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ABSTRACT

First, this paper introduces a seven-term novel 3-D polynomial chaotic system with two quadratic nonlinearities
and a quartic nonlinearity. The phase portraits of the novel chaotic system are displayed and the qualitative properties
are discussed. The Lyapunov exponents of the novel chaotic system are obtained as L

1
 = 6.11857, L

2
 = 0 and

L
3
 = –18.13487. The maximal Lyapunov exponent (MLE) for the novel chaotic system is obtained as L

1
 = 6.11857

and Lyapunov dimension as D
L
 = 2.33739. Next, we derive new results for the adaptive control design of the novel

chaotic system with unknown parameters. The adaptive controller is designed to achieve global exponential stability
for the novel chaotic system with unknown parameters. Next, we derive new results for the adaptive synchronization
design of the identical novel chaotic systems with unknown parameters. The adaptive control and synchronization
results have been established using Lyapunov stability theory. Numerical simulations with MATLAB have been
shown to validate and illustrate all the new results derived in this paper.

Keywords: Chaos, chaotic systems, novel chaotic system, adaptive control, adaptive synchroization.

1. INTRODUCTION

A chaotic system is commonly defined as a nonlinear dissipative dynamical system that is highly sensitive
to even small perturbations in its initial conditions. The sensitivity of a nonlinear chaotic system in response
to small changes in the initial conditions is commonly called as butterfly effect [1] and this is one of the
characterizing features of a chaotic system.

The Lyapunov exponent of a dynamical system is a quantitative measure that characterizes the rate of
separation of infinitesimally close trajectories of the system. Thus, a chaotic system is also defined
mathematically as a dynamical system having at least one positive Lyapunov exponent.

In the last four decades, many chaotic systems have been found in the literature using modelling and
other techniques. In 1963, Lorenz modelled a 3-D chaotic system to study convection in the atmosphere
and experimentally verified that a very small difference in the initial conditions resulted in very large
changes in his deterministic weather model [2].

In the last four decades, many important chaotic systems were discovered such as Rössler system [3],
Shimizu-Morioka system [4], Shaw system [5], Chen system [6], Lü system [7], Chen-Lee system [8], Cai
system [9], Tigan system [10], Li system [11], Sundarapandian-Pehlivan system [12], Sundarapandian
system [13], Vaidyanathan systems [14-18], Vaidyanathan-Madhavan system [19], Pehlivan-Moroz-
Vaidyanathan system [20], etc.

Chaos control and chaos synchronization are important research problems in the chaos literature, which
have been studied extensively in the last four decades. Chaos theory finds applications in a variety of fields
such as lasers [21], oscillators [22-23], chemical reactors [24-25], biology [26-28],ecology [29-30], neural
networks [31-33], robotics [34-35], etc.
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The problem of control of a chaotic system is to find a state feedback control law to stabilize a chaotic
system around its unstable equilibrium [36-37]. Some popular methods for chaos control are active control
[38-39], adaptive control [40-41], sliding mode control [42-43], etc.

Chaos synchronization problem can be stated as follows. If a particular chaotic system is called the
master or drive system and another chaotic system is called the slave or response system, then the idea of
the synchronization is to use the output of the master system to control the slave system so that the output
of the slave system tracks the output of the master system asymptotically. Because of the butterfly effect
which results in the exponential divergence of two identical chaotic systems with nearly the same initial
conditions, the synchronization of two identical chaotic systems or different chaotic systems is a challenging
problem in the chaos literature. The synchronization of chaotic systems has applications in secure
communications [44-46], cryptosystems [47-48], encryption [49-50] etc.

The chaos synchronization problem has been paid great attention in the literature and a variety of
impressive approaches have been proposed. Since the pioneering work by Pecora and Carroll [51-52],many
important methods have been derived for the chaos synchronization problem such as active control method
[53-70], adaptive control method [71-87], sampled-data feedback control method [88-90], time-delay
feedback approach [91], backstepping method [92-100], sliding mode control method [101-106], etc.

In this paper, we have proposed a seven-term novel 3-D chaotic system with two quadratic nonlinearities
and a quartic nonlinearity. We have obtained the Lyapunov exponents of the novel chaotic system as

1 6.11857,L �  2 0L �  and 3 18.13487.L � �  The maximal Lyapunov exponent (MLE) for the novel chaotic
system is found as 1 6.11857L �  and Lyapunov dimension as 2.33739.LD �  We have also derived new
results for the adaptive control of the novel chaotic system and adaptive synchronization of identical novel
chaotic systems with unknown parameters. The main adaptive results of this paper are proved using Lyapunov
stability theory.

The rest of this paper is organized as follows. Section 2 describes the equations and phase portraits of
the seven-term novel 3-D chaotic system with two quadratic nonlinearities and a quartic nonlinearity.
Section 3 describes the qualitative properties of the novel 3-D chaotic system. Section 4 describes new
results for the design of adaptive control to stabilize the novel chaotic system with unknown system
parameters. Section 5 describes new results for the design of adaptive synchronization of the identical
novel chaotic systems with unknown system parameters. Section 5 contains a summary of the main results
derived in this paper.

2. A SEVEN-TERMNOVEL CHAOTIC SYSTEM

In this section, we describe the equations and properties of a seven-term novel 3-D polynomial chaotic
system with two quadratic nonlinearities and a quartic nonlinearity.

The proposed seven-term novel chaotic system is modelled by the 3-D dynamics

1 2 1 2 3

2 1 1 3

4
3 3 1

( )x a x x x x

x bx x x

x cx dx

� � �

� �

� � �

�

�

�
(1)

where 1 2 3, ,x x x are the state variables and , , ,a b c d  are constant, positive parameters of the system.

The system (1) exhibits a chaotic attractor for the values

8,   55,   4,   5a b c d� � � � (2)
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Figure 1 shows the strange chaotic attractor of the system (1). Figures 2-4 show the 2-D view of the

chaotic attractor of the system (1) in 1 2( , ),x x 2 3( , )x x and 1 3( , )x x planes respectively..

Figure 1: Strange Attractor of the Novel Chaotic System

Figure 2: 2-D View of the Novel Chaotic System in (x
1
, x

2
) Plane
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Figure 3: 2-D View of the Novel Chaotic System in (x
2
, x

3
) Plane

Figure 4: 2-D View of the Novel Chaotic System in (x
1
, x

3
) Plane
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3. PROPERTIES OF THE NOVEL CHAOTIC SYSTEM

(A) Symmetry

The novel 3-D chaotic system (1) is invariant under the coordinates transformation

1 2 3 1 2 3( , , ) ( , , )x x x x x x� � � (3)

Since the transformation (3) persists for all values of the system parameters, the novel chaotic system
(1) has rotation symmetry about the x

3
–axis and that any non-trivial trajectory must have a twin trajectory.

(B) Invariance

The x
3
–axis (x

1
 = 0, x

2
 = 0) is invariant for the system (1). Hence, all orbits of the system (1) starting on the

x
3
– axis stay in the x

3
– axis for all values of time.

(C) Dissipativity

We write the system (1) in vector notation as

1

2

3

( )

( ) ( )

( )

f x

x f x f x

f x

� �
� �� � � �
� �� �

�
(4)

where

1 2 1 2 3

2 1 1 3

4
3 3 1

( ) ( )

( )

( )

f x a x x x x

f x bx x x

f x cx dx

� � �

� �

� � �
(5)

The divergence of the vector field f on R3 is obtained as

31 2

1 2 3

( )( ) ( )
div ( ) 0

f xf x f x
f a c

x x x

�� �
� � � � � � �

� � � (6)

since a and c are positive constants.

Let � be any region in R3 having a smooth boundary.

Let ( ) ( ),tt� �� �  where �
t
 is the flow of f.

Let ( )V t  denote the volume of ( ).t�

By Liouville’s theorem, it follows that

1 2 3

( )

( )
(div )   

t

dV t
f dx dx dx

dt �

� ��� (7)

By substituting the value of div f from (6) into (7), we obtain

1 2 3

( )

( )
( )   ( ) ( )

t

dV t
a c dx dx dx a c V t

dt �

� � � � � ���� (8)

Integrating the linear differential equation (8), we get the solution as
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( ) (0)exp( ( ) ) (0)exp( )V t V a c t V t�� � � � � (9)

where 0.a c� � � �

From Eq. (9), it follows that the volume ( )V t shrinks to zero exponentially as .t ��

Thus, the novel chaotic system (1) is dissipative. Hence, the asymptotic motion of the system (1) settles
exponentially onto a set of measure zero, i.e. a strange attractor.

(D) Equilibrium Points

The equilibrium points of the novel chaotic system (1) are obtained by solving the nonlinear equations

1 2 1 2 3

2 1 1 3

4
3 3 1

( ) ( ) 0

( ) 0

( ) 0

f x a x x x x

f x bx x x

f x cx dx

� � � �

� � �

� � � �
(10)

We take the parameter values as in the chaotic case, viz.

8,   55,   4,   5a b c d� � � � (11)

Solving the equations (10) using the values (11), we obtain three equilibrium points of the novel chaotic
system (1) as follows:

0 1 2

0 2.5755 2.5755

0 ,   0.3270 ,  0.3270  

0 55.0 55.0

E E E

�� � � � � �
� � � � � �� � � �� � � � � �
� � � � � �� � � � � �

(12)

The Jacobian matrix of the novel chaotic system (1) is obtained as

3 2

3 1
3
1

( ) 0

4 0

a a x x

J x b x x

dx c

� �� �
� �� � �� �
� ��� �

(13)

The Jacobian matrix at the equilibrium 0E is obtained as

0 0

8 8 0

( ) 55 0 0 ,

0 0 4

J J E

�� �
� �� � � �
� ��� �

(14)

which has the eigenvalues

1 2 34,   25.3542,   17.3542� � �� � � � � (15)

This shows that the equilibrium E
0
 is a saddle-point, which is unstable.

The Jacobian matrix at the equilibrium E
1
 is obtained as

1 1

8 63 0.3270

( ) 0 0 2.5755 ,

341.6761 0 4

J J E

�� �
� �� � �� �
� ��� �

(16)
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which has the eigenvalues

1 2 343.3460,  15.6730 14.3283 ,  15.6730 14.3283i i� � �� � � � � � (17)

This shows that the equilibrium E
1
 is a saddle-focus, which is unstable.

The Jacobian matrix at the equilibrium E
2
 is obtained as

2 2

8 63 0.3270

( ) 0 0 2.5755 ,

341.6761 0 4

J J E

� �� �
� �� � � �
� �� �� �

(18)

which has the eigenvalues

1 2 343.3460,  15.6730 14.3283 ,  15.6730 14.3283i i� � �� � � � � � (19)

This shows that the equilibrium E
2
 is a saddle-focus, which is unstable.

Hence, 0 1 2, ,E E E  are all unstable equilibrium points, where 0E  is a saddle point, and 1 2,E E  are saddle-

focus points.

(E) Lyapunov Exponents

We take the parameter values of the system (1) as

8,   55,   4,   5a b c d� � � � (20)

We take the initial state as

1 2 3(0) 1.6,   (0) 0.8,   (0) 1.2x x x� � � (21)

The Lyapunov exponents of the system (1) are numerically obtained with MATLAB as

1 2 36.11857,  0,   18.13487L L L� � � � (22)

Eq. (22) shows that the system (1) is chaotic, since it has a positive Lyapunov exponent.

Also, the maximal Lyapunov exponent (MLE) of the system (1) is obtained as 1 6.11857. L �

Since 1 2 3 12.0163 0,L L L� � � � �  it is immediate that (1) is a dissipative chaotic system.

The dynamics of the Lyapunov exponents is depicted in Figure 5.

(F) Lyapunov Dimension

The Lyapunov dimension of the chaotic system (1) is determined as

1 2

3

2 2.33739,
| |L

L L
D

L

�
� � � (23)

which is fractional. Thus, the seven-term 3-D system (1) is a dissipative novel chaotic system with fractional
Lyapunov dimension.

4. ADAPTIVE CONTROL OF THE NOVEL CHAOTIC SYSTEM

In this section, we derive new results for the adaptive controller to stabilize the unstable novel chaotic
system with unknown parameters for all initial conditions.
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Thus, we consider the controlled novel 3-D chaotic system

1 2 1 2 3 1

2 1 1 3 2

4
3 3 1 3

( )x a x x x x u

x bx x x u

x cx dx u

� � � �

� � �

� � � �

�

�

�
(24)

where 1 2 3, ,x x x  are state variables, , , ,a b c d  are constant, unknown, parameters of the system and 1 2 3, ,u u u

are adaptive controls to be designed.

We aim to solve the adaptive control problem by considering the adaptive feedback control law

1 2 1 2 3 1 1

2 1 1 3 2 2

4
3 3 1 3 3

( )( )

( )

( ) ( )

u A t x x x x k x

u B t x x x k x

u C t x D t x k x

� � � � �

� � � �

� � �
(25)

where ( ), ( ), ( ), ( )A t B t C t D t  are estimates for the unknown parameters a, b, c, d, respectively, and 1 2 3, ,k k k
are positive gain constants.

The closed-loop system is obtained by substituting (25) into (24) as

1 2 1 1 1

2 1 2 2

4
3 3 1 3 3

( ( ))( )

( ( ))

( ( )) ( ( ))

x a A t x x k x

x b B t x k x

x c C t x d D t x k x

� � � �
� � �

� � � � � �

�

�

�
(26)

To simplify (26), we define the parameter estimation error as

Figure 5: Dynamics of the Lyapunov Exponents
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

a

b

c

d

e t a A t

e t b B t

e t c C t

e t d D t

� �
� �

� �
� �

(27)

Substituting (27) into (26), we obtain

1 2 1 1 1

2 1 2 2

4
3 3 1 3 3

( )a

b

c d

x e x x k x

x e x k x

x e x e x k x

� � �

� �

� � � �

�

�

�
(28)

Differentiating the parameter estimation error (27) with respect to ,t we get

( ) ( )

( ) ( )

( ) ( )

( ) ( )

a

b

c

d

e t A t

e t B t

e t C t

e t D t

� �

� �

� �

� �

��

��

��

��

(29)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , ) ,

2a b c d a b c dV x x x e e e e x x x e e e e� � � � � � � (30)

which is positive definite on R7.

Differentiating V along the trajectories of (28) and (29), we obtain

2 2 2
1 1 2 2 3 3 1 2 1 1 2

2 4
3 1 3

( )

      

a b

c d

V k x k x k x e x x x A e x x B

e x C e x x D

� � � �� � � � � � � � �� �� �
� � � �� � � � �� �� �

�� �

� � (31)

In view of (31), we define an update law for the parameter estimates as

1 2 1

1 2

2
3

4
1 3

( )A x x x

B x x

C x

D x x

� �

�

� �

�

�

�

�

�

(32)

Theorem 1. The novel chaotic system (24) with unknown system parameters is globally and exponentially
stabilized for all initial conditions by the adaptive control law (25) and the parameter update law (32),
where ,ik ( 1, 2,3)i �  are positive constants.

Proof. The result is proved using Lyapunov stability theory [107]. We consider the quadratic Lyapunov
function V defined by (30), which is a positive definite function on R7.

Substituting the parameter update law (32) into (31), we obtain V�  as
2 2 2

1 1 2 2 3 3V k x k x k x� � � �� (33)

which is a negative semi-definite function on R7.
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Therefore, it can be concluded that the state vector x(t) and the parameter estimation error are globally
bounded, i.e.

� �1 2 3( ) ( ) ( ) ( ) ( ) ( ) .
T

a b cx t x t x t e t e t e t L�� (34)

We define

� �1 2 3min , , .k k k k� (35)

Then it follows from (33) that

2
V k x� ��  or 

2
.k x V� � � (36)

Integrating the inequality (36) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k x d V d V V t� � � �� � � �� � � (37)

From (37), it follows that 2( ) .x t L�

Using (28), we can conclude that ( ) .x t L���

Hence, using Barbalat’s lemma, we can conclude that ( ) 0x t � exponentially as t ��  for all initial

conditions 3(0) .x �R

This completes the proof.

Numerical Results

For the novel chaotic system (24), the parameter values are taken as in the chaotic case, viz.

8,   55,   4,   5a b c d� � � � (38)

We take the feedback gains as 5ik � for 1,2,3.i �

The initial values of the chaotic system (24) are taken as

1 2 3(0) 8.5,  (0) 9.7,  (0) 5.4x x x� � � � (39)

The initial values of the parameter estimates are taken as

(0) 12,  (0) 7,  (0) 16,   (0) 20A B C D� � � � (40)

Figure 6 depicts the time-history of the controlled novel chaotic system.

5. ADAPTIVE SYNCHRONIZATION OF THE IDENTICAL NOVEL CHAOTIC SYSTEMS

In this section, we derive new results for the adaptive synchronization design of the identical novel chaotic
systems with unknown parameters.

As the master system, we take the novel 3-D chaotic system

1 2 1 2 3

2 1 1 3

4
3 3 1

( )x a x x x x

x bx x x

x cx dx

� � �

� �

� � �

�

�

�
(41)

where 1 2 3, ,x x x  are state variables and , , ,a b c d are constant, unknown, parameters of the system.
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 As the slave system, we take the controlled novel 3-D chaotic system

1 2 1 2 3 1

2 1 1 3 2

4
3 3 1 3

( )y a y y y y u

y by y y u

y cy dy u

� � � �

� � �

� � � �

�

�

�
(42)

where 1 2 3, ,y y y are state variables and 1 2 3, ,u u u are adaptive controllers to be designed.

The synchronization error is defined by

1 1 1

2 2 2

3 3 3

e y x

e y x

e y x

� �
� �

� �
(43)

The error dynamics is easily obtained as

1 2 1 2 3 2 3 1

2 1 1 3 1 3 2

4 4
3 3 1 1 3

( )

( )

e a e e y y x x u

e be y y x x u

e ce d y x u

� � � � �

� � � �

� � � � �

�

�

�
(44)

We consider the adaptive control law defined by

1 2 1 2 3 2 3 1 1

2 1 1 3 1 3 2 2

4 4
3 3 1 1 3 3

( )( )

( )

( ) ( )( )

u A t e e y y x x k e

u B t e y y x x k e

u C t e D t y x k e

� � � � � �

� � � � �

� � � �
(45)

where 1 2 3, ,k k k  are positive gain constants.

Figure 6: Time-History of the Controlled Novel Chaotic System
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Substituting (45) into (44), we get the closed-loop error dynamics as

1 2 1 1 1

2 1 2 2

4 4
3 3 1 1 3 3

( ( ))( )

( ( ))

( ( )) ( ( ))( )

e a A t e e k e

e b B t e k e

e c C t e d D t y x k e

� � � �
� � �

� � � � � � �

�

�

�
(46)

To simplify the error dynamics (46), we define the parameter estimation error as

( ) ( )

( ) ( )

( ) ( )

( ) ( )

a

b

c

d

e t a A t

e t b B t

e t c C t

e t d D t

� �
� �

� �
� �

(47)

Using (43), we can simplify the error dynamics (46) as

1 2 1 1 1

2 1 2 2

4 4
3 3 1 1 3 3

( )

( )

a

b

c d

e e e e k e

e e e k e

e e e e y x k e

� � �

� �

� � � � �

�

�

�
(48)

Differentiating the parameter estimation error (47) with respect to ,t we get

( ) ( )

( ) ( )

( ) ( )

( ) ( )

a

b

c

d

e t A t

e t B t

e t C t

e t D t

� �

� �

� �

� �

��

��

��

��

(49)

Next, we find an update law for parameter estimates using Lyapunov stability theory.

Consider the quadratic Lyapunov function defined by

� �2 2 2 2 2 2 2
1 2 3 1 2 3

1
( , , , , , , ) ,

2a b c d a b c dV e e e e e e e e e e e e e e� � � � � � � (50)

which is positive definite on R7.

Differentiating V along the trajectories of (48) and (49), we obtain

2 2 2
1 1 2 2 3 3 1 2 1 1 2

2 4 4
3 3 1 1

( )

      ( )

a b

c d

V k e k e k e e e e e A e e e B

e e C e e y x D

� � � �� � � � � � � � �� �� �
� � � �� � � � � �� �� �

�� �

� � (51)

In view of (51), we define an update law for the parameter estimates as

1 2 1

1 2

2
3

4 4
3 1 1

( )

( )

A e e e

B e e

C e

D e y x

� �

�

� �

� �

�

�

�

�

(52)

where 4 5 6 7, , ,k k k k are positive gain constants.
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Theorem 2. The identical novel chaotic systems(41) and (42) with unknown system parameters are
globally and exponentially synchronized for all initial conditions by the adaptive control law (45) and the

parameter update law (52), where ,ik ( 1, 2,3)i � are positive constants.

Proof. The result is proved using Lyapunov stability theory [107]. We consider the quadratic Lyapunov
function V defined by (50), which is a positive definite function on R7.

Substituting the parameter update law (52) into (51), we obtain V� as

2 2 2
1 1 2 2 3 3V k e k e k e� � � �� (53)

which is a negative semi-definite function on R7.

Thus, it can be concluded that the synchronization vector e(t) and the parameter estimation error are
globally bounded, i.e.

� �1 2 3( ) ( ) ( ) ( ) ( ) ( ) .
T

a b ce t e t e t e t e t e t L�� (54)

We define

� �1 2 3min , , .k k k k� (55)

Then it follows from (53) that

2
V k e� ��  or 

2
.k e V� � � (56)

Integrating the inequality (56) from 0 to ,t we get

2

0

( )    ( ) (0) ( )
t t

o

k e d V d V V t� � � �� � � �� � � (57)

Therefore, we can conclude that 2( ) .e t L�

Using (48), we can conclude that ( ) .e t L���

Hence, using Barbalat’s lemma, we can conclude that ( ) 0e t � exponentially as t �� for all initial

conditions 3(0) .e �R

This completes the proof.

Numerical Results

For the novel chaotic systems, the parameter values are taken as in the chaotic case, viz.

8,   55,   4,   5a b c d� � � � (58)

We take the feedback gains as 5ik � for 1,2,3.i �

The initial values of the master system (41) are taken as

1 2 3(0) 5.2,  (0) 2.8,  (0) 3.9x x x� � � � (59)

The initial values of the slave system (42) are taken as

1 2 3(0) 3.1,  (0) 9.4,  (0) 6.7y y y� � � � (60)
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The initial values of the parameter estimates are taken as

(0) 7,  (0) 21,  (0) 9,   (0) 18A B C D� � � � (61)

Figures7-9 depicts the complete synchronization of the identical novel chaotic systems.

Figure 10 depicts the time-history of the synchronization errors.

Figure 7: Complete Synchronization of the States x
1
 and y

1

Figure 8: Complete Synchronization of the States x
2
 and y

2
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Figure 9: Complete Synchronization of the States x
3
 and y

3

Figure 10: Time History of the Chaos Synchronization Errors e
1
, e

2
, e

3

6. CONCLUSIONS

In this paper, we have derived a seven-term novel 3-D polynomial chaotic system with two quadratic
nonlinearities and a quartic nonlinearity. We gave a qualitative analysis of the main properties of the novel
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3-D chaotic system. We determined the Lyapunov exponents of the novel chaotic system as 1 6.11857,L �
2 0L �  and 3 18.34837.L � �  The maximal Lyapunov exponent (MLE) for the novel chaotic system was

found as 1 6.11857,L � and Lyapunov dimension as 2.33739.LD �  Next, we have derived adaptive control
and synchronization results for the novel chaotic system with unknown parameters, which have
been established using Lyapunov stability theory. Numerical simulations with MATLAB wereexhibited to
validate and illustrate the phase portraits of the novel chaotic system and the adaptive results derived in this
paper.
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