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Abstract. In this work we consider the controlled stochastic Navier-Stokes
equations perturbed by Lévy noise in a two dimensional bounded domain

and a semimartingale formulation is used to characterize the probability law
defining the space-time statistical solution. The existence and uniqueness
of invariant measures or stationary measures is examined under suitable as-

sumptions on the noise coefficient. Then we establish the existence of an
ergodic control which is optimal in the class of all stationary measures for
the system for a suitable class of cost functions. Thus for this system, it
is possible to choose a stationary control that corresponds to a statistically

stationary turbulent state with certain prescribed cost functional attaining a
minimum.

1. Introduction

The optimal control theory of viscous time dependent deterministic and sto-
chastic fluid dynamics has gained great attention in the past several decades (for
example see [31, 15, 16], references therein). In the recent years, ergodicity results
for the two and three dimensional stochastic Navier-Stokes equation (SNSE) on
various domains has been established in the literature in several papers. The exis-
tence and uniqueness of invariant measures for the SNSE with degenerate and non-
degenerate Gaussian noise is established in [14, 5, 23, 6, 34, 27, 17, 28, 29, 8, 22],
for example, using various methods. Ergodicity results for the SNSE driven by
Lévy noise with non-degenerate Gaussian part is established in [10].

The statistically stationary dynamics of fluid turbulence under control action
is considered in this paper. By using a semimartingale formulation, we describe
the solution to the martingale problem for the controlled SNSE perturbed by
Lévy noise in two dimensional bounded domains. The existence and uniqueness
of invariant measures for the solution of this system is discussed under suitable
assumptions on the Gaussian and jump noise coefficients. We then establish that,
for the controlled SNSE driven by Lévy noise, it is possible to choose a stationary
control that corresponds to a statistically stationary turbulent state with certain
prescribed cost functional attaining a minimum. This work appears to be the first
work regarding the optimal ergodic control for the SNSE perturbed Lévy noise,
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besides the Guassian noise case outlined in [33]. The theory described in this
paper is easily generalizable to ergodic measures found in three dimensions (see
for instance [6, 7, 25]) and also for degenerate noise (see for example [27, 17, 29]).

Let O be a bounded open domain in R2 with a smooth boundary ∂O. Let u =
u(x, t) = (u1(x, t), u2(x, t)) denotes the velocity field, the scalar valued function
p = p(x, t) denotes the pressure field and f = f(t, x,u) denotes the external random
forcing. Let T be an arbitrary but fixed positive number. For t ∈ [0, T ], let us
consider the controlled stochastic Navier-Stokes equation as follows:

∂u(x, t)

∂t
+ (u(x, t) · ∇)u(x, t)− ν∆u(x, t) +∇p(x, t)

= N(v(x, t)) + f(t, x,u(x, t)) for (x, t) ∈ O × (0, T ), (1.1)

with the incompressibility condition

∇ · u(x, t) = 0 for (x, t) ∈ O × (0, T ), (1.2)

the non-slip boundary condition

u(x, t) = 0 for (x, t) ∈ ∂O × (0, T ), (1.3)

and the initial condition

u(x, 0) = u0(x) for x ∈ O. (1.4)

Here ν is the kinematic viscosity, v(·, ·) is the control that takes values in some
metrizable Lusin space U and N(·) is a linear or nonlinear operator representing
possible nonlinearities in the actuator term. For slightly conducting fluids, Lorentz
force appears as a special case of such control forces.

Our aim in this paper is to find a control v which minimizes

lim sup
t→∞

1

t

∫ t

0

E[K(u(s),v(s))]ds,

among all stationary solutions, where the running cost K : V × U → [0,∞] (V is
defined in section 2) satisfies the following conditions:

(i) K(·, ·) : V× U → [0,∞] is measurable,
(ii) K(·, ·) : Vw × U → [0,∞] is lower semicontinuous, where Vw is the space

V endowed with the weak topology,
(iii) K(·, ·) is bounded below by

K(u,v) ≥ C
(
∥u∥2V + ℓ4(v)

)
, for all (u,v) ∈ V× U, (1.5)

where ℓ : U → R+ is an inf-compact function such that

∥N(v)∥H ≤ ℓ(v) + C, for all v ∈ U. (1.6)

An example of such a running cost K(·, ·) is
K(u,v) = ∥curl u∥2H + ∥v∥4H,

which is the enstrophy minimization problem, with U = H and N(v) = LNv,
where LN ∈ L(H) and L(H) := L(H,H) denotes the space of all bounded linear
operators on H.

The organization of the paper is as follows. In section 2, we describe the semi-
martingale framework of the stochastic Navier-Stokes system (1.1)-(1.4) and the
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martingale problem is formulated. The existence and uniqueness of invariant mea-
sures for the above system is examined in section 3. The existence of an ergodic
control which is optimal in the class of all stationary measures for the system
(1.1)-(1.4) is proved in section 4.

2. Semimartingale Formulation and Martingale Problem

Let us begin with the abstract formulation of the stochastic Navier-Stokes sys-
tem (1.1)–(1.4) by making use of the following conventional notations. Let us
denote

V = {u ∈ C∞
0 (O) : ∇ · u = 0}.

Let H and V be the completion of V in L2(O) and H1(O) norms respectively.
Then, we have

H :=
{
u ∈ L2(O) : ∇ · u = 0,u · n

∣∣
∂O = 0

}
, (2.1)

with the norm ∥u∥H :=
(∫

O |u(x)|2dx
)1/2

, where n is the outward drawn normal
to ∂O and

V :=
{
u ∈ H1

0(O) : ∇ · u = 0
}
, (2.2)

with the norm ∥u∥V :=
(∫

O |∇u(x)|2dx
)1/2

. Let V′ be the dual of V. Then, we
have the dense, continuous and compact embedding

V ↪→ H ≡ H′ ↪→ V′. (2.3)

The inner product in the Hilbert spaceH is denoted by (·, ·) and the induced duality
pairing, for instance between the spaces V and V′, by ⟨·, ·⟩. Let PH : L2(O) → H
be the Helmholtz-Hodge orthogonal projection operator. We define the Stokes
operator

A : D(A) → H with Au = −PH∆u, (2.4)

where D(A) = V∩H2(O) =
{
u ∈ H1

0(O) ∩H2(O) : ∇ · u = 0
}
is the domain of the

operator A. The Stokes operator is a positive selfadjoint operator with a compact
resolvent and if 0 < λ1 ≤ λ2 ≤ · · · are the eigenvalues of A, then we have

∥u∥2V ≥ λ1∥u∥2H, for all u ∈ V.
We define the nonlinear operator

B : D(B) ⊂ H× V → H with B(u) = PH(u · ∇)u. (2.5)

For more details and properties of the Stokes operator A and the nonlinear oper-
ator B, we refer readers to [21, 35, 36]. Let us now apply PH to the system (1.1)
and take the external forcing to be Lévy noise to obtain

du(t) + [νAu(t) +B(u(t))]dt = Nπtdt+ σ(t,u(t))dW(t)

+

∫
Z

γ(t−,u(t−), z)Ñ (dt, dz),

u(0) = u0 in H,

 (2.6)

where Nπt =
∫
U N(v)πt(dv). In (2.6), Z is a measurable subspace of some

Hilbert space (for example measurable subspaces of R2, L2(O) etc). Also W(t) =
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W(x, t) is an L2−valued Wiener process with a nuclear covariance operator Q

and Ñ (dt, dz) := N (dt, dz) − λ(dz)dt is a compensated Poisson random mea-
sure, where λ(dz) is a σ−finite Lévy measure on some Hilbert space (for instance
R2, L2(O) etc.) with an associated Poisson random measure N (dt,dz) such that

E(N (dt, dz)) = λ(dz)dt. The processes W(·) and Ñ (dt,dz) are mutually indepen-
dent.

Let us assume the noise coefficients σ(·, ·) and γ(·, ·, ·), and the linear or non-
linear operator N(·) satisfy the following hypothesis.

Hypothesis 2.1. The noise coefficients σ(·, ·) and γ(·, ·, ·), and the operator N(·)
satisfy

(H.1) (Growth Condition) For all u ∈ H and for all t ∈ [0, T ], there exists a
positive constant K such that

∥σ(t,u)∥2LQ(H) +

∫
Z

∥γ(t,u, z)∥2Hλ(dz) ≤ K
(
1 + ∥u∥2H

)
,

where LQ(H) denotes the space of all Hilbert-Schmidt operators from Q
1
2H

to H.
(H.2) (Lipschitz Condition) For all u1,u2 ∈ H and for all t ∈ [0, T ], there exists

a positive constant L such that

∥σ(t,u1)− σ(t,u2)∥2LQ(H) +

∫
Z

∥γ(t,u1, z)− γ(t,u2, z)∥2Hλ(dz) ≤ L∥u1 − u2∥2H.

(H.3) We fix the measurable subset Zm of Z with Zm ↑ Z and λ(Zm) < ∞ such
that

sup
∥u∥H≤M

∫
Zc
m

∥γ(t,u, z)∥2Hλ(dz) → 0, as m → ∞, for any fixed M > 0.

(H.4) N : U → H is continuous and satisfies (1.6).

See section 3.1, [32] for more details of the operatorN. The controls we consider
are in the class A, where A is the collection of all π ∈ P such that

∥π∥4ℓ :=

∫ T

0

∫
U
ℓ4(v)π(dv, dt) < ∞, (2.7)

and P is the space of probability measures on [0, T ]× U. This class is referred to
as admissible relaxed controls.

In the following definition, we give the formal generator for some class of test
functions.

Definition 2.2. (Formal Generator) For f ∈ D(L ), the formal generator L f is
given by

L f = −
⟨
νAu+B(u)−Nπ,

∂f

∂u

⟩
+

1

2
Tr

(
σ(t,u)Qσ∗(t,u)

∂2f

∂u2

)
+

∫
Z

{
f(u+ γ(t,u, z))− f(u)−

⟨
γ(t,u, z),

∂f

∂u

⟩}
λ(dz), (2.8)

for all u ∈ D(A).
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As an example for the functions f ∈ D(L ), one may consider the following:

Example 2.3. The test functions f(·) (cylindrical (tame) function) of the form

f(u) := ϕ(⟨e1,u⟩, · · · , ⟨em,u⟩), u ∈ H, (2.9)

where ϕ(·) : Rm → R is a smooth function with compact support in Rm, ek ∈
D(A), k = 1, · · · ,m.

2.1. Martingale problem. Let us solve the system (2.6) by the method of mar-
tingale problems and so we give the following definition. Let P(U) denotes the
space of probability measures on U.

Definition 2.4. A V×P(U)−valued process (u, π) defined on a probability space
(Ω,F ,P) with a probability measure P : B(Ω) → [0, 1] such that P{ω ∈ Ω : u(0) =
u0} = 1, is said to be a solution to the relaxed controlled martingale problem for
(L ,P) with respect to a filtration {Ft} if

(i) (u, π) is Ft−progressive,
(ii) L(u(0)) = P, where L(u(0)) denotes the law of u(0),
(iii) for f ∈ D(L ),

Mf
t := f(u(t))− f(u(0))−

∫ t

0

∫
U

L f(u(s),v)πs(dv)ds

is a real valued locally square integrable (Ω,F ,Ft,P)−local càdlàg mar-
tingale.

For the relaxed controlled problem, the cost functional becomes:

lim sup
t→∞

1

t

∫ t

0

E
(∫

U
K(u(s),v)πs(dv)

)
ds.

Furthermore, if (u, π) is a stationary process, then the cost functional reduces to

⟨K , µ⟩ =
∫

K πdµ,

where K π :=
∫
U K(u,v)π(dv) and µ = L(u(t), π(t)) ∈ P(V) × P(P(U)) for all

t ≥ 0. Here L(u(t), π(t)) denotes the law of (u(t), π(t)).
Let us define

Ω̃ = D(0, T ;V′)J ∩ L∞(0, T ;H)w∗ ∩ L2(0, T ;V)w ∩ L2(0, T ;H),

where D(·; ·) is the class of càdlàg functions from [0, T ] into V′. Let us endow Ω̃
with the supremum topology T := T1 ∨ T2 ∨ T3 ∨ T4, where
T1 := D(0, T ;V′)J, where J denotes the extended Skorohod topology (see [24]),
T2 := L∞(0, T ;H)w∗ , where w∗ denotes the weak-star topology,
T3 := L2(0, T ;V)w, where w denotes the weak topology, and
T4 := L2(0, T ;H), equipped with the strong topology.

Then, from Proposition 1, page 63 of [24], it is clear that the intersection of

these spaces Ω̃, endowed with the supremum topology T is a Lusin space. Let

Ω = Ω̃ × P, where P is the space of probability measures on [0, T ] × U. For any

ω ∈ Ω, let ω = (ω1, ω2), where ω1 ∈ Ω̃ and ω2 ∈ P. Let ξ be the mapping from
[0, T ]×Ω → V′×P defined by ξ(t, ω) := ω(t) and let Ft be the canonical filtration
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generated by the functions ξ(t, ω) on Ω, that is Ft = σ{ξ(s, ω) : 0 ≤ s ≤ t} for all
t ∈ [0, T ]. Note that the solution of the relaxed controlled martingale problem for

the system (2.6) is equivalently a probability measure P on Ω = Ω̃× P such that
for all f ∈ D(L ),

f(ω1(t))− f(ω1(0))−
∫ t

0

∫
U

L f(ω1(s),v)ω2(s)(dv)ds,

is a P−martingale with respect to Ft, where L f is defined in (2.8).
By the disintegration (see Corollary 3.1.2, [3]) of the measure P for the projec-

tion Ω → Ω̃,

P(du, dπ) = P(du, π)Π(dπ),

where P(du, π) is the regular conditional distribution of u given π and Π is the law
of π. Thus the martingale problem formulated above reduces to that of finding
the martingale solution P(du, π) for each fixed π. Hence, we need to find a Radon

measure P(du, π) (which is again denoted by P) on B(Ω̃) depending measurably
on π such that

Mt(u) := u(t)− u0 +

∫ t

0

{
νAu(s) +B(u(s))−

∫
U
N(v(s))πs(dv)

}
ds, (2.10)

is a real valued locally integrable (Ω̃,B(Ω̃), F̃t,P)−local càdlàg martingale (where

F̃t = σ{u(s), s ≤ t}) with the quadratic variation process

[[M]]t =

∫ t

0

σ(s,u(s))Qσ∗(s,u(s))ds+

∫ t

0

∫
Z

(γ⊗ γ)(s−,u(s−), z)N (dz, ds).

Note that the Meyer process of M is given by

≪ M ≫t=

∫ t

0

σ(s,u(s))Qσ∗(s,u(s))ds+

∫ t

0

∫
Z

(γ⊗ γ)(s,u(s), z)λ(dz)ds,

so that [[M]]t− ≪ M ≫t is a local martingale. We use the following energy
equality to get an a-priori estimate on the solutions.

Theorem 2.5. ([24]) Let us consider a probability space (Ω,F , (Ft)t≥0,P) and an

Ft−adapted processes x̃, ỹ and M̃t such that M̃t is an H−valued square integrable,

right-continuous martingale with M̃0 = 0, x̃ ∈ L2(0, T ;V), a.s., ỹ ∈ L2(0, T ;V′),
a.s. Let x̃(0) = x̃0 ∈ H and

x̃(t) = x̃(0) +

∫ t

0

ỹ(s)ds+ M̃t, t ∈ [0, T ],P− a.s.

Then the paths of x̃ are a.s. in D([0, T ];H) (H−valued Skorohod space) and the
Itô formula applies for ∥x̃∥2H: for P−a.s.,

∥x̃(t)∥2H = ∥x̃0∥2H + 2

∫ t

0

⟨ỹ(s), x̃(s)⟩ds+ 2

∫ t

0

⟨
x̃(s−),dM̃s

⟩
+

∫ t

0

Tr
(
[[M̃]]s

)
ds.

(2.11)

Proof. See Theorem 6.1, [24]. □
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Let M be the collection of all probability measures on Ω which are solutions to
the martingale problem, and whose support is in L2(0, T ;V) ∩ L∞(0, T ;H) × A.
Then, we have the following a-priori energy estimates (see [32, 33, 30]):

Theorem 2.6. Let the initial data satisfy E∥u0∥2H < ∞. Then, the class of
probability measures P ∈ M satisfy the a-priori energy estimate:

EP

[
sup

0≤t≤T
∥u(t)∥2H + ν

∫ T

0

∥A1/2u(s)∥2Hds

]
≤ C

(
E
[
∥u0∥2H

]
+ EΠ∥π∥2ℓ + 1

)
.

(2.12)

Moreover, for 1 < k < ∞, if the initial data satisfy E∥u0∥2kH < ∞, there exists a
constant K1 such that

∥σ(t,u)∥2kLQ(H) +

∫
Z

∥γ(t,u, z)∥2kH λ(dz) ≤ K1

(
1 + ∥u∥2kH

)
, (2.13)

and if the 2k−order moments are finite for the chattering controls, i.e.,

EΠ

(∫ T

0

∫
U
ℓ(v)2kπt(dv)dt

)
< ∞.

Then, we have

EP

[
sup

0≤t≤T
∥u(t)∥2kH + ν

∫ T

0

∥u(s)∥2k−2
H ∥A1/2u(s)∥2Hds

]

≤ C

{
E
[
∥u0∥2kH

]
+ EΠ

(∫ T

0

∫
U
ℓ(v)2kπt(dv)dt

)
+ 1

}
. (2.14)

For the proof of Theorem 2.6, see Theorem 4.6, [32] and Theorem 3.1, [30].
Using the above estimates, the class of measures P in the above theorem which
satisfy EΠ∥π∥2ℓ ≤ C for a fixed constant C can be shown to be tight (see Theorem
4.8, [32], Proposition 3.1,[30]). By the Galerkin approximation procedure, we get a
sequence of measures in the tight class above (see section 4, [32] and section 3, [30]).
Thus, we can extract a subsequence that weakly converges to a limit. We identify
the limit as a solution of the martingale problem, posed by the stochastic Navier-
Stokes equation perturbed by Lévy noise, using the continuity (Minty stochastic
lemma, see Lemma 4.1, [30]) and uniform integrability (see Lemma 5.15, [32]) of
the martingales involved (for more details see [31, 32, 30]). Also the solution to
the martingale problem is unique (see Theorem 2.2, [30]).

3. Existence and Uniqueness of Invariant Measures

In this section, we discuss the existence and uniqueness of invariant measures for
the controlled stochastic Navier-Stokes equation perturbed by Lévy noise following
the ergodicity results obtained in [14, 10].

Definition 3.1. A probability measure µ on (X,B(X)) is called an invariant mea-
sure or a stationary measure for a given transition probability function P(t,x, dy)
if it satisfies

µ(A) =

∫
X

P(t,x, A)dµ(x),
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for all A ∈ B(X) and t > 0. Equivalently, if for all ϕ ∈ Cb(X) (the space of
bounded continuous functions on X), and all t ≥ 0,∫

X

ϕ(x)dµ(x) =

∫
X

(Ptϕ)(x)dµ(x),

where (Pt)t≥0 is defined by

Ptϕ(x) =

∫
X

ϕ(y)P(t,x, dy).

Let u(t;x) denotes the solution of the controlled stochastic Navier-Stokes equa-
tion (2.6) with the initial condition x ∈ H. Let (Pt)t≥0 be the Markov semigroup
in the space Cb(H) associated to the system (2.6) defined by

Ptϕ(x) = EP[ϕ(u(t;x))] =

∫
H
ϕ(y)P(t,x,dy) =

∫
H
ϕ(y)µt,x(dy), ϕ ∈ Cb(H),

(3.1)

where P(t,x, dy) is the transition probability of u(t;x) and µt,x is the law of
u(t;x). From (3.1), we have

Ptϕ(x) = ⟨ϕ, µt,x⟩ = ⟨Ptϕ, µ⟩, (3.2)

where µ is the law of the initial data x ∈ H. Thus from (3.2), we have µt,x = P∗
tµ.

We say that a probability measure µ on H is an invariant measure if

P∗
tµ = µ, for all t ≥ 0. (3.3)

Let {πt} be a given measure-valued process with law Π.

Theorem 3.2. Let E
[
∥u0∥2H

]
< ∞, where u(0) = u0. Suppose there exist con-

stants C̃ > 0 and T0 > 0 such that

sup
t>T0

1

t
EΠ

(∫ t

0

∫
U
ℓ2(v)πs(dv)ds

)
≤ C̃. (3.4)

If K < 2νλ1, where λ1 is the first eigenvalue of A and K is the constant appearing
in the linear growth hypothesis (H.1). Then, there exists an invariant measure for
the stochastic Navier-Stokes equation (2.6) with support in V.

Proof. Let us define the sequence of stopping times by

τN := inf

{
t > 0 : ∥u(t)∥2H +

∫ t

0

∥u(s)∥2Vds ≥ N

}
, (3.5)

for N ∈ N. By using the Itô’s formula given in Theorem 2.5 (see 2.11), Cauchy-
Schwarz inequality, Young’s inequality and Hypothesis 2.1, we have

∥u(t ∧ τN )∥2H + 2ν

∫ t∧τN

0

∥A1/2u(s)∥2Hds

= ∥u(0)∥2H + 2

∫ t∧τN

0

(Nπs,u(s))Hds+ 2

∫ t∧τN

0

(σ(s,u(s))dW(s),u(s))H

+ 2

∫ t∧τN

0

∫
Z

(γ(s−,u(s−), z),u(s−))HÑ (ds, dz)
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+

∫ t∧τN

0

Tr(σ(s,u(s))Qσ∗(s,u(s)))ds+

∫ t∧τN

0

∫
Z

∥γ(s,u(s), z)∥2HN (ds, dz)

≤ ∥u0∥2H + ε

∫ t∧τN

0

∥u(s)∥2Hds+
1

ε

∫ t∧τN

0

∥Nπs∥2Hds+K

∫ t∧τN

0

(
1 + ∥u(s)∥2H

)
ds

+ 2

∫ t∧τN

0

(σ(s,u(s))dW(s),u(s))H

+

∫ t∧τN

0

∫
Z

[
2(γ(s−,u(s−), z),u(s−))H + ∥γ(s,u(s), z)∥2H

]
Ñ (ds, dz), (3.6)

for ε > 0, where we used the fact that (B(u),u)H = b(u,u,u) = 0. Note that

∥A1/2u∥2H ≥ λ1∥u∥2H for all u ∈ V and ∥A1/2u∥H is equivalent to ∥u∥V. Thus by
making use of these facts in (3.6), we obtain

∥u(t ∧ τN )∥2H +

(
2ν − K

λ1
− ε

λ1

)∫ t∧τN

0

∥u(s)∥2Vds

≤ ∥u0∥2H +
2

ε

∫ t

0

∫
U
ℓ2(v)πs(dv)ds+

(
2C2

ε
+K

)
t

+ 2

∫ t∧τN

0

(σ(s,u(s))dW(s),u(s))H

+

∫ t∧τN

0

∫
Z

[
2(γ(s−,u(s−), z),u(s−))H + ∥γ(s,u(s), z)∥2H

]
Ñ (ds,dz), (3.7)

where C is a constant appearing in (H.4). Let us take expectation in (3.7) and
use the fact that the last two terms in the right hand side of the inequality (3.7)
are local martingales with zero expectation to find

EP[∥u(t ∧ τN )∥2H
]
+

(
2ν − K

λ1
− ε

λ1

)
EP
(∫ t∧τN

0

∥u(s)∥2Vds
)

≤ E
[
∥u0∥2H

]
+

2

ε
EΠ

[∫ t

0

∫
U
ℓ2(v)πs(dv)ds

]
+

(
2C2

ε
+K

)
t. (3.8)

By using (3.4) and K < 2νλ1, we get

1

t
EP
(∫ t∧τN

0

∥u(s)∥2Vds
)

≤ K̃, for all t > T0, (3.9)

where K̃ is a constant independent of t. Clearly, τN tends to infinity, a.s., as
N → ∞ and hence t∧ τN → t as N → ∞. Thus by using the Markov’s inequality,
we have

lim
R→∞

sup
T>T0

{
1

T

∫ T

0

P
(
∥u(t)∥V > R

)
dt

}
≤ lim

R→∞
sup
T>T0

1

R2
EP

[
1

T

∫ T

0

∥u(t)∥2Vdt

]
= 0. (3.10)

Hence the estimate in (3.10) implies the existence of an invariant measure for the
system (2.6) with support in V by a result of Chow and Khasminskii (see [4],
Theorem 1.5.15, [2]). □
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We make the following assumptions to establish the uniqueness of invariant
measures for the system (2.6) (see [14, 10]).

Hypothesis 3.3. There exist positive constants K,L such that, for some α ∈
[1/4, 1/2),

(A.1) σ : H → H is a bounded linear operator with R(σQ1/2) dense in D
(
A

1
4+

α
2

)
,

and

D
(
A2α

)
⊂ R

(
σQ1/2

)
⊂ D

(
A

1
4+

α
2 +ε
)

for some ε > 0, where R(·) denotes the range of the operator.

(A.2)

∫
Z

∥Aαγ(t,u, z)∥2Hλ(dz) ≤ K
(
1 + ∥Aαu∥2H

)
,

(A.3)

∫
Z

∥Aα(γ(t,u1, z)− γ(t,u2, z)∥2Hλ(dz) ≤ L∥Aα(u1 − u2)∥2H,

(A.4) sup
∥u∥H≤M

∫
Zc
m

∥Aαγ(t,u, z)∥2Hdz → 0 as m → ∞, for any fixed M > 0.

Example 3.4. An example of an operator satisfying hypothesis (A.1) is A−δL
with L an isomorphism in H and 3

8 < δ ≤ 1
2 .

In order to establish the uniqueness of invariant measure, we first consider the
Ornstein-Uhlenbeck process z that is the solution of

dz(t) +Az(t)dt = σdW(t),

z(0) = 0.

}
(3.11)

By an application of the Galerkin approximation and suitable a-priori energy es-
timates, one can prove the following theorem (see [14, 10]).

Theorem 3.5. Let u0 ∈ D(Aα), and Hypothesis 3.3 be satisfied. Then there exists
a unique solution u of (2.6) such that

u(·, ω)− z(·, ω) ∈ D(0, T ; D(Aα)) ∩ L
4

1−2α (0, T ; D(A
1
4+

α
2 )) ∩ L2(0, T ; D(A

1
2+α)),

P− a.s., ω ∈ Ω. This is a Markov process satisfying the Feller property.

Proof. See Theorem 2.3, [10] for the uncontrolled case. □

By Theorem 3.5, the solution u(·) of (2.6) belongs to D(0, T ; D(Aα)), P−a.s.,
for the initial value u0 ∈ D(Aα). Also, by Theorem 2.6, [13], there exists a unique

strong solution in D(0, T ;H)∩L2(0, T ; D(A
1
2 )), P−a.s., for the initial value u0 ∈ H

under the Hypothesis 2.1. By the uniqueness result, we get u ∈ D(0, T ; D(Aα)),
P−a.s., for u0 ∈ H. Also, by Theorem 3.2, there exists an invariant probability
measure, which has support in D(A

1
2 ) ⊂ D(Aα).

Let (Pt)t≥0 be the Markov semigroup associated to the system (2.6) in the space
Cb(D(Aα)). It is well known that the irreducibility and strong Feller property
imply the equivalence of the measures P(t,x, ·) (see Theorem 4.1, [14]). The
irreducibility property (see Theorem 3.7, [10] for the uncontrolled case) of the
solution of the controlled stochastic Navier-Stokes system (2.6) and the strong
Feller property (see Theorem 3.4, [10] for the uncontrolled case) of the semigroup
(Pt)t≥0 imply the following:
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(P.1) For all t > 0, all x,y ∈ D(Aα), there exists an M̃ > 0 such that for all
ρ > 0,

P(t,x, J(y, ρ, M̃)) = P
{
u(t;x) ∈ J(y, ρ, M̃)

}
> 0,

where J(y, ρ, M̃) =
{
w ∈ D(Aα) : ∥Aα(w − y)∥H < ρ, ∥Aαw∥H ≤ M̃

}
.

(P.2) For all Γ ∈ B(D(Aα)) (the Borel σ−algebra of D(Aα)), all t > 0, and
all xn,x ∈ D(Aα) such that xn → x in H and ∥Aαxn∥H ≤ C for some
constant C > 0, then we have

P(t,xn,Γ) → P(t,x,Γ).

In other words, (Pt)t≥0 can be extended to a continuous operator from
Bb(D(Aα)) to Cb(D(Aα)), where Bb(D(Aα)) is the space of bounded mea-
surable functions on D(Aα).

Properties (P.1) and (P.2) imply the irreducibility and the strong Feller property
in D(Aα) and hence the transition probabilities P(t,x, ·), t > 0, x ∈ H, associated
with the controlled stochastic Navier-Stokes system (2.6), are equivalent on D(Aα),
for all t > 0 and u(0) = x ∈ D(Aα) (see Theorem 4.1, [14]). By Lemma 4.1, [14],
they are equivalent on H for all t > 0 and x ∈ H. The uniqueness of invariant
measures follows from this and hence we have the following theorem:

Theorem 3.6. Under the Hypothesis 2.1, Hypothesis 3.3 and (3.4), there exists a
unique invariant measure for the controlled stochastic Navier-Stokes system (2.6)
for each control measure Π.

Since, there exists a unique stationary measure for the semigroup (Pt)t≥0, it is
ergodic (see Theorem 9, [8], Theorem 3.2.6, [5]). Let µ be unique invariant measure
for the the semigroup (Pt)t≥0 associated to the system (2.6). By Dynkin’s formula,
we have

EP
x[f(u(t))] = EP

x[f(x)] + EP
x

[∫ t

0

(L f)(u(s))ds

]
, for all f ∈ D(L ), (3.12)

where u(0) = x. Thus, from (3.12), we obtain

⟨P∗
tµ, f⟩ = ⟨P∗

0µ, f⟩+
∫ t

0

⟨P∗
sµ,L f⟩ds. (3.13)

Since µ is an invariant measure, P∗
tµ = µ, for all t ≥ 0, and hence we have

⟨µ,L f⟩ = 0, for all f ∈ D(L ). (3.14)

4. Optimal Ergodic Control

Let us now prove the existence of an ergodic control which is optimal in the
class of stationary measures for the system (2.6). The existence of an optimal
and ergodic probability measure result discussed here is general and it holds in
both two and three dimensions, and also for degenerate noise, as the existence of
a unique invariant measure is known for these cases.



400 M. T. MOHAN AND S. S. SRITHARAN

Theorem 4.1. Under the Hypothesis 2.1, Hypothesis 3.3, (2.13) and (3.4), there
exists an ergodic control which is optimal within the class of stationary measures
for the controlled stochastic Navier-Stokes system (2.6).

Proof. Let us define

Γ := {µ ∈ P(V)×P(P(U)) : L(u(t), π(t)) = µ, for all t > 0}, (4.1)

where L(u(t), π(t)) is the law of (u(t), π(t)), for all t ≥ 0. The set Γ is closed by
the strong Feller property (P.2). Let us now consider the set

ΓR :=

{
µ ∈ P(V)× P(P(U)) :

∫
K(u,v)dµ ≤ R

}
, (4.2)

for some large R > 0. Since
∫
K(u,v)dµ ≤ R, using (1.5), we have∫ [
∥u∥2V + ℓ4(v)

]
dµ ≤ R. (4.3)

Let us use (4.3) in the energy estimate (2.14) (for k = 2) to obtain∫
∥u∥2H∥u∥2Vdµ ≤ C(R). (4.4)

Using (4.3), and the continuity and uniform integrability of the martingales which
appear in the martingale problem formulation implies the tightness of ΓR (see
Theorem 8, [32]). Making use of (4.3) and the tightness of ΓR, one can extract a
minimizing sequence (see Lemma 5, [32]) of tight measures µn ∈ ΓR in the weak
topology such that

β := lim
n→∞

∫
K πdµn = inf

Γ

{∫
K πdµ

}
, (4.5)

where K π =
∫
U K(u,v)π(dv) and

⟨µn, f⟩ → ⟨µ, f⟩ for all f ∈ Cb(H× P(U)), (4.6)

and µ is supported in V×P(U) (see Lemma 2.3.3, [38]). Since µn is an invariant
measure, from (3.14), we know that

⟨µn,L f⟩ = 0, for all f ∈ D(L ), (4.7)

where L is given in (2.8). Now, we want to show that

⟨µn,L f⟩ = 0 → ⟨µ,L f⟩ = 0, for all f ∈ D(L ). (4.8)

In order to obtain (4.8), we need to prove (see Lemma 6.3.1, [38], Lemma 15, [32])⟨
µn, |L f |1+ε

⟩
≤ C, (4.9)

for some ε > 0. Let us take the tame function given in Example 2.3 and
bound

⟨
µn, |L f |2

⟩
using (4.3) and (4.4). Using the fact that ϕ(·) : Rm → R is a

smooth function with compact support in Rm and ek ∈ D(A), for k = 1, · · · ,m,
Hypothesis 2.1, Hypothesis 3.3, and Remark 2.2.2, [35], we obtain∫ ∣∣∣∣⟨Au,

∂f

∂u

⟩∣∣∣∣2dµn ≤ C

∫
∥u∥2Hdµn ≤ C

λ1

∫
∥u∥2Vdµn ≤ C(R), (4.10)
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∂f

∂u

⟩∣∣∣∣2dµn ≤ C

∫
∥u∥2H∥u∥2Vdµn ≤ C(R), (4.11)∫ ∣∣∣∣⟨Nπ,

∂f

∂u

⟩∣∣∣∣2dµn ≤ C

∫
∥Nπ∥2Hdµn ≤ C

∫ ⟨
ℓ2(v) + C, π

⟩
dµn ≤ C(R),

(4.12)∫ ∣∣∣∣Tr(σQσ∗ ∂
2f

∂u2

)∣∣∣∣2dµn ≤ C Tr(σQσ∗)
2
, (4.13)∫ ∣∣∣∣∫

Z

{
f(u+ γ(t,u, z))− f(u)−

⟨
γ(t,u, z),

∂f

∂u

⟩}
λ(dz)

∣∣∣∣2dµn

≤ C

∫ ∫
Z

∥γ(t,u, z)∥4Hλ(dz)dµn ≤ K

∫ (
1 + ∥u∥4H

)
dµn ≤ C(R). (4.14)

The estimates (4.10)-(4.14) easily implies⟨
µn, |L f |2

⟩
≤ C(R). (4.15)

Using Lemma 6.3.1, [38] (see also Lemma 15, [32]), we have

⟨µn,L f⟩ → ⟨µn,L f⟩, (4.16)

and hence

⟨µ,L f⟩ = 0, for all f ∈ D(L ). (4.17)

Since, the running cost K(·, ·) : V×U → [0,∞] is positive and lower semicontinu-
ous, by Theorem III.55, page 71-III, [9], the map

µ 7→
∫

K πdµ

is lower semicontinuous (see Lemma 10, [32]). Hence, we have∫
K πdµ ≤ lim inf

n→∞

∫
K πdµn < ∞, (4.18)

whenever µn → µ in the weak topology. Since µn ∈ Γ is a minimizing sequence,
we have

lim inf
n→∞

∫
K πdµn = lim

n→∞

∫
K πdµn = β. (4.19)

Using (4.18) and (4.19), one easily gets

β =

∫
K πdµ,

and µ is an optimal and ergodic probability measure. Hence the cost functional

lim sup
t→∞

1

t

∫ t

0

EP
(∫

U
K(u(s),v)πs(dv)

)
ds, (4.20)

achieves a minimum ⟨K π, µ⟩ for µ = L(u(t), π(t)), for all t ≥ 0. □
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Remark 4.2. As the ergodicity results for the 3D stochastic Navier-Stokes equa-
tions are known (see [6, 7, 25]) and the estimate (4.11) is true in 3D (see Remark
2.2.2, [35]), the Theorem 4.1 holds in three dimensions also. Note that the The-
orem 4.1 works if the noise is degenerate as the ergodicity results are known for
this case also (see [27, 17, 29]).

Remark 4.3. Since the abstract functional setting for a class of nonlinear con-
trolled stochastic hydrodynamic models perturbed by Lévy noise, namely 2D mag-
netohydrodynamic(MHD) equation, 2D Boussinesq model for the Bénard convec-
tion, 2D magnetic Bénard problem, 3D Leray α-model for Navier-Stokes equation,
Shell models of turbulence are same as that of 2D Navier-Stokes equation, the
optimal ergodic control results obtained in this paper applies to these models also.
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