau functions which produce soliton solutions are
retrieved as a particular case.

We denote by δ the Skorohod integral defined as the adjoint of the Malliavin
derivative D. For properties of this integral we refer the reader to the Section
1.3 of [20]. In the proposition below, the notation δ(δ(ϕ)) denotes the iterated
Skorohod integral of ϕ which is the adjoint of D2 (cf. [21]).

Theorem 4.6. Let F be a solution of (3.15) that satisfies the assumptions of
Theorem 3.2 and set ϕ(x,t)(a, b) := F (a+ b+2x, t). Then for all x and t such that
||ϕ(x,t)||L2(R2

+) < 1,

τ(x, t) := E[e−
1
2 δ(δ(ϕ(x,t)))− 1

4

∫ ∞
0

F (s+2x,t)ds]−2, (4.4)

is a tau function of the KdV equation (1.1) associated to the solution u(x, t) =
−2∂2x log τ(x, t).

Proof. For simplicity we omit the subscripts (x, t) in ϕ(x,t). Using Proposition 4.7
below and (3.11) we obtain the equality

E[e−
1
2 δ(δ(ϕ))−

1
2Tr ϕ]−2 = det(I + ϕ).

Moreover Tr ϕ =
∫∞
0
ϕ(s, s)ds = 1

2

∫∞
0
F (s + 2x, t)ds. Then Theorem 3.2 implies

that

τ(x, t) := E[e−
1
2 δ(δ(ϕ(x,t)))− 1

4

∫ ∞
0

F (s+2x,t)ds]−2

is a tau function of KdV with corresponding solution u = −2∂2x log τ . □

Proposition 4.7. (cf. [25]) Let ϕ ∈ L2(R2
+) such that ||ϕ||L2(R2

+) < 1. Then

E[e−
1
2 δ(δ(ϕ))] =

1√
det2(I + ϕ)

, (4.5)

where det2(I+ϕ) is the Carleman-Fredholm determinant of I+ϕ defined in (3.10).
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The assumption ||ϕ(x,t)||L2(R2
+) < 1 defines a set of (x, t) such that (4.4) is well

defined. A similar condition can be found in [1] and [14] for the N -soliton case.
In particular in [14] the solution is given only for x ≥ 0. However Proposition 4.7
remains true if we replace the assumption ||ϕ||L2(R2

+) < 1 by the assumption that

the eigenvalues of the integral operator with kernel ϕ are greater than −1 (cf. [5]
and [11]).

We now consider a particular solution of (3.15) defined by

F (x, t) :=

∫ ∞

0

e8κ
3t−κxdµ(κ), (4.6)

where µ is a σ-finite measure such that µ({0}) = 0, and such that there exists
I ⊂ R× R+ satisfying∫ 1

0

1

κ
e8κ

3t−2κxdµ(κ) <∞ and

∫ ∞

1

1√
κ
e8κ

3t−2κxdµ(κ) <∞, ∀(x, t) ∈ I.

(4.7)

Theorem 4.8. Let F be given by (4.6) where µ satisfies (4.7). Let (Xκ)κ>0 be a
centered Gaussian process with covariance function E[Xt1Xt2 ] = 1/(t1+ t2). Then
for all (x, t) ∈ I such that ||ϕ(x,t)||L2(R2

+) < 1,

τ(x, t) := E exp

{
−1

2

∫ ∞

0

e8κ
3t−2κxX2

κdµ(κ)

}
, (4.8)

is a tau function of the KdV equation (1.1): the function u(x, t) := 4∂2x log τ(x, t)
is a solution of (1.1).

Proof. Let ϕ(x,t)(a, b) := F (a+ b+ 2x, t). Then

δ(δ(ϕ(x,t))) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

e8κ
3t−κ(a+b+2x)dµ(κ) dWa dWb.

Applying twice the Fubini Theorem 4.9 below we obtain,

δ(δ(ϕ(x,t))) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

e8κ
3t−κ(a+b+2x)dWa dWb dµ(κ)

=

∫ ∞

0

e8κ
3t−2κx

{(∫ ∞

0

e−κsdWs

)2

−
∫ ∞

0

e−2κads

}
dµ(κ)

=

∫ ∞

0

e8κ
3t−2κxX2

κdµ(κ)−
∫ ∞

0

1

2a
e8κ

3t−2κxdµ(κ),

where Xκ :=
∫∞
0
e−κsdWs. The result follows from Theorem 4.6. □

Theorem 4.9. (cf. [20] ) Consider a random field {ut(x), 0 ≤ t < ∞, x ∈ G},
where G ⊂ R, such that for all x ∈ G, u·(x) ∈ Dom δ. Let µ be a σ-finite measure

on G. Suppose that
∫
G

(
E
∫∞
0

|ut(x)|2dt
)1/2

dµ(x) <∞, and∫
G
E[δ(u·(x))2]1/2dµ(x) < ∞, then the process {

∫
G
ut(x)dµ(x), 0 ≤ t < ∞} is

Skorohod integrable and

δ

(∫
G

ut(x)dµ(x)

)
=

∫
G

δ(u·(x))dµ(x).
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Proof. A Fubini Theorem between the Skorohod integral δ and an integral with
respect to a measure µ can be found in [20] (Ex. 3.2.7). It is not difficult to prove
the present version where the integration domain is not necessarily bounded. We
leave the proof to the reader. □

The solutions of KdV provided by Theorems 4.6 and 4.8 are different from N -
soliton solutions. They are constructed from a Gaussian process with a covariance
function which is an infinite dimensional extension of a Cauchy matrix. When µ
in (4.8) is a sum of Dirac distributions, we retrieve as a corollary the N -soliton
solution of KdV.

Corollary 4.10. Let cn and κn, n = 1, . . . , N be positive constants. Let F be
defined by

F (x, t) :=
N∑

n=1

c2ne
8κ3

nt−κnx. (4.9)

Then a N -soliton solution to the KdV equation (1.1) is given by

u(x, t) = 4∂2x logE exp

{
−1

2

N∑
n=1

c2ne
8κ3

nt

(∫ ∞

0

e−κn(x+s)dWs

)2
}
. (4.10)

Remark 4.11. 1) Let us mention another route to obtain (4.10). Let us write the
right-hand side of (4.10) as

τ(x, t) := E exp

{
−1

2

N∑
n=1

c2ne
8κ3

nt−2κnx

(∫ ∞

0

e−κnsdWs

)2
}
.

Let

R := diag{c2ne8κ
3
nt−2κnx, n = 1, . . . , N}

and let X be the N -dimensional vector whose components are

Xn :=

∫ ∞

0

e−κnadWa.

Then X is Gaussian with mean 0 and covariance matrix Λ given by the Cauchy
matrix

Λm,n = E(XmXn) =

∫ ∞

0

e−(κm+κn)sds =
1

κm + κn
.

Finally,

τ(x, t) = Ee−
1
2X

⋆RX = det(I +RΛ)−1/2,

and u(x, t) = −2∂2x log det(I+RΛ). Using the identity det(I+AB) = det(I+BA)
we retrieve the determinant of the matrix (3.5). Hence u is the N -soliton solution
of KdV (1.1).
2) There is some similarity between the covariance function of the process
(e−κxXκ)κ in Theorem 4.8 and the matrix (3.5).
3) The solution obtained in Corollary 4.10 reminds us of equation (2.7) proposed in
[14] where t acts as a parameter and the processes

(∫∞
0
e−κn(x+s)dWs

)
x
correspond

to the Ornstein-Uhlenbeck processes considered in [14].
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Theorem 4.6 and Theorem 4.8 can be extended to the KP hierarchy. Indeed an
extension of Theorem 3.2 to the KP hierarchy is proved by Pöppe and Sattinger
in [24]. Let us recall the notation for the hierarchy variables x := (x1, x2, . . .) and
z := (z1, x2, . . .). Then Pöppe and Sattinger showed that a tau function for the
KP hierarchy can be written as the Fredholm determinant of the integral operator

Fxψ(y) =

∫ ∞

0

F ((x1 + y, x2, x3, . . .), (x1 + z, x2, x3, . . .))ψ(z)dz, (4.11)

where F (x, z) satisfies the following system of linear PDEs in infinitely many
variables

∂

∂xn
F − ∂n

∂xn1
F + (−1)n

∂n

∂zn1
F = 0, n = 2, 3, . . . , (4.12)

and Fx is assumed to belong to LCν , 1/2 < ν ≤ 1 for all x.
System (4.12) is the analogous of (3.15) for the KP hierarchy. The variables

x2, x3, . . . in equation (4.11) act as parameters exactly like the time variable t
does in equation (4.4). Defining ξ(x, k) :=

∑∞
j=1 xjk

j , system (4.12) admits the
solution

F (x, z) = eξ(x,p)−ξ(z,q).

More general solutions can then be obtained by superposition of such fundamental
solutions as follows

F (x, z) =

∫
C2

eξ(x,p)−ξ(z,q)dµ(p, q),

where µ is some measure on C2 with support included in {(p, q) ∈ C2,Re p < 0 <
Re q}.

Theorem 4.12. Let 1/2 < ν ≤ 1 and let Fx ∈ LCν be an integral operator defined
by (4.11) where F is real valued and satisfies (4.12).
Let ϕx(y, z) := F ((x1+y, x2, x3, . . .), (x1+z, x2, x3, . . .)). Then for all x such that
||ϕx||L2(R2

+) < 1,

τ(x) := E[e−
1
2 δ(δ(ϕx))− 1

2

∫ ∞
0

ϕx(y,y)dy]−2 (4.13)

is a tau function for the KP hierarchy.

Proof. The proof of this theorem follows the same lines as the proof of Theorem
4.6. □
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