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Abstract :  This paper presents the design of optimal controller for nonlinear Rotary Inverted Pendulum (RIP) 
dynamic system using Linear Quadratic Regulator (LQR). LQR, an optimal control technique is generally 
used for control of the linear dynamical systems, have been used in this paper to control the non linear 
dynamical system. The non linear system states are fed to LQR which is designed using linear state-space 
model. Inverted pendulum, a highly nonlinear unstable system is used as a benchmark for implementing 
the control methods. Here the controller objective is to control the system such that the arm reaches at a 
desired position and the inverted pendulum stabilizes in upright position. The MATLAB-SIMULINK model 
has been developed for implementation of control schemes. The same controllers have been tested on a test 
bed of Quanser QUBE-Servo hardware system and the results are compared in various aspects to verify the 
effi ciency of the proposed controller. 
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1. INTRODUCTION

A typical unstable non-linear Rotary Inverted Pendulum (RIP) system is often used as a benchmark to 
study various control techniques in control engineering. Analysis of controllers on RIP system illustrates 
the analysis in cases such as control of a space booster rocket and a satellite, an automatic aircraft landing 
system, aircraft stabilization in the turbulent air-fl ow, stabilization of a cabin in a ship etc. RIP system is 
a test bed for the study of various controllers like PID controller LQR controller and fuzzy controller. A 
normal pendulum is stable when hanging downwards, an inverted pendulum is inherently unstable, and 
must be actively balanced in order to remain up right, this can be do neither by applying a torque at the 
pivot point, or by moving the pivot point horizontally as part of a feedback system.

Early studies of the inverted pendulum system was motivated by the need to design controllers to 
balance rockets during vertical take-off. At the instance of time during launch, the rocket is extremely 
unstable. Similar to the rocket launch, the inverted pendulum requires a continuous correction mechanism 
to stay upright, since the system with unstable in open loop confi guration. This problem can be compared 
to the rocket during launch. Here, rocket boosters have to be fi red in a controlled manner to maintain the 
rocket upright. The Linear Inverted Pendulum is widely in use and it has diversity of applications [1][2]
[3][4][5]. But in case of the Rotated Inverted Pendulum, there is ongoing research in this aspect and new 
applications are being invented and some of the old techniques are modifi ed by the advent in the control 
of the RIP System. One such application is crane, which is used in the construction purposes. The rotary 
inverted pendulum (RIP) is a pendulum with its centre of gravity over its axis of rotation. The normal 
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pendulum has its centre of gravity under its axis of rotation and therefore, it is in stable state when it 
directs downwards. The rotary inverted pendulum is in unstable state because its centre of gravity is over 
its axis of rotation. A raised problem is how it is necessary to control the rotary inverted pendulum so that 
it can keep its equilibrium state when it directs upwards.

 It is a challenge for a control engineer to design a controller for a RIP system, because the control of 
angular velocity is much more diffi cult than that of a linear moving object. It is further more diffi cult to 
control the pendulum such that it rotates to a certain degree and stop at that position and be balanced. A 
model of a Rotary Inverted Pendulum is shown in the following fi gure.In this paper LQR based optimal 
controller is developed that keep the pendulum upright without any oscillations. The model is simulated 
using the MATLAB software. The paper is organized as follows. Section 2 deals with the modeling of 
the system, Section 3 discusses the control technique LQR, Section 4 gives the test bed results, Section 
5discusses the conclusion drawn from the analysis of these controllers in simulink and on test bed.

2. MODELING OF ROTARY INVERTED PENDULUM

The system, as shown in Fig. 1, consists of a vertical pendulum, a horizontal arm, a gear chain, and a 
servomotor which drives the pendulum through the gear transmission system. The rotating arm is mounted 
on the output gear of the gear chain. An encoder is attached to the arm shaft to measure the rotating angle 
of the arm. At the end of the rotating arm there is a hinge instrumented with an encoder. The pendulum is 
attached to the hinge.

 Fig. 1. Rotary Inverted Pendulum system.  Fig. 2. Rotary inverted pendulum model.

The Rotary Inverted Pendulum (RIP) model is shown the below fi gure 2. The rotary arm pivot is 
attached to the QUBE-Servo base and is actuated. The arm has a length Lr, a moment of inertia of Jr, and 
its angle θ, increases positively when it is rotated in counter-clockwise direction (CCW). The servo and 
the arm should turn CCW direction when the control voltage is positive.

The pendulum link is connected to the end of the rotary arm. It has a total length of Lp and it centre of

mass is  
Lp

2
.  The moment of inertia about its centre of mass is Jp. The inverted pendulum angle   is zero

when it is perfectly upright in the vertical position and increases positively when rotated in CCW. The 
equations of motion (EOM) for the pendulum system were developed using the Euler-Lagrange method. 
This systematic method is often used to model complicated systems such as robot manipulators with 
multiple joints. The total kinetic and potential energy of the system is obtained, and then the Lagrangian 
can be found. A number of derivatives are then computed to yield the EOMs [13].
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More specifi cally, the equations that describe the motion of the rotary arm and the pendulum with 

respect to the servo motor voltage will be obtained using Euler-Lagrange equation 
2L L

Qi

i i

–
t q q

� �
�

� � �� �

The variables qi are called the generalized coordinates. For the system let q(t)T = [(t) a (t) = ] (1.1)
Where θ(t) is the rotary arm angle and (t) is the inverted pendulum angle. 
The Euler-Lagrangian equations of the  rotary pendulum are 
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The Lagrangian of the system is described by 

 L = T–V

Where, T is the total kinetic energy of the system and V is the total potential energy of the system.
The generalized forces  Qi are used to describe the non-conservative forces (e.g., friction) applied 

on the system with respect to the generalized coordinates. In this case the generalized force acting on the 
rotary arm is 

 Q1 = Dr–� ��

And acting on the pendulum is   Q2 = D p– ��

The total potential energy of the system is  
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And the total kinetic energy of the system is 2 2 2 21 2
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Solving the above two equations for the Lagrangian and the derivatives, the EOM of the system are
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The torque applied at the base of the rotary arm is described as

  = (V – )

R

g m g t m m m

m

k k k k� � ��  (1.4)

When the nonlinear equations are linearized about the operating point [, ]=[0,0], the resultant EOM 
of the inverted pendulum are defi ned as:
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Solving the above equations for the acceleration terms yields
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Where  JT = 2 2

p
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J L J J J L
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The linear state-space equations are
 x�  = Ax + Bu (1.9)
 y = Cx + Du (1.10)
Where x is the state, u is the control input. A, B, C, D are the state-space matrices. For the rotary 

inverted pendulum system, the state and output equations are defi ned as

 xT = [ ]� � � ��

�  (1.11)
 yT = [x1 x2 ] (1.12)
Substitute states into the equations of motion (in Equation 1.16 and 1.17).
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Considering actuator dynamics given in equation 1.4, A and B matrices will be modifi ed as 
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 B = Kt * B/Rm

In the output equation, only the positions of the servo and link angles are being measured.  Based on

this, the C and D matrices in the output equation are  
1 0 0 0 0

C = And D =
0 1 0 0 0

� � � �
� � � �
� � � �� � � �
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The model parameters are shown in below table.
Table 1. Rotary Inverted pendulum Parameters

Rm = 8.4 Resistance

kt = 0.042 Current-torque (N-m/A)

km = 0.042 Back-emf constant (V-s/rad)

Mr = 0.095 Mass (kg)

Lr = 0.085 Total length (m)

Jr =  5.7198e-05 Moment of inertia about pivot (kg-m^2)

Br = 0.0015 Equivalent Viscous Damping Coeffi cient (N-m-s/rad)

Mp = 0.024 Mass (kg)

Lp = 0.129 Total length (m)

Jp =  3.3282e-05 Moment of inertia about pivot (kg-m^2)

Bp = 0.0005 Equivalent Viscous Damping Coeffi cient (N-m-s/rad)

3. PROPOSED CONTROLLER DESIGN

Assuming the pendulum is almost upright, a state feedback controller can be implemented that would 
maintain it upright (and handle disturbances up to a certain point). The state feedback controller is designed 
using the linear quadratic regulator and the linear model of the system. The Linear Quadratic Regulator 
(LQR) theory is a powerful method for the control of linear systems in the state-space domain. The LQR 
technique generates controllers with guaranteed closed loop stability robustness property even in the 
face of certain gain and phase variation at the plant input/output. In addition, the LQR-based controllers 
provide reliable closed-loop system performance despite of stochastic plant disturbance. The LQ control 
design framework is applicable to the class of stabilizable linear systems.

Briefl y,  the  LQR  theory  says  that, given  a nth   order  stabilizable  system  ( ) = A ( ) + B ( ),x t x t u t�    

00, (0)t x x� �  where x(t)  Rn is the state vector and u(t) Rm is the input vector, determine the matrix 

gain K Rn × m such that the static, full-state feedback control law u(t) = –Kx(t) satisfi es the following 
criteria
 1. The closed-loop system is asymptotically stable and
 2. The quadratic performance functional   

    J = T T

0

( ( )) Q( ( )) + ( ) R ( )x t x t u t u t dt

�

�

is minimized. Q is a nonnegative-defi nite matrix that penalizes the departure of system states from the 
equilibrium and R is a positive-defi nite matrix that penalizes the control input. The solution of the LQR 
problem can be obtained via a Lagrange multiplier-based optimization technique and is given by

 K = R–1  BT P
where P Rn × n is a nonnegative-defi nite matrix satisfying the matrix Riccati equation

 AT P + PA + Q – PBR–1  BT P = 0
Note that it follows that the LQR-based control design requires the availability of all state variables 

for feedback purpose. In our case the state vector x is defi ned as T[ ]x � � � �� �

�  and quadratic performance 
functional as 
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 J = T T

0

( – ( )) Q( – ( )) + ( ) R ( )ref refx x t r x t u t u t dt

�

�
The matrices Q and R hold the penalties on the deviations of the state variables from their set-point 

and the control actions, respectively. When an element of Q is increased, therefore, the cost function 
increases the penalty associated with any deviations from the desired set-point of that state variable, and 
thus the specifi c control gain will be larger. When the values of the R matrix are increased, a larger penalty 
is applied to the aggressiveness of the control action and the control gains are uniformly decreased.Since 
there is only one control variable, R is a scalar. The reference signal xref  is set to [θr  0 0 0], and the control 
strategy used to minimize cost function J is thus given by

 u = 1 2 3 4K( – ) ( – ) – – –ref rx x k k k k� � � � �� �

�

This control law is a state-feedback control and is illustrated in the above fi gure 3. For our system, 
the pivot arm angle θ and the pendulum angular position  are measured by two encoders. The pivot arm 
angular velocity ��   and pendulum angular velocity ��   are not measured by any physical sensor, instead, 

we numerically compute ��   and ��   by implementing a low-pass differentiator, 50
. .

50’

s
e g

s �
 as a part of 

the overall control scheme.

Fig. 3.

4. TEST BED RESULTS AND DISCUSSIONS

LQR is a method in modern control theory that uses state-space approach to analyze a system. Using 
state-space methods it is relatively simple to work with a multi-output system. LQR is a control scheme 
that provides the best possible performance with respect to some given measure of performance. The LQR 
controller is designed using MATLAB. First the value of the vector K that provides the feedback control 
law is determined using R = 1 and Q = diag ([1 1 1 1]). Consequently matrix K is obtained as K = [–1.0, 
–34.2418, –1.2254, 3.0770]. The steady-state values of the states are fi rst computed and then multiplied 
by a chosen gain K to provide a new value as the reference for computing the input. By using these new 
values of states, controlled response of Rotary Inverted pendulum system is obtained. We give e square 
waveform reference of 20 degrees and we obtain the behavior presented in Figures. 
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 Fig. 4. Rotary Arm Position. Fig. 5. Pendulum Position.

We have a great steady-state error and dynamic response is not good. Increasing the weight for the 
rotary arm error, we obtain the results from Fig. 5. : Q = diag([20 10 1 5]), R = 1, K = [–4.4721, 50.4191, 
–2.1203, 4.9542]

 Fig. 6. Rotary Arm Position. Fig. 7. Pendulum Position.

The steady-state error is eliminated.  It is very important to obtain an accurate model of the rotary 
inverted pendulum system. With this model we are able to simulate the evolution of the control architecture 
and to tune the feedback parameters in order to obtain better performances. Another testing signal has 
been applied with sinusoidal references. The following results are obtained to a sinusoidal input of 0.04 
Hz with amplitude of 20 degrees.

      Here, controller is activated as soon as pendulum reaches to the reference position and pendulum is 
stabilized.  The Quanser QUBE-Servo hardware system of rotary inverted pendulum consists of a DC 
servo motor, an angular sensor, a pendulum bar and a rotary arm. The Hardware set up of rotary inverted 
pendulum shown here.
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 Fig. 8. Rotary Arm Position. Fig. 9. Pendulum Position.

 Fig. 10. Quanser QUBE-Servo Fig. 11. Quanser QUBE-Servo
 hardware system hardware system with LQR controller

Fig.9 shows an unexcited (without controller) rotary inverted pendulum. As system is unexcited, 
pendulum is in downward position. Fig. 10 describes the response of pendulum angle after applying the 
LQR controller. 

5. CONCLUSION

Design of an optimal control technique scheme (LQR) has been implemented to control the non 
linear rotary inverted pendulum system. In the optimal control of non linear inverted pendulum dynamical 
system using LQR approach, all the instantaneous states of the nonlinear system, are considered to be 
available for measurement, which are directly fed to the LQR. The LQR is designed using the linear state-
space model of the system. The MATLAB-SIMULINK models have been developed for simulation of the 
control schemes. And the same are tested on the test bed of Quanser QUBE-Servo hardware system and 
the results are presented. The pendulum stabilizesing upright position justify that the control scheme is 
effective.
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