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Abstract. We show that for any fixed θ ∈ (−π
2
, 0) ∪ (0, π

2
), the complex

Ornstein-Uhlenbeck operator

L̃θ = 4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
,

is a normal but nonsymmetric diffusion operator.

1. Introduction

In [16], the authors show that for a continuos-time stationary L2-exponential
ergodic Markov process, if its infinitesimal generator A is a normal but non-
symmetric operator then all its power spectrums of real-valued observables are
monotonic on [0,∞) if and only if the eigenvalues of A satisfy the so-called IR-
ratio rule:

|Imz|
|Rez|

≤ 1√
3
, ∀z ∈ σ(A) \ {0} .

Shortly after that, the authors apply the above IR-ratio rule to several finite state
normal but non-symmetric Markov operators in [7].

However, few normal but non-symmetric diffusion operators are well-studied
in the literature. For example, the following 2-dimensional Ornstein-Uhlenbeck
process [

dX1(t)
dX2(t)

]
=

[
−λ −ω
ω −λ

] [
X1(t)
X2(t)

]
dt+

√
2a

[
dB1

t

dB2
t

]
(1.1)

is used to model the Chandler wobble, i.e., the variation of latitude concerning
with the rotation of the earth, by M. Arató, A.N. Kolmogorov and Ya.G. Sinai [3]
(see also [1, 2]) and to model the motion of a charged test particle in the presence
of a constant magnetic field in [4, pp. 181–186]. But as far as we know, many
mathematical properties such as the normality of the generator of (1.1) are still
not written down in the previous literature.
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For simplicity, we can assume that λ+ iω = eiθ, a = cos θ and then rewrite the
generator as a complex-valued operator:

L̃θ = 4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
, (1.2)

where θ ∈ (−π
2 ,

π
2 ) is fixed and ∂f

∂z = 1
2 (

∂f
∂x − i∂f∂y ),

∂f
∂z̄ = 1

2 (
∂f
∂x + i∂f∂y ) are the

Wirtinger derivatives of f at point z = x+iy with x, y ∈ R. In [8], it is shown that
the eigenfunctions are the complex Hermite polynomials and form an orthonormal

basis of L2(γ) where dγ = 1
2π e

− x2+y2

2 dxdy (see Proposition 2.2 below).

In this paper, we will firstly show that L̃θ can be realized as an unbounded
normal operator (see [19, p. 368]) in L2(γ) but nonsymmetric when θ ̸= 0. Sec-
ondly, we extend the known fact about the 1-dimensional real symmetric diffusion
operator [6, 22, 23] to the complex case. Precisely stated, we present the explicit

expression of L̃θ in L2(γ) (see Theorem 4.3) and show that it is a normal diffusion
operator (see Theorem 4.4).

This article is organized as follows. Section 2 provides necessary information
of complex Hermite polynomials. Section 3 contains the proof of the normality of
the complex Ornstein-Uhlenbeck semigroup. Section 4 contains the main results
on the explicit expression of L̃θ and the property of the normal diffusion operator.
Finally, some necessary approximation of identity and N-representation theorem
are listed in Appendix.

2. Preliminaries

Definition 2.1. (Definition of the complex Hermite polynomials [8, Def. 2.4]) We
call ∂ := ∂

∂z and ∂̄ := ∂
∂z̄ the complex annihilation operators. Let m,n ∈ N. We

define the sequence on C (or say: R2)

J0,0(z) = 1,

Jm,n(z) =

√
2m+n

m!n!
(∂∗)m(∂̄∗)n1,

where (∂∗ϕ)(z) = − ∂
∂z̄ϕ(z) +

z
2ϕ(z), (∂̄

∗ϕ)(z) = − ∂
∂zϕ(z) +

z̄
2ϕ(z) for ϕ ∈ C1

↑(R2)

(see Definition 5.1) are the adjoint of the operators ∂, ∂̄ in L2(γ) respectively (the
complex creation operator).

In [8, Theorem 2.7, Corollary 2.8], the authors show that Jm,n(z) satisfies that:

Proposition 2.2. The complex Hermite polynomials {Jm,n(z) : m,n ∈ N} form

an orthonormal basis of L2(γ) where dγ = 1
2π e

− x2+y2

2 dxdy. Thus, every function

f in L2(γ) has a unique series expression

f =
∞∑

m=0

∞∑
n=0

bm,nJm,n(z),

where the coefficients bm,n are given by

bm,n = ⟨f, Jm,n⟩ =
∫
R2

fJm,n(z)dγ.
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Moreover, for any θ ∈ (−π
2 ,

π
2 ) and each m,n ∈ N,

L̃θJm,n(z) = −[(m+ n) cos θ + i(m− n) sin θ]Jm,n(z). (2.1)

The real Hermite polynomials are defined by the formula1

Hn(x) =
(−1)n√
n!

ex
2/2 dn

dxn
e−x2/2, n = 1, 2, . . . .

The following property gives the fundamental relation between the real and the
complex Hermite polynomials [8, Corollary 2.8].

Proposition 2.3. Let z = x + iy with x, y ∈ R. Both {Jk,l(z) : k + l = n} and
{Hk(x)Hl(y) : k + l = n} generate the same linear subspace of L2(γ).

3. The Normality of the Complex Ornstein-Uhlenbeck Semigroup

The Ornstein-Uhlenbeck process (1.1) can be rewritten as a complex-valued
process: {

dZt = −eiθZtdt+
√
2 cos θdζt, t ≥ 0,

Z0 = x ∈ C, (3.1)

where θ ∈ (−π
2 ,

π
2 ), and ζt = B1(t)+iB2(t) is a complex Brownian motion. Solving

for Z gives

Zt = e−(cos θ+i sin θ)t
(
x+

√
2 cos θ

∫ t

0

e(cos θ+i sin θ)s dζs
)
. (3.2)

Thus, the associated Ornstein-Uhlenbeck semigroup of Eq.(3.1) has the following
explicit representation, due to Kolmogorov, for each φ ∈ Cb(R2) (the space of all
continuous and bounded complex-valued functions on R2),

Ptφ(x) = Ex[φ(Zt)] (3.3)

=
1

2π(1− e−2t cos θ)

∫
R2

e
− |y|2

2(1−e−2t cos θ)φ(e−(cos θ+i sin θ)tx− y) dy1dy2,

(3.4)

where y = y1 + iy2 and x, y ∈ C and we write a function φ(y1, y2) of the two real
variables y1 and y2 as φ(y) of the complex argument y1 + iy2 (i.e., we use the
complex representation of R2 in (3.3-3.4)). The change of variable formula yields
the following Mehler formula [8, p. 584].

Proposition 3.1. (Mehler formula) For each φ ∈ Cb(R2),

Ptφ(x) =

∫
C
φ(e−(cos θ+i sin θ)tx+

√
1− e−2t cos θy) dγ(y), (3.5)

where

dγ(y) =
1

2π
exp

{
− (y21 + y22)

2

}
dy1dy2. (3.6)

1Note that Hn(x) =
(−1)n

n!
ex

2/2 dn

dxn e−x2/2 in [14, 20] and Hn(x) = (−1)nex
2/2 dn

dxn e−x2/2

in [8, 11], here we use the definition in [23].
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Similar to the real Ornstein-Uhlenbeck semigroup [20, Proposition 2.3], using
the rotation invariant of the measure γ and Lebesgue’s dominated convergence
theorem, it follows from Proposition 3.1 that γ is the unique invariant measure of
Pt. In detail, for each φ ∈ Cb(R2),∫

C
Ptφ(x) dγ(x) =

∫
C
φ(x) dγ(x) (3.7)

and

lim
t→∞

Ptφ(x) =

∫
C
φ(y) dγ(y), ∀x ∈ C. (3.8)

Denote the associated transition probabilities on C as Pt(x,A) = Pt1A(x) for
each A ∈ B(R2). Along the same line of the real case [6, 20, 23], for each p ≥ 1, it
follows from Jensen’s inequality that for each φ ∈ Cb(R2),

∥Ptφ∥pLp(γ) =

∫
C
|Ptφ(x)|p dγ(x) =

∫
C

∣∣∣∣∫
C
φ(y)Pt(x, d y)

∣∣∣∣p dγ(x)

≤
∫
C
dγ(x)

∫
C
|φ(y)|p Pt(x, d y)

=

∫
C
|φ|p (x) dγ(x) (by (3.7))

= ∥φ∥pLp(γ) .

It follows from the B.L.T. theorem [17, p. 9] that {Pt}t≥0 can be uniquely extended

to a strong continuous contraction semigroup {T p
t }t≥0 on Lp(γ) for each p ≥ 1

2. Let Ap be the (infinitesimal) generator, then Ap is closed and D(Ap) = Lp(γ)
(i.e., densely defined) [15, 17].

Lemma 3.2. Suppose Y⃗ = (y1, . . . , yn), Z⃗ = (z1, . . . , zn) ∈ Cn and Y⃗ = MZ⃗,
where M = (Mij) is an n-by-n unitary matrix over the field C. If zi, i = 1 . . . , n

are independent, each being centered complex normal such that E |zi|2 = σ2, then
yi, i = 1 . . . , n are also independent, each being centered complex normal such that
E |yi|2 = σ2.

Proof. It follows from [9, Theorem 1.1] that yi, i = 1 . . . , n are centered complex
normal. In addition, we have that

E[yiȳj ] =
∑
k,l

MikE[zkz̄l]M̄jl = σ2
∑
k

MikM̄jk = σ2δij ,

where δij is the Kronecker delta. Thus, yi, i = 1 . . . , n have independent identical
distributions with variance σ2. □
Proposition 3.3. For each θ ∈ (−π

2 ,
π
2 ), denote the semigroup Pt depending on

θ in (3.3) by P θ
t , then for each ϕ ∈ Cb(R2)

P θ
t (P

θ
t )

∗ϕ(x) = (P θ
t )

∗P θ
t ϕ(x), (3.9)

where (P θ
t )

∗ is the adjoint operator of P θ
t in L2(γ). Furthermore, when restricted

on Cb(R2), (P θ
t )

∗ = P−θ
t .

2Namely, T p
t is the closure (see [17, p. 250]) in Lp(γ) of the operator Pt.
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Proof. Set α = eiθ. For each ϕ, ψ ∈ Cb(R2) and t ≥ 0, we have that

⟨P θ
t ϕ, ψ⟩ =

∫
C
ψ̄(z1) dγ(z1)

∫
C
ϕ(e−αtz1 +

√
1− e−2tReαz2) dγ(z2)

=

∫
C
ϕ(y1) dγ(y1)

∫
C
ψ(e−ᾱty1 −

√
1− e−2tReαy2) dγ(y2) (3.10)

=

∫
C
ϕ(y1) dγ(y1)

∫
C
ψ(e−ᾱty1 +

√
1− e−2tReαy2) dγ(y2) (3.11)

= ⟨ϕ, P−θ
t ψ⟩,

where (3.10) is deduced from Lemma 3.2 by taking n = 2 and

M =

[
e−αt

√
1− e−2tReα

−
√
1− e−2tReα e−ᾱt

]
,

and (3.11) is deduced from the rotation invariant of the measure γ. Therefore,

the adjoint operator of P θ
t in L2(γ) satisfies that (P θ

t )
∗ = P−θ

t when restricted on
Cb(R2) for each θ ∈ (−π

2 ,
π
2 ). Thus, for each ϕ ∈ Cb(R2),

P θ
t (P

θ
t )

∗ϕ(x)

=

∫
C2

ϕ
(
e−ᾱt(e−αtx+

√
1− e−2tReαz1) +

√
1− e−2tReαz2

)
dγ(z1)dγ(z2)

=

∫
C
ϕ
(
e−2tReαx+

√
1− e−4tReαz

)
dγ(z) (3.12)

=

∫
C2

ϕ
(
e−αt(e−ᾱtx+

√
1− e−2tReαz1) +

√
1− e−2tReαz2

)
dγ(z1)dγ(z2)

= (P θ
t )

∗P θ
t ϕ(x),

where (3.12) is deduced from the well-known fact that if Z1, Z2 are two inde-

pendent standard complex normal random variables, then e−ᾱt
√
1− e−2tReαZ1 +√

1− e−2tReαZ2 and
√
1− e−4tReαZ1 have the same law [9, Theorem 1.1]. □

Theorem 3.4.
{
T 2
t

}
t≥0

is a semigroup of normal operators (see [19, p. 382]) in

L2(γ) and thus the generator A2 is a normal operator in L2(γ).

Proof. Since T 2
t is the closure of the contraction operator Pt in L2(γ), it follows

from (c) of Theorem VIII.1 in [17, p. 253] that the adjoint operator of T 2
t equals

to that of Pt. It follows from the density argument that (3.9) can be extended to
each ϕ ∈ L2(γ), i.e.,

T 2
t (T

2
t )

∗ϕ = (T 2
t )

∗T 2
t ϕ, ∀ϕ ∈ L2(γ).

Thus
{
T 2
t

}
t≥0

is a semigroup of normal operators. It follows from [19, Theo-

rem 13.38] that the generator A2 is a normal operator in L2(γ). □

4. The Normal Diffusion Operators in C

The first aim of this section is to show the explicit expression of the generator
A2.



362 YONG CHEN

Definition 4.1. For any θ ∈ (−π
2 ,

π
2 ), define

D(Lθ) =

{
f ∈ L2(γ),

∞∑
m=0

∞∑
n=0

(m2 + n2 + 2mn cos 2θ) |⟨f, Jm,n⟩|2 <∞

}
(4.1)

and

Lθf = −
∞∑

m=0

∞∑
n=0

[(m+ n) cos θ + i(m− n) sin θ]⟨f, Jm,n⟩Jm,n(z). (4.2)

Theorem 4.2. If ϕ ∈ C2
↑(R2), then ϕ ∈ D(Lθ) and

Lθϕ = [4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
]ϕ. (4.3)

Theorem 4.3. Let A2 be as in Theorem 3.4 and Lθ be as in Definition 4.1. For
any θ ∈ (−π

2 ,
π
2 ), A2 = Lθ, i.e., D(A2) = D(Lθ) and A2φ = Lθφ on D(Lθ).

The second aim of this section is to show that the operator Lθ defined above
satisfies the following theorem, which is named as the normal diffusion operator
analogous to the symmetric diffusion operator given by Stroock [6, 22, 23].

Theorem 4.4. The densely defined linear closed operator Lθ defined in Proposi-
tion 4.1 is a normal diffusion operator. Namely, it satisfies that:

1) Lθ is a normal operator on D(Lθ).
2) 1 ∈ D(Lθ) and Lθ1 = 0.
3) There exists a linear subspace

D ⊂
{
ϕ ∈ D(Lθ) ∩ L4(γ) : Lθϕ ∈ L4(γ), |ϕ|2 ∈ D(Lθ)

}
such that graph(Lθ|D) is dense in graph(Lθ).

4) For any θ ∈ (−π
2 ,

π
2 ), define(

ϕ, ψ
)
θ
=

1

2 cos θ
[Lθ(ϕψ̄)− ϕLθ(ψ̄)− ψ̄Lθ(ϕ)]

for ϕ, ψ ∈ D. Then
(
·, ·

)
θ
: D × D → L2(γ) is a non-negative definite

bilinear form on the field C.
5) (Diffusion property)If ϕ⃗ = (ϕ1, . . . , ϕn) ∈ Dn and F ∈ C2

↑(Cn), then F ◦
ϕ⃗ ∈ D(Lθ) and

Lθ(F ◦ ϕ⃗)

= cos θ
n∑

i,j=1

(
ϕi, ϕ̄j

)
θ

∂2F

∂zi∂zj
◦ ϕ⃗+

(
ϕ̄i, ϕj

)
θ

∂2F

∂z̄i∂z̄j
◦ ϕ⃗+ 2

(
ϕi, ϕj

)
θ

∂2F

∂zi∂z̄j
◦ ϕ⃗

+

n∑
i=1

Lθϕi
∂F

∂zi
◦ ϕ⃗+ Lθϕ̄i

∂F

∂z̄i
◦ ϕ⃗. (4.4)

6) Lθ has an extension A1 to L1(γ) with domain D(A1) such that

D(Lθ) =
{
ϕ ∈ D(A1) ∩ L2(γ) : A1ϕ ∈ L2(γ)

}
,

i.e., the closure of Lθ in L1(γ) is A1.

Proofs of Theorems 4.2-4.4 are presented in Section 4.1.
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4.1. Proofs of Theorems.

Proposition 4.5. Let Lθ be as in Definition 4.1. Then Lθ is closed on L2(γ).

Proof. Suppose that fk ∈ D(Lθ) such that fk → f, Lθfk → g in L2(γ), we will
show that f ∈ D(Lθ) and Lθf = g. In fact, by Fatou’s lemma and Parseval’s
identity, we have that

∞∑
m,n=0

(m2 + n2 + 2mn cos 2θ) |⟨f, Jm,n⟩|2

≤ lim inf
k→∞

∞∑
m,n=0

(m2 + n2 + 2mn cos 2θ) |⟨fk, Jm,n⟩|2

= lim inf
k→∞

∥Lθfk∥2

= ∥g∥2 <∞.

Thus f ∈ D(Lθ). For each m,n ≥ 0, we have that

lim
k→∞

⟨[(m+ n) cos θ + i(m− n) sin θ]fk + g, Jm,n⟩

= ⟨[(m+ n) cos θ + i(m− n) sin θ]f + g, Jm,n⟩
It follows from Parseval’s identity and Fatou’s lemma that

∥Lθf − g∥2 =
∞∑

m,n=0

|⟨[(m+ n) cos θ + i(m− n) sin θ]f + g, Jm,n⟩|2

≤ lim inf
k→∞

∞∑
m,n=0

|⟨[(m+ n) cos θ + i(m− n) sin θ]fk + g, Jm,n⟩|2

= lim inf
k→∞

∥Lθfk − g∥2 = 0.

Thus Lθf = g. □
Remark 4.6. Suppose that Hm,n(x, y) = Hm(x)Hn(y) is the Hermite polynomial
of two variables. Then it follows from Proposition 2.3 that∑

m+n=l

|⟨f, Jm,n⟩|2 =
∑

m+n=l

|⟨f, Hm,n⟩|2 .

Together with

(m+n)2 ≥ m2+n2+2mn cos 2θ = (m+n)2 cos θ2+(m−n)2 sin θ2 ≥ (m+n)2 cos θ2,

we deduce that

D(Lθ) =

{
f ∈ L2(γ),

∞∑
m=0

∞∑
n=0

(m+ n)2 |⟨f, Jm,n⟩|2 <∞

}

=

{
f ∈ L2(γ),

∞∑
m=0

∞∑
n=0

(m+ n)2 |⟨f, Hm,n⟩|2 <∞

}
, (4.5)

that is to say, D(Lθ) is independent to θ. In fact, the right hand side of (4.5) is
exact the Sobolev weighted space H2

γ , please refer to [12] for details.
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Proposition 4.7. For any θ ∈ (−π
2 ,

π
2 ), Lθ is a normal operator on D(Lθ) such

that 1 ∈ D(Lθ) and Lθ1 = 0.

Proof. Suppose that f, g ∈ D(Lθ). It follows from Parseval’s identity that

⟨Lθf, g⟩ = −
∞∑
m,n

[(m+ n) cos θ + i(m− n) sin θ]⟨f, Jm,n⟩⟨g, Jm,n⟩

= −
∞∑
m,n

⟨f, Jm,n⟩[(m+ n) cos θ − i(m− n) sin θ]⟨g, Jm,n⟩

= ⟨f, L−θg⟩.

Thus, the adjoint operator of Lθ is L∗
θ = L−θ. The equality (4.5) implies that

D(Lθ) = D(L−θ) = D(L∗
θ).

And for each f ∈ D(Lθ) such that Lθf ∈ D(L∗
θ), we have that

L∗
θLθf =

∑
m,n

(m2 + n2 + 2mn cos 2θ)⟨f, Jm,n⟩Jm,n(z) = LθL∗
θf.

Therefore, Lθ is a normal operator on D(Lθ). 1 ∈ D(Lθ) and Lθ1 = 0 is trivial. □

Proposition 4.8. Denote by D = span {Jm,n, m, n ≥ 0} the linear span (also
called the linear hull) of complex Hermite polynomials. Then

D ⊂
{
ϕ ∈ D(Lθ) ∩ L4(γ) : Lθϕ ∈ L4(γ), |ϕ|2 ∈ D(Lθ)

}
(4.6)

and graph(Lθ|D) is dense in graph(Lθ).

Proof. The equality [8, Theorem 2.5]

Jm,n(z) = (m!n!2m+n)−
1
2

m∧n∑
r=0

(−1)r2r
m!n!

(m− r)!(n− r)!r!
zm−r z̄n−r, ∀m,n ≥ N

and the equality [8, Corollary 2.8]

zmz̄n =
m∧n∑
k=0

m!n!

(m− k)!(n− k)!k!

√
(m− k)!(n− k)!2m+nJm−k,n−k(z), ∀m,n ≥ N

imply that D = span {Jm,n, m, n ≥ 0} = span {zmz̄n, m, n ≥ 0}. But f(z) =
zmz̄n belonging to the right hand side of (4.6) is trivial. Thus (4.6) holds.

Since D is a dense subset of L2(γ) (see Proposition 2.2), D is dense in D(Lθ).
Note that Lθ is a closed operator, we get that graph(Lθ|D) is dense in graph(Lθ).

□

Proof of Theorem 4.2. First, it follows from Proposition 2.2 that (4.3) holds when
ϕ ∈ D = span {Jm,n, m, n ≥ 0}.

Second, suppose that ϕ ∈ L2(γ) satisfies that the sequence

am,n = ⟨ϕ, Hm(x)Hn(y)⟩
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is rapidly decreasing, then we will show that ϕ ∈ D(Lθ) and (4.3) is satis-
fied. In fact, it follows from Proposition 5.8 that the Hermite expansion ϕ(z) =∑∞

m,n=0 am,nHm(x)Hn(y) satisfies that∥∥∥∥xk1yk2
∂p1+p2

∂xp1∂yp2
(ϕ− ϕl)

∥∥∥∥
L2(γ)

→ 0 as l → ∞, ∀k1, k2, p1, p2 ∈ N,

where ϕl =
∑

m+n≤l am,nHm(x)Hn(y). Thus,∥∥∥∥zk1 z̄k2
∂p1+p2

∂zp1∂z̄p2
(ϕ− ϕl)

∥∥∥∥
L2(γ)

→ 0 as l → ∞, ∀k1, k2, p1, p2 ∈ N.

It follows from Proposition 2.3 that∑
m+n≤l

am,nHm(x)Hn(y) =
∑

m+n≤l

bm,nJm,n(z).

Thus, as l → ∞, we have that in L2(γ), ϕl → ϕ and

Lθϕl = −
∑

m+n≤l

[(m+ n) cos θ + i(m− n) sin θ]bm,nJm,n(z)

= [4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
]ϕl

→ [4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
]ϕ.

Since Lθ is closed, we have that ϕ ∈ D(Lθ) and (4.3) is satisfied.
Finally, it follows from Proposition 5.5 that if ϕ ∈ C2

↑(R2) then there exists

an approximation of identity Bϵϕ ∈ C∞
c (R2) such that for all p1 + p2 ≤ 2 and

k1, k2 ≥ 0, xk1yk2 ∂p1+p2

∂xp1∂yp2
(Bϵϕ) → xk1yk2 ∂p1+p2

∂xp1∂yp2
ϕ in L2(γ) as ϵ → 0. In ad-

dition, it follows from Proposition 5.6 that the sequence ⟨Bϵϕ, Hm(x)Hn(y)⟩ is
rapidly decreasing. Thus, as ϵ→ 0, we have that in L2(γ), Bϵϕ→ ϕ and

Lθ(Bϵϕ) = [4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
]Bϵϕ

→ [4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
]ϕ.

Since Lθ is closed, we have that ϕ ∈ D(Lθ) and (4.3) is satisfied. □
Proof of Theorem 4.3. First, it follows from the density argument (see Proposi-
tion 5.5) and Lebesgue’s dominated convergence theorem that the Mehler formula
(3.5) is still valid for φ ∈ C0

↑(R
2), i.e.,

T 2
t φ(x) =

∫
C
φ(e−(cos θ+i sin θ)tx+

√
1− e−2t cos θy) dγ(y), ∀φ ∈ C0

↑(R
2).

Then T 2
t φ(x) = Ptφ(x) = Ex[φ(Zt)] for each φ ∈ C0

↑(R2).
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Second, using (3.1), it follows from Ito’s lemma and Theorem 4.2 that for each
φ ∈ C2

↑(R2),

φ(Zt) = φ(x) +

∫ t

0

∂

∂z
φ(Zs) dZs +

∫ t

0

∂

∂z̄
φ(Zs) dZ̄s +

∫ t

0

∂2

∂z∂z̄
(Zs)d⟨Z, Z̄⟩s

= φ(x) +

∫ t

0

Lθφ(Zs) ds−
√
2 cos θ(

∫ t

0

∂φ

∂z
(Zs)dζs +

∫ t

0

∂φ

∂z̄
(Zs)dζ̄s).

Then

T 2
t φ(x) = Ex[φ(Zt)] = φ(x) + Ex[

∫ t

0

Lθφ(Zs) ds]

= φ(x) +

∫ t

0

Ex[Lθφ(Zs)] ds (by Fubini Theorem)

= φ(x) +

∫ t

0

T 2
s Lθφ(x) ds,

and

A2φ = lim
t↓0

T 2
t φ− φ

t
= lim

t↓0

1

t

∫ t

0

T 2
s Lθφ(x) ds

= Lθφ (in L2(γ)),

where to get the last equality we use the continuity of t→ T 2
t φ for any φ ∈ L2(γ)

(see [15, Corollary 2.3] or part (a) of [15, Theorem 2.4]). Therefore, A2 = Lθ on
C2

↑(R2),

Third, since graph(Lθ|C2
↑(R2)) is dense in graph(Lθ) (see Proposition 4.8) and

A2 is closed, we have that Lθ ⊆ A2. It follows from Proposition 4.7 and Theo-
rem 3.4 that both Lθ and A2 are normal operators. Since Lθ is maximally normal
(see [19, Theorem 13.32]), we have that A2 = Lθ. □
Corollary 4.9. For any θ ∈ (−π

2 ,
π
2 ), Lθ ⊆ A1 (i.e., A1 is an extension of Lθ to

L1(γ)) and

D(Lθ) =
{
ϕ ∈ D(A1) ∩ L2(γ) : A1ϕ ∈ L2(γ)

}
. (4.7)

Proof. The proof is similar to the real case [6, p. 19]. In detail,

D(Lθ) = D(A2) ⊂
{
ϕ ∈ D(A1) ∩ L2(γ) : A1ϕ ∈ L2(γ)

}
is trivial. Now suppose that ϕ ∈ D(A1) ∩ L2(γ) and A1ϕ ∈ L2(γ), then as t→ 0,

T 2
t ϕ− ϕ

t
=
T 1
t ϕ− ϕ

t

=
1

t

∫ t

0

T 1
sA1ϕds (by the semigroup equation)

=
1

t

∫ t

0

T 2
sA1ϕds→ A1ϕ (in L2(γ)),

where we use again the continuity of t → T 2
t φ for the last equality. Thus ϕ ∈

D(A2) = D(Lθ) and (4.7) holds. □
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Proof of Theorem 4.4. By Proposition 4.5, Lθ is closed. 1)-3) and 6) of Theo-
rem 4.4 are shown by Proposition 4.7-4.8 and Corollary 4.9 respectively. Since

F ∈ C2
↑(Cn) and ϕ⃗ = (ϕ1, . . . , ϕn) ∈ Dn, then F ◦ ϕ⃗ ∈ C2

↑(R2). By the complex

version of the chain rule [21, p. 27], it follows from Theorem 4.2 that

Lθ(F ◦ ϕ⃗) = [4 cos θ
∂2

∂z∂z̄
− eiθz

∂

∂z
− e−iθ z̄

∂

∂z̄
](F ◦ ϕ⃗)

= −eiθz
n∑

i=1

∂

∂z
ϕi
∂F

∂zi
◦ ϕ⃗+

∂

∂z
ϕ̄i
∂F

∂z̄i
◦ ϕ⃗

− e−iθ z̄
n∑

i=1

∂

∂z̄
ϕi
∂F

∂zi
◦ ϕ⃗+

∂

∂z̄
ϕ̄i
∂F

∂z̄i
◦ ϕ⃗

+ 4 cos θ
n∑

i=1

∂2ϕi
∂z∂z̄

∂F

∂zi
◦ ϕ⃗+

∂2ϕ̄i
∂z∂z̄

∂F

∂z̄i
◦ ϕ⃗

+ 4 cos θ
n∑

i,j=1

∂

∂z
ϕi(

∂

∂z̄
ϕj

∂2F

∂zi∂zj
◦ ϕ⃗+

∂

∂z̄
ϕ̄j

∂2F

∂zi∂z̄j
◦ ϕ⃗)

+ 4 cos θ

n∑
i,j=1

∂

∂z
ϕ̄i(

∂

∂z̄
ϕj

∂2F

∂z̄i∂zj
◦ ϕ⃗+

∂

∂z̄
ϕ̄j

∂2F

∂z̄i∂z̄j
◦ ϕ⃗)

= 4 cos θ
n∑

i,j=1

∂

∂z
ϕi

∂

∂z̄
ϕj

∂2F

∂zi∂zj
◦ ϕ⃗+

∂

∂z
ϕ̄i

∂

∂z̄
ϕ̄j

∂2F

∂z̄i∂z̄j
◦ ϕ⃗

+ 4 cos θ
n∑

i,j=1

(
∂

∂z
ϕi

∂

∂z̄
ϕ̄j +

∂

∂z̄
ϕi

∂

∂z
ϕ̄j)

∂2F

∂zi∂z̄j
◦ ϕ⃗

+

n∑
i=1

Lθϕi
∂F

∂zi
◦ ϕ⃗+ Lθϕ̄i

∂F

∂z̄i
◦ ϕ⃗. (4.8)

Taking F (z1, z2) = z1z2 in the above equation, we have that(
ϕ, ψ

)
θ
=

1

2 cos θ
[Lθ(ϕψ̄)− ψ̄Lθ(ϕ)− ϕLθ(ψ̄)]

= 2[
∂ϕ

∂z

∂ψ̄

∂z̄
+
∂ϕ

∂z̄

∂ψ̄

∂z
] = 2[

∂ϕ

∂z

∂ψ

∂z
+
∂ϕ

∂z̄

∂ψ

∂z̄
]. (4.9)

Hence,
(
ϕ, ψ

)
θ
is a non-negative definite bilinear form on the field C. Substituting

(4.9) into (4.8), we show (4.4). Thus, 4)-5) of Theorem 4.4 are obtained. □

5. Appendix

To be self-contained, we list the necessary results of functions slowly increasing
at infinity. Some results which can not be found in textbooks will be shown shortly
here. In this section all functions will be complex-valued and defined on Rn.

Definition 5.1. Denote by C∞
c (Rn) the space of smooth and compactly supported

functions on Rn [5, p. 5]). Denote by S(Rn) the space of C∞ functions rapidly
decreasing at infinity [5, p. 105]. We say that a continuous function f(x) is slowly
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increasing at infinity if there exists an integer k such that (1+r2)−
k
2 f(x) is bounded

in Rn with r = |x| [5, p. 110]. Denote by Cm
↑ (Rn) the space of all functions having

slowly increasing at infinity continuous partial derivatives of order ≤ m.

Notation 1. Denote by γ the n-dimensional standard Gaussian measure:

dγ(x) = (2π)−
n
2 exp

{
−|x|2

2

}
dx, x ∈ Rn.

Denote the density function by ρ(x) = dγ(x)
dx .

5.1. Approximation of identity of Cm
↑ (Rn) in Lq(γ).

Notation 2. Set

ϕ(x) = e
− 1

1−|x|2 1{|x|<1}, x ∈ Rn, (5.1)

where |x| =
√
x21 + · · ·+ x2n and 1B the characteristic function of set B. Divide

this function by its integral over the whole space to get a function α(x) of integral
one which is called a mollifier. Next, for every ϵ > 0, define [5, p. 5]

αϵ(x) =
1

ϵn
α(
x

ϵ
). (5.2)

Let L1
loc(Rn) be the space of locally integrable function on Rn. If u ∈ L1

loc(Rn),
the function

uϵ(x) =

∫
Rn

u(x− y)αϵ(y)dy =

∫
Rn

αϵ(x− y)u(y)dy (5.3)

is said to be the convolution of u and αϵ [5, Definition 1.4]. It is also denoted by
the convolution operator Aϵu = (u ∗ αϵ)(x).

Lemma 5.2. Suppose that f(x) ∈ C0
↑(Rn). Then Aϵf ∈ C∞

↑ (Rn) (the space of

C∞ functions slowly increasing at infinity) and for any q ≥ 1 and any k ∈ Nn,
lim
ϵ→0

xkAϵf = xkf in Lq(γ).

Proof. First, for any ϵ > 0, since αϵ ∈ C∞
c (Rn) ⊂ S(Rn) and f(x) ∈ C0

↑(Rn) ⊂
S′(Rn) (tempered distributions, see Example 4 in [5, 110]), it follows from Theo-
rem 4.9 of [5, p. 133] that Aϵf = f ∗ αϵ ∈ C∞

↑ (Rn).

Second, since any polynomial P (x), x ∈ Rn, is in Lq(γ), we have f, Aϵf ∈
Lq(γ). Thus,

∥Aϵf − f∥qq = lim
n→∞

∫
Ba

|Aϵf − f |q dγ(x),

where Ba = {x ∈ Rn, |x| ≤ a}.
Finally, given σ > 0, there exists Ba such that

∥Aϵf − f∥qq ≤
∫
Ba

|Aϵf − f |q dγ(x) +
σ

2
. (5.4)

Note that∫
Ba

|Aϵf − f |q dγ(x) ≤ sup
x∈Ba

|Aϵf − f |q γ(Kn) ≤ sup
x∈Ba

|Aϵf − f |q . (5.5)
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It follows from [5, Theorem 1.1] that Aϵf → f uniformly on Ba as ϵ → 0. Thus

there exists ϵ0 > 0 such that supx∈Ba
|Aϵf − f | ≤ (σ2 )

1
q for any 0 < ϵ < ϵ0.

Together with (5.4) and (5.5), we have that ∥Aϵf − f∥qq ≤ σ, which proves that

Aϵf → f in Lq(γ), as ϵ→ 0.
Similar to the above proof, it follows that for any k ∈ Nn, lim

ϵ→0
xkAϵf = xkf in

Lq(γ). □

Corollary 5.3. Suppose that f(x) ∈ Cm
↑ (Rn). Then for any p, k ∈ Nn such that

|p| ≤ m, xk∂p(Aϵf) → xk∂pf in Lq(γ), as ϵ→ 0.

Proof. First, if f(x) ∈ Cm
↑ (Rn) then ∂pf ∈ C0

↑(Rn) for any p ∈ Nn such that

|p| ≤ m. It follows from Lemma 5.2 that xkAϵ(∂
pf) → xk∂pf in Lq(γ) for any

k ∈ Nn. Second, for any p ∈ Nn, if u, ∂pu ∈ L1
loc(Rn) then ∂p(Aϵu) = Aϵ(∂

pu).
Finally, since C0

↑(Rn) ⊂ L1
loc(Rn), we have that xk∂p(Aϵf) → xk∂pf in Lq(γ). □

Notation 3. Let a ∈ R+ and denote by Ba+1 and Ba concentric balls of radius
a+1 and a, respectively. It follows from Corollary 3 of [5, p. 9] that there exists a
so-called (smooth) cutoff function βa(x) ∈ C∞

c (Rn) such that: (i) 0 ≤ βa ≤ 1 and
suppβa ⊂ Ba+1, (ii) βa(x) = 1 on Ba, (iii) for all p ∈ Nn, supx∈R |∂pβa| ≤ c(n, p).

Lemma 5.4. Let the cutoff function βa prevail. Suppose that g ∈ C∞
↑ (Rn) and

set ga = gβa. Then ga ∈ C∞
c (Rn), and for any k, p ∈ Nn, lim

a→∞
xk∂pga = xk∂pg

in Lq(γ) for any q ≥ 1.

Proof. The Lebniz’s rule implies that

∂pga =
∑
l≤p

p!

l!(p− l)!
∂lβa∂

p−lg.

Denote Ga = Rn − Ba, it follows from (i)-(iii) of Notation 3 that

|∂pga − ∂pg| = 1Ga

∣∣∣∣∣∣(βa − 1)∂pg +
∑

0<l≤p

p!

l!(p− l)!
∂lβa∂

p−lg

∣∣∣∣∣∣
≤ c× 1Ga

∑
l≤p

∣∣∂p−lg
∣∣ , (5.6)

where c = p! max
0<l≤p

c(n, p− l)/l!(p− l)!.

Since g ∈ C∞
↑ (Rn), we have h(x) := xk

∑
l≤p

∣∣∂p−lg
∣∣ ∈ C∞

↑ (Rn) ⊂ Lq(γ).

Therefore, h1Ga → 0 in Lq(γ) as a → ∞. Together with (5.6), we have that
lim
a→∞

xk∂pga = xk∂pg in Lq(γ). □

Proposition 5.5. (Approximation of identity of Cm
↑ (Rn) in Lq(γ))

Suppose that f(x) ∈ Cm
↑ (Rn). Denote

Bϵf = β 1
ϵ
×Aϵf.

Then Bϵf ∈ C∞
c (Rn), and for q ≥ 1 and k, p ∈ Nn such that |p| ≤ m, xk∂p(Bϵf) →

xk∂pf in Lq(γ), as ϵ→ 0.
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Proof. Lemma 5.2 implies that Aϵf ∈ C∞
↑ (Rn). Then it follows from Lemma 5.4

that Bϵf ∈ C∞
c (Rn) and

∥∥xk∂p(Bϵf)− xk∂p(Aϵf)
∥∥
q
→ 0. Corollary 5.3 implies

that ∥∥xk∂p(Aϵf)− xk∂pf
∥∥
q
→ 0.

By the triangle inequality, we have that as ϵ→ 0,∥∥xk∂p(Bϵf)− xk∂pf
∥∥
q
≤

∥∥xk∂p(Bϵf)− xk∂p(Aϵf)
∥∥
q
+
∥∥xk∂p(Aϵf)− xk∂pf

∥∥
q

→ 0.

□
5.2. The N-representation theorem for S(Rn) in L2(γ). Suppose

Hl(x) =
(−1)l√
l!
ex

2/2 dl

dxl
e−x2/2

is the l-th Hermite polynomial of one variable. It is well known that the set of
Hermite polynomials of several variables{

Hm :=

n∏
k=1

Hmk
(xk), m = (m1, . . . ,mn) ∈ Nn

}
(5.7)

is an orthonormal basis of L2(γ). Thus, every function u ∈ L2(γ) has a unique
series expression

u =
∑

m∈Nn

amHm, (5.8)

where the coefficients am are given by

am =

∫
Rn

u(x)Hm(x) dγ(x).

Proposition 5.6. u ∈ L2(γ) satisfies that am =
∫
Rn u(x)Hm(x) dγ(x) is rapidly

decreasing (i.e., for r ∈ Nn ≥ 0, am = O(m−r) as |m| → ∞) if and only if

u = fρ−
1
2 with f ∈ S(Rn).

Proof. Denote the Hermite functions Hm(x) = Hm(x)ρ
1
2 , then∫

Rn

u(x)Hm(x) dγ(x) =

∫
Rn

f(x)Hm(x) dx.

The desired conclusion is followed from Theorem 3.5 and Exercise 3 of [10, p. 135].
□

Remark 5.7. Clearly, the smooth and compactly supported function satisfies the
above condition. In fact,

C∞
c (Rn) =

{
u = fρ−

1
2 : f ∈ C∞

c (Rn)
}
⊂

{
u = fρ−

1
2 : f ∈ S(Rn)

}
.

Proposition 5.8. If u ∈ L2(γ) satisfies that am =
∫
Rn u(x)Hm(x) dγ(x) is rapidly

decreasing, then the Hermite expansion u(x) =
∑

m∈Nn amHm(x) satisfies that∥∥xk∂p(u− ul)
∥∥
L2(γ)

→ 0 as l → ∞, ∀k, p ∈ Nn,

where ul =
∑

|m|≤l amHm(x).
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Proof. Proposition 5.6 implies that S(Rn) ∋ f =
∑

m amHm(x). Denote fl =

ulρ
1
2 , then it follows from the N-representation theorem for S(Rn) (see Theo-

rem V.13 of [17, p. 143]) that fl → f in S(Rn) which means that: as l → ∞,∥∥xm∂i(f − fl)
∥∥
L2(dx)

→ 0 ∀m, i ∈ Nn.

The Lebniz’s rule implies that there exists a constant c > 0 such that∥∥xk∂p(u− ul)
∥∥
L2(γ)

≤ c
∑

m≤k+p, i≤p

∥∥xm∂i(f − fl)
∥∥
L2(dx)

.

Thus the desired conclusion follows. □
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