
I J C T A, 9(13) 2016, pp. 5927-5935
© International Science Press

* Department of Production Technology, MIT Campus, Anna University Chennai, India
** Department of Mechatronics Engineering, SRM University, Kattankulathur, India
1subhasreesenthilnathan@gmail.com

GPU Computing for Computer Vision:
A Survey
P. Subhasree1*, P. Karthikeyan** and R. Senthilnathan**

ABSTRACT

Graphics processing unit (GPU) is a special form of processor architecture meant for parallel processes. Computer
Vision being a field which handles large data and intensive algorithms naturally seems to be candidate choice for
GPU implementation on a GPU. This paper reports the review of literature related to utilization GPU for general
purpose, non-graphics based application. Fundamentals related to GPU architecture and software tools available
for general purpose computing in GPU are studied from the perspective of a computer vision engineer. The significant
benefits of GPU implementation of computer vision algorithms and various limitations and challenges involved are
described in good detail. The paper reviews the various programming models and software libraries for general
purpose GPU (GPGPU) computing along with computing vision specific libraries. The most significant contribution
in the paper is the presentation of performance metrics and the various aspects of evaluation that may be used to
assess the GPU acceleration of computer vision algorithms. Publications reporting the GPU acceleration of popular
algorithms are presented highlighting the need for GPU implementation, hardware details, performance metrics
and variables considered for evaluation and the intended applications are reported.

Keywords: Graphics Processing Unit, GPGPU, GPU Programming Tools, Computer Vision, Performance Metrics

I. INTRODUCTION

It is an era of parallel processing that computing with a single processor no more gives the desired, fast or
efficient outcomes. It is already proven to be impossible to build up a processor with higher speedup
according to Moore’s law and this gave the opportunity and necessity to get into the world of parallel
processing [1]. Parallel architectures with greater processing capabilities are now available and the only
necessity is to develop algorithms and skeletons that would effectively utilize the processing elements of
the parallel architectures [2]. Many applications with complex algorithms, numerous logical operations
can be realized using the parallel architectures. Computer vision is one such field with so many applications
like specified above. Like a biological vision system, the computer vision algorithms also take in large
volume of data into memory, processes the data which is complex, sometimes does real time processing of
the data. This makes computer vision algorithms as candidates for parallel processing.

Among many upcoming parallel architectures, GPUs are powerful which are available in the form of
commodity graphic cards that are inexpensive. The GPU was developed by NVIDIA Corporation in the
year 2000 [1]. The graphics card has many processing elements with large memory bandwidth and basically
is a single instruction multiple data (SIMD) architecture [1]. GPU has multiple processors, in which each
processor runs a different thread, but all the threads of a multiprocessor execute same instruction on multiple
data [2]. Graphics cards which were originally developed for computer graphics are now used for many
applications. The use of GPUs lead to a new domain in computing hardware called GPGPU or what is
commonly referred to as GPU-accelerated computing. GPU-accelerated computing is the use of a GPU
together with a CPU to accelerate scientific, analytics, engineering, consumer, and enterprise applications

5928 P. Subhasree, P. Karthikeyan and R. Senthilnathan

[1]. GPGPU gained popularity after 2001 with the advent of shaders and floating point support on GPUs
[1]. Initial GPGPU applications required tedious reformations of the desired computing problems to be
converted to the framework of computer graphics. Moreover hardware vendor dependency is another major
challenge. In recent trends significant developments have been made for vendor independent GPGPU
pipelines that can exploit the speed of GPU without involving explicit conversion of the application data to
graphics primitives.

Many articles were found in the literatures which review the utilization of GPU for computer vision
and related tasks. Most articles were based on a small class of algorithms, if not, on a specific algorithm.
The evolution of CPU-GPU architecture for general purpose computing from the perspective of hardware
sharing and collaborative execution schemes is presented [1]. Many non-computer graphics based application
such as image processing, data mining etc., were considered to demonstrate the collaborative processing
architectures of CPU-GPU systems. Review of computer vision and image processing algorithms are
presented [2]. This paper is a similar attempt to present the survey details of utilization of GPUs for computer
vision and related tasks. The paper starts with preamble content for GPU followed by the various tools
available for GPGPU. The next section of the paper presents the suitability, difficulties and tools related to
GPU architecture. One of the main novelties in the review is the way the detail of survey is presented. The
GPU implementation results presented in the literature is carefully classified based on the algorithm type
and the application where they were tested. Followed by this the various popular computer vision algorithms
subjected to GPU acceleration are tabulated presenting the challenges, hardware details and metrics.

II. GPU ARCHITECTURE

A GPU is a super-specialized parallelized microprocessor which is meant to offload and accelerate 2-D or
3-D rendering from CPU. GPUs are available for a variety of hardware platform ranging from PC architecture
to super computers. A detailed summary and history of GPU architecture is presented [3].

(A) CPU vs GPU Architecture

Conventionally CPUs were sped up to handle computationally intensive tasks mainly by increasing the
clock speed of the CPU. This trend reached saturation due to the adverse effects of increasing clock speeds
such as energy-consumption and heat dissipation issues. One of the main strategy adopted was using more
than one processor in two possible alternatives were realizable. Multi-core architecture is a typical example
for CPU architecture, which was designed to maximize the speed of execution of sequential programs. The
CPU cores are basically out-order multiple instruction issue processor [4]. The other alternative for CPU is
the massively parallel processors to which GPU architecture belongs. The philosophy of GPU is to utilize
hundreds of small in-order processors which are best suited for applications that naturally possess
parallelization possibility. Multi-core CPUs adopt a complex control logic to make instructions from a
single thread to run in parallel with compromising the appearance of sequential execution. Fig. 1 illustrates
the architectural difference between CPU and GPU.

Figure 1: Comparison of CPU and GPU architectures

GPU Computing for Computer Vision: A Survey 5929

(B) Benefits of GPU

The main advantage of GPUs is the possibility of parallelization of certain algorithms eased by numerous
processing cores. Algorithm that offer scope for parallelization can run more than 100 times faster as
compared to a CPU. GPUS generally offers more floating point units than CPU. Modern GPUs are energy
efficient and relatively cheap compared to common CU counterparts.

(C) Limitations of GPU

GPUs though has vast computational resources in terms of processors has its own limitations and
disadvantages in certain context of application. GPU implementation of an algorithm requires the structure
of the algorithm to be modified to make it suitable for the GPU architecture [1]. This is generally a tedious
process as GPU programming is significantly different from a conventional CPU programming. Algorithms
which offer less scope for parallelization when attempted to be accelerated will result in additional over
heads contributed by frequent CPU-GPU communication [1]. Generally GPU acceleration is suitable only
for algorithms with less inter-task dependencies are very less which eases parallelization. GPUs as an
additional hardware in a system adds to cost, power consumption and heat dissipations and hence must be
justified by the demands of the application [1].

(D) Software Tools for GPGPU

Programming GPU for general purpose applications have taken a giant leap with the advent of compute
unified device architecture (CUDA) from NVIDIA Corporation and open computing language (OpenCL)
from Khronos Group. Many diverse application such as image processing [5][6][7], computer vision,
Monte Carlo simulation [8] etc. OpenMP is one of the popular API for shared memory multi-processor
programming which supports a variety of programming languages and operating systems. Similar to
OpenMP, development of high-level programming models for GPU based heterogeneous systems have
been made. Most recently, models such as hybrid multicore parallel programming (HMPP) [9], open
accelerators (OpenACC) [10], PGI accelerator [11], hiCUDA [12], OpenMPC [13], have been developed
and reported. The programming complexity and time performance obtained through HMPP and OpenACC
directives have been evaluated and compared with multicore CPU, OpenMP and CUDA version in [14].
CUDA, HMPP, OpenCL, and OpenACC have been used individually to accelerate financial applications
in [15]. Evaluation of OpenACC, OpenCL, and CUDA with respect of performance, developer’s
productivity, and portability was reported in [16]. Detailed evaluation of existing directive based models
was presented in [17]. A comparative evaluation of OpenMP, OpenACC and CUDA implementations of
parallel computation of aerial target reflection of background infrared radiation was presented in [18].
This section is completely based on [18].

III. GPU FOR COMPUTER VISION ALGORITHMS

(A) Suitability of GPU for Computer Vision

Computer vision systems operate on digital images which are large two dimensional data which would
greatly benefit from parallel processing. Applications such as visual tracking, optical flow, and vision
guided robots require very high processing rates which will be aided by fast computation. One of the basic
means of achieving fast computation is parallel execution. One of the main reasons for the suitability of the
computer vision algorithms is that most algorithms operate the same mathematical function across all the
pixels. This creates a scope for SIMD type of execution model. The computer vision algorithms are usually
complex in their mathematical background. Most of the mathematical functions in the computer vision
algorithms require several floating point and logical operations which often exceed the real-time capabilities
of the CPU architecture, resulting in very less time for higher-level tasks.

5930 P. Subhasree, P. Karthikeyan and R. Senthilnathan

(B) Hurdles for GPU Implementation of Computer Vision

One of the main hurdles in GPU implementation of computer vision algorithms is the diversified nature of
the algorithms which poses a problem in terms of generalization so as to have a unified framework for GPU
implementation. Computer vision algorithms require large memory buffers which often require to be
frequently accessed during the course of execution of the algorithms. The nature of access is random and
this makes parallelization ineffective since the latency involved in the memory access subdues the benefits
of improved time performance achieved due to parallelization. Most computer vision algorithms involve
interdependency on data generated from various stages of the algorithm thus direct parallelization of the
entire set of procedures is not straight forward. Most of the implementation in fact adopts parallelization at
the subset level. Many computer vision algorithms involve divergent branching which makes parallelization
difficult.

(C) Open Source Software Tools for Computer Vision Specific GPU Acceleration

One of the most powerful open source computer vision libraryis the OpenCV library where in GPU
acceleration GpuCV [19] is an opensource GPU-Accelerated framework for computer vision which has
provisions for hardware management, data synchronization, OpenCV compatibility and CUDA programs.
MinGPU [20] is a similar library where tools required for GPU acceleration of computer vision algorithms
are provided. OpenVIDIA [21] is another popular API which is specifically developed for GPU acceleration
of computer vision and image processing algorithms. NVIDIA offers a library called NVIDIA Performance
Primitives (NPP) which contains GPU-accelerated image, video, and signal processing functions. The
website GPU4VISION offers many resources like codes of popular implementations and their corresponding
documentation.

(D) GPU Acceleration in Commercial Software Products

HALCON from Mvtec, one of the most popular machine vision library provides an efficient automatic
acceleration by optimal usage of GPU onboard the computer. The GPU acceleration in HALCON is based
on OpenCL standard. Image Processing Toolbox and Computer Vision System Toolbox from Mathworks
which run under the MATLAB platform offers automatic GPU acceleration for most functions. For improved
acceleration the Parallel Computing Toolbox support for parallelizing algorithms on NVIDIA GPUs without
using CUDA, directly from MATLAB. Other software packages like Vision Development Module from
National Instruments and Matrox Imaging Library from Matrox Imaging offer provision in their library
which enables exploitation of the power of GPUs for computer vision tasks.

IV. GPU IMPLEMENTATION OF POPULAR COMPUTER VISION ALGORITHMS AND
PERFORMANCE CHARACTERIZATION

GPU acceleration has been reported in the context of image processing as well as computer vision. Many
computer vision algorithms subjected to GPU acceleration were presented in the open literature. Some of
the popular algorithms include feature extraction descriptors like Scale Invariant Fast Transform (SIFT)
and Speeded-Up Robust Features (SURF), corner detectors such as Harris corner detector etc. Many scene
reconstruction techniques such as stereo vision, optical flow are also subjected to GPU acceleration and
their speedup is reported in literature. This paper lists 9 different articles in Table I where the algorithm
subjected to GPU implementation is identified for its category. Since GPU implementation may not be
possible for the entire set of procedures of an algorithm, the GPU mapped portions as presented in the
original article is listed. Any algorithm subjected to GPU acceleration must have a suitable application
where it may be used. Hence the suggested applications in the original article are presented in the table.
One of the important aspect of GPU acceleration is the details of hardware and the programming APIs used
in the implementation. The hardware details must not only be about GPU but also about CPU since in any

GPU Computing for Computer Vision: A Survey 5931

Ta
bl

e
I

Su
m

m
ar

y
of

 F
ew

 P
op

ul
ar

 C
om

pu
te

r
V

is
io

n
A

lg
or

it
hm

s
Su

bj
ec

te
d

 to
 G

P
U

 I
m

pl
em

en
ta

ti
on

R
ef

er
en

ce
C

om
pu

te
r

A
lg

or
it

hm
G

P
U

 M
ap

pe
d

N
ee

d
fo

r
A

pp
lic

at
io

n
G

P
U

P
ro

gr
am

m
in

g
P

ar
am

et
er

s
P

er
fo

rm
an

ce
Sp

ee
d

U
p

Vi
si

on
Ty

pe
P

or
ti

on
s

G
P

U
D

em
on

st
ra

te
d

H
ar

dw
ar

e
M

od
el

 a
nd

C
on

si
de

re
d

M
et

ri
cu

se
d

In
 te

rm
s

A
lg

or
it

hm
 Im

pl
em

e-
D

et
ai

ls
Li

br
ar

ie
s

fo
r

fo
r

of
 N

o.
 o

f
nt

at
io

n
U

se
d

C
om

pa
ri

so
n

E
va

lu
at

io
n

F
ol

ds
 (

×
)

[2
4]

PM
V

S
O

pt
ic

al
 F

lo
w

C
ru

de
 M

es
h,

Im
pr

ov
em

en
t

M
on

oc
ul

ar
C

P
U

: I
nt

el
Im

ag
e

A
ve

ra
ge

C
ru

de
 M

es
h

–
Fe

ed
ba

ck
 f

or
Sy

nt
he

si
ze

of
 R

ea
l-

ti
m

e
3D

C
or

e
i3

-2
10

0
C

U
D

A
R

es
ol

ut
io

n,
E

xe
cu

ti
on

19
×

Sy
nt

he
si

ze
Sc

en
e

im
ag

e,
 M

es
h

Sc
en

e
R

ec
on

st
ru

ct
io

n
G

PU
:

5.
5

C
P

U
-G

P
U

T
im

e
im

ag
e

–
88

 ×
R

ec
on

st
ru

ct
io

n
A

dj
us

tm
en

t
C

on
st

ru
ct

io
n

N
V

ID
IA

Im
pl

em
en

-
M

es
h

G
eF

or
ce

ta
tio

n
ad

ju
st

m
en

t –
G

T
74

0
26

 ×

[2
5]

A
ni

so
tr

op
ic

O
pt

ic
al

A
lm

os
t

N
o.

 o
f

Fl
ow

 F
ie

ld
C

PU
: I

nt
el

Im
ag

e
Pe

r
fr

am
e

20
0-

30
0

×
H

ub
er

-L
1

Fl
ow

C
om

pl
et

el
y

op
er

at
io

ns
E

st
im

at
io

n
C

or
e

i7
 4

77
0

O
pe

n
C

L
R

es
ol

ut
io

n,
ex

ec
ut

io
n

M
ap

pe
d

pe
rm

em
or

y
G

PU
:

1.
2

B
it

tim
e

ac
ce

ss
N

V
ID

IA
Pr

ec
is

io
n,

G
T

X
-7

80
 &

C
P

U
-G

P
U

G
T-

64
0

Im
pl

em
en

ta
tio

n

[2
6]

O
pt

im
iz

ed
 F

as
t

Fe
at

ur
e

B
ui

ld
O

pt
im

iz
at

io
n

of
St

er
eo

C
P

U
: I

nt
el

Im
ag

e
A

ve
ra

ge
10

 ×
fe

at
ur

e
M

at
ch

in
g

Py
ra

m
id

T
im

e
V

is
io

n
C

or
e

i3
C

U
D

A
Se

qu
en

ce
E

xe
cu

ti
on

m
at

ch
in

g
co

m
pu

ta
ti

on
,

Pe
rf

or
m

an
ce

G
PU

:
C

on
si

de
re

d
T

im
e

K
ey

 p
oi

nt
s

N
V

ID
IA

’s
fo

r M
at

ch
in

g
m

at
ch

in
g

 G
e-

Fo
rc

e
&

 C
om

pa
re

d
31

0
 w

it
h

L
ow

e’
s

SI
FT

[2
7]

SR
M

 F
ea

tu
re

Fe
at

ur
e

R
es

id
ua

l
In

cr
ea

se
St

eg
an

al
ys

is
C

P
U

: I
nt

el
O

pe
n

C
L

Im
ag

e
A

ve
ra

ge
25

-5
5

×
E

xt
ra

ct
io

n
 E

xt
ra

ct
io

n
co

m
pu

ta
ti

on
sp

ee
d

of
i5

-2
31

0
R

es
ol

ut
io

n
E

xe
cu

ti
on

&
 c

o-
oc

cu
rr

en
ce

ex
tr

ac
ti

on
G

P
U

:
R

ad
eo

n
T

im
e

m
at

ri
x

H
D

 6
85

0
ca

lc
ul

at
io

n

[2
8]

G
en

er
al

iz
ed

Fe
at

ur
e

Fa
st

 F
ou

ri
er

C
om

pu
te

R
ea

l t
im

e
C

P
U

:
Im

ag
e

A
ve

ra
ge

Fo
ur

ie
r

D
es

cr
ip

to
r

T
ra

ns
fo

rm
in

te
ns

iv
e,

 B
ig

O
bj

ec
t

In
te

l C
or

e
i3

-
C

U
D

A
R

es
ol

ut
io

n,
E

xe
cu

ti
on

18
-1

42
 ×

D
es

cr
ip

to
r

vo
lu

m
e

of
 d

at
a,

re
co

gn
it

io
n,

23
50

M
(C

U
F

FT
),

C
P

U
-G

P
U

T
im

e
C

om
pl

ex
C

la
ss

if
ic

at
io

n
G

PU
:

O
pe

n
C

V
Im

pl
em

en
ta

tio
n

Fl
oa

ti
ng

 p
oi

nt
of

 I
m

ag
es

G
V

ID
IA

op
er

at
io

ns
G

eF
or

ce
 G

T
52

5M

co
nt

d.
 ta

bl
e

1

5932 P. Subhasree, P. Karthikeyan and R. Senthilnathan

R
ef

er
en

ce
C

om
pu

te
r

A
lg

or
it

hm
G

P
U

 M
ap

pe
d

N
ee

d
fo

r
A

pp
lic

at
io

n
G

P
U

P
ro

gr
am

m
in

g
P

ar
am

et
er

s
P

er
fo

rm
an

ce
Sp

ee
d

U
p

Vi
si

on
Ty

pe
P

or
ti

on
s

G
P

U
D

em
on

st
ra

te
d

H
ar

dw
ar

e
M

od
el

 a
nd

C
on

si
de

re
d

M
et

ri
cu

se
d

In
 te

rm
s

A
lg

or
it

hm
 Im

pl
em

e-
D

et
ai

ls
Li

br
ar

ie
s

fo
r

fo
r

of
 N

o.
 o

f
nt

at
io

n
U

se
d

C
om

pa
ri

so
n

E
va

lu
at

io
n

F
ol

ds
 (

×
)

[2
9]

E
ro

si
on

 a
nd

B
in

ar
y

A
lm

os
t

Fo
r

R
ea

l-
ti

m
e

O
bj

ec
t

C
PU

: I
nt

el
Pa

ra
m

et
er

s
G

lo
ba

l m
em

or
y

D
ila

tio
n

M
or

ph
ol

og
ic

al
C

om
pl

et
el

y
an

d
H

ig
h

re
co

gn
it

io
n,

C
or

e
i3

-2
10

0
C

U
D

A
re

la
te

d
to

op
ti

m
iz

at
io

n
-

O
pe

ra
ti

on
M

ap
pe

d
pe

rf
or

m
an

ce
fe

at
ur

e
G

PU
:

de
vi

ce
T

hr
ou

gh
pu

t
1.

87
 ×

, t
ex

tu
re

op
er

at
io

n
ex

tr
ac

tio
n,

N
V

ID
IA

ut
il

iz
at

io
n,

in
 M

bp
s,

m
em

or
y

O
pt

im
iz

at
io

n
on

vi
de

o
G

ef
or

ce
 G

T
X

Si
ze

 o
f

D
ev

ic
e

op
tim

iz
at

io
n

us
ag

e
of

 s
ha

re
d,

pr
oc

es
si

ng
48

0,
st

ru
ct

ur
in

g
ut

il
iz

at
io

n
-

1.
17

 ×
 ,

te
xt

ur
e

an
d

an
d

G
ef

or
ce

el
em

en
t,

sh
ar

ed
 m

em
or

y
re

gi
st

er
au

to
m

at
ed

G
T

X
 5

80
C

om
pa

re
d

w
it

h
op

tim
iz

at
io

n
m

em
or

y
su

rv
ei

ll
an

ce
FP

G
A

: X
il

in
x

re
la

te
d

w
or

ks
,

- 4
.1

2
×

 a
nd

sy
st

em
s

V
ir

te
x-

5
C

P
U

-G
P

U
-

re
gi

st
er

(F
X

13
0T

)
FP

G
A

op
tim

iz
at

io
n

X
il

in
x

V
ir

te
x-

Im
pl

em
en

ta
tio

n
-

1.
08

 ×
6

X
C

6V
L

X
24

0T

[3
0]

Fe
at

ur
e

G
ro

up
Fe

at
ur

e
FG

M
: G

ro
up

H
ig

h
Si

m
pl

e
Im

ag
e

C
PU

: I
nt

el
C

U
D

A
 5

.5
,

N
um

be
r

of
A

ve
ra

ge
M

at
ch

in
g

E
xt

ra
ct

io
n

cr
ea

ti
on

-
C

om
pu

ta
ti

on
al

to
 I

m
ag

e
C

or
e

i7
O

pe
n

C
V

,
K

ey
po

in
ts

E
xe

cu
ti

on
5-

35
 ×

A
lg

or
ith

m
an

d
M

at
ch

in
g

C
al

cu
la

ti
on

 o
f

tim
e,

Fe
at

ur
e

36
30

Q
M

SI
FT

G
P

U
pe

r i
m

ag
e

T
im

e
(F

G
M

)
di

st
an

ce
s,

C
om

pu
ta

ti
on

al
M

at
ch

in
g

G
PU

: N
vi

di
a

ca
lc

ul
at

io
n

of
co

m
pl

ex
it

y
G

T
65

0M
m

in
im

um
di

st
an

ce

[3
1]

V
er

ti
ca

l/
C

om
pu

tin
g

U
sa

ge
 o

f
H

ig
h

Pe
de

st
ri

an
C

PU
:I

nt
el

O
pe

n
C

V
D

if
fe

re
nt

T
ru

e
N

o
re

po
rt

in
g

H
or

iz
on

ta
l S

ob
el

St
er

eo
di

sp
ar

it
y

m
ap

,
D

ep
th

 a
nd

de
te

ct
io

n
C

or
e

2
Im

ag
e

Po
si

ti
ve

of
 s

pe
ed

-u
p

ed
ge

 d
et

ec
to

rs
V

is
io

n
R

eg
io

n
of

Im
ag

e
sy

st
em

Q
ua

d
G

P
U

:
Se

qu
en

ce
s

R
at

e
an

d
&

 F
ea

tu
re

In
te

re
st

R
es

ol
ut

io
n

N
vi

di
a

Fa
ls

e
M

at
ch

in
g

 D
et

ec
ti

on
 G

T
X

26
0M

 P
os

it
iv

e
R

at
e

[3
2]

H
ar

ri
s

C
or

ne
r

C
or

ne
r

C
om

pu
ta

ti
on

 o
f

M
ob

il
e

C
or

ne
r

C
PU

:I
nt

el
Im

ag
e

Fr
am

es
/S

ec
on

d,
12

 ×
D

et
ec

ti
on

D
et

ec
to

r
 In

te
gr

al
 Im

ag
es

 P
la

tf
or

m
D

et
ec

ti
on

C
or

e
i7

C
U

D
P

P
R

es
ol

ut
io

n,
Pe

rf
or

m
an

ce
/

Im
pl

em
en

ta
tio

n
C

ed
ar

T
ra

il
D

if
fe

re
nt

W
at

t
A

to
m

ch
ip

se
t,

C
PU

s
an

d
a

du
al

-c
or

e
G

PU
s

D
25

50
G

PU
:

N
vi

di
a

G
e

Fo
rc

e
G

T
X

48
0

&
 G

T
S4

50

GPU Computing for Computer Vision: A Survey 5933

GPGPU task the challenge is about how to distribute the tasks between CPU and GPU. The GPU acceleration
must be quantified through a formal evaluation procedure for which many metrics have been proposed in
the literature. Significant metrics for performance evaluation of image processing algorithms on GPUs is
presented in [6]. A quantitative performance analysis model for GPU architectures was presented in [22]
which not only considers the algorithm but takes the analysis to the level of analyzing the instruction
execution at the GPU architecture level. There are various aspects based on which the performance of a
GPU based computation may be evaluated. Some of the most common aspects of evaluation are listed in
the Table II. The most important understanding as mentioned earlier is the understanding of the possibility
of parallelization possibility in an algorithm. Many articles have reported measures of parallelism, some of
which are listed in the table. In most of the performance evaluation of GPU-accelerated algorithms, the
execution time is the main metric which may be observed in many manifestations as listed in the table. All
other metrics meant for basically devised to understand the contributing factors for any computational
latency. Some of the factors which is desirable to monitored in a GPU implementation of a computer vision
algorithm includes memory access, data transfer related latencies, latencies due to resource utilization,
among others. The metrics are generally chosen based on the observers interest in capturing the contribution
of the possible factors.

TABLE II
Performance Metrics and Evaluation Aspect

Reference Metric Targeted Aspect

- Average Execution Time Execution time

[6] Parallel Fraction Execution time (Maximum speed up compared to sequential
computation)

[6] Ratio of floating point computation to Memory Access, Resource utilization (Exploiting the
global memory access resources during memory latency)

[6] Per-pixel floating point instructions Resource utilization (Floating point computational
resources of the GPU can be exploited)

[6] Per-pixel memory access Memory access, Speed up (exploiting memory bandwidth)

[6] Branching Diversity Degree of thread parallelism (in-turn Speed up)

[6] Task Dependency Speed up (Due to less parallelism)

[22] Bottleneck component Execution Time(Ranking of processes taking more time)

[22] Instruction/Memory Throughput Execution time

[22] Computational density Instruction throughput (will be less due to less resource
utilization)

[22] Coalescing Efficiency Memory access, Speed up

[22] Bank Conflicts Penality Instruction throughput (Due to serial execution caused by
serial memory access)

[22] No. of Warps per Streaming Multi-processor Memory access

[23] Memory Latency Memory access, Resource utilization

[23] Pipeline Latency Memory access, Resource utilization

[23] Floating point Operations/second Resource utilization

V. CONCLUDING REMARKS

GPU acceleration for general purpose applications has now got numerous tools which have made the
programming of GPUs easy though there is a significant development to make it easier is in progress.
Moreover the recent developments in combining CPU and GP into one processing element may open up
new avenues and tremendous opportunities for general purpose computing. Computer vision can greatly

5934 P. Subhasree, P. Karthikeyan and R. Senthilnathan

benefit from GPU acceleration but requires a thorough knowledge on the possibility of parallelization of
the algorithm under consideration. Commercial computer vision libraries though offer GPU acceleration,
are not as dynamic as programming a GPU from scratch. This offers enormous research scope for research
into the implementation aspects of popular existing computer vision algorithms.

REFERENCES
[1] M. Arora, “The Architecture and Evolution of CPU-GPU Systems for General Purpose Computing,” pp. 1–12, 2012.

[2] J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based Image Processing and Computer Vision,” Multimedia
and Expo, 2008 IEEE International Conference on. pp. 9–12, 2008.

[3] C. Mcclanahan, “History and Evolution of GPU Architecture,” pp. 1–7, 2010.

[4] “Juan G´ omez Luna C´ ordoba, Febrero de 2012,” 2012.

[5] D. Castaño-Díez, D. Moser, A. Schoenegger, S. Pruggnaller, and A. S. Frangakis, “Performance evaluation of image
processing algorithms on the GPU.,” J. Struct. Biol., vol. 164, no. 1, pp. 153–60, Oct. 2008.

[6] I. K. Park, N. Singhal, M. H. Lee, S. Cho, C. W. Kim, P. In Kyu, N. Singhal, L. Man Hee, C. Sungdae, and C. W. Kim,
“Design and Performance Evaluation of Image Processing Algorithms on GPUs,” Parallel Distrib. Syst. IEEE Trans., vol.
22, no. 1, pp. 91–104, 2011.

[7] A. Paz and A. Plaza, “GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral
image analysis,” Proc. SPIE, vol. 7810. p. 78100R–78100R–10, 2010.

[8] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, “GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model,”
J. Comput. Phys., vol. 228, no. 12, pp. 4468–4477, Jul. 2009.

[9] R. Dolbeau, S. Bihan, F. Bodin, and C. Entreprise, “HMPP: A Hybrid Multi-core Parallel Programming Environment.”
2007.

[10] S. Wienke, P. Springer, C. Terboven, and D. Mey, “Euro-Par 2012 Parallel Processing: 18th International Conference,
Euro-Par 2012, Rhodes Island, Greece, August 27-31, 2012. Proceedings,” C. Kaklamanis, T. Papatheodorou, and P. G.
Spirakis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 859–870.

[11] M. Wolfe, “Implementing the PGI Accelerator Model,” in Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units, 2010, pp. 43–50.

[12] T. D. Han and T. S. Abdelrahman, “hiCUDA: A High-level Directive-based Language for GPU Programming,” in
Proceedings of 2Nd Workshop on General Purpose Processing on Graphics Processing Units, 2009, pp. 52–61.

[13] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP Programming and Tuning for GPUs,” in Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, 2010,
pp. 1–11.

[14] O. Hernandez, W. Ding, B. Chapman, C. Kartsaklis, R. Sankaran, and R. Graham, “Facing the Multicore - Challenge II:
Aspects of New Paradigms and Technologies in Parallel Computing,” R. Keller, D. Kramer, and J.-P. Weiss, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 96–107.

[15] S. Grauer-Gray, W. Killian, R. Searles, and J. Cavazos, “Accelerating Financial Applications on the GPU,” in Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units, 2013, pp. 127–136.

[16] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beckingsale, A. C. Mallinson, and S. A. Jarvis,
“Accelerating Hydrocodes with OpenACC, OpenCL and CUDA,” in High Performance Computing, Networking, Storage
and Analysis (SCC), 2012 SC Companion:, 2012, pp. 465–471.

[17] S. Lee and J. S. Vetter, “Early Evaluation of Directive-based GPU Programming Models for Productive Exascale
Computing,” in Proceedings of the International Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 23:1–23:11.

[18] X. Guo, J. Wu, Z. Wu, S. Member, and B. Huang, “Parallel Computation of Aerial Target Reflection of Background
Infrared Radiation/ : Performance Comparison of OpenMP, OpenACC , and CUDA Implementations,” pp. 1–10, 2016.

[19] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV: A GPU-Accelerated Framework for Image Processing
and Computer Vision,” Adv. Vis. Comput., vol. 5359, no. 1, pp. 430–439, 2008.

[20] P. Babenko and M. Shah, “MinGPU: a minimum GPU library for computer vision,” J. Real-Time Image Process., vol. 3,
no. 4, pp. 255–268, 2008.

[21] J. Fung, S. Mann, and C. Aimone, “OpenVIDIA: Parallel GPU Computer Vision,” Image Process., pp. 849–852, 2005.

[22] Y. Zhang and J. D. Owens, “A Quantitative Performance Analysis Model for GPU Architectures.pdf,” pp. 382–393, 2002.

GPU Computing for Computer Vision: A Survey 5935

[23] V. Volkov and J. Demmel, “Benchmarking g GPUs to Tune Dense Linear Algebra,” High Perform. Comput. Networking,
Storage Anal., no. November, pp. 1–11, 2008.

[24] Y. Ailin, L. Xiuzhi, J. Songmin, and Q. Baoling, “Monocular three dimensional dense surface reconstruction by optical
flow feedback,” in Information and Automation, 2015 IEEE International Conference on, 2015, pp. 504–509.

[25] D. Buyukaydin and T. Akgun, “GPU Implementation of an Anisotropic Huber- L 1 Dense Optical Flow Algorithm Using
OpenCL,” Samos, no. 2, pp. 1–6, 2015.

[26] K. Sharma, “High performance GPU based optimized feature matching for computer vision applications,” Opt. - Int. J.
Light Electron Opt., vol. 127, no. 3, pp. 1–7, 2015.

[27] K. Chen, C. Lin, S. Zhong, and L. Guo, “A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU
Architecture,” 2014 Sixth Int. Symp. Parallel Archit. Algorithms Program., pp. 178–182, 2014.

[28] B. Haythem, H. Mohamed, C. Marwa, S. Fatma, and A. Mohamed, “Fast Generalized Fourier Descriptor for object
recognition of image using CUDA,” in Computer Applications & Research (WSCAR), 2014 World Symposium on, 2014,
pp. 1–5.

[29] T. Li, Y. Dou, J. Jiang, and J. Gao, “Efficient parallel implementation of morphological operation on GPU and FPGA,”
Proc. 2014 IEEE Int. Conf. Secur. Pattern Anal. Cybern. SPAC 2014, pp. 430–435, 2014.

[30] M. Marinelli, A. Mancini, and P. Zingaretti, “GPU acceleration of feature extraction and matching algorithms,” in
Mechatronic and Embedded Systems and Applications (MESA), 2014 IEEE/ASME 10th International Conference on,
2014, pp. 1–6.

[31] B. Nam, S. Kang, and H. Hong, “Pedestrian Detection System based on Stereo Vision for Mobile Robot,” Adv. Imaging.

[32] A. Glenis, “Performance and energy characterization of high-performance low-cost cornerness detection on GPUs and
multicores.”

