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1. Introduction
Consider the Volterra integral and integrodifferential functional equations with 
finite delay of the forms:

		  (1)
and

 		 (2)
 		  (3)

for  where x,g,f,k,F are real vectors with n components 
and ‘ denotes the derivative. Let de notes the real n-dimensional Euclidean 
space with appropriate norm denoted by | | and the set of real numbers. Let 

be the given subsets of R and assume that 
for  and . 
The function ϕ is continuous for which  exists.

The sufficient literature exists dealing with the special and even more general 
versions of equations (1) and (2)–(3) by using different techniques (see [3]-[5], 
[8]-[19]) and the reference given therein. Owing to the importance of equations of 
the these forms arising in many physical problems, the simple , unified and concise 
treatment for these equations are required.

The purpose of this paper is to study the existence, uniqueness and other 
properties of solutions of equations (1) and (2)–(3) under various assumptions on 
the functions f, F, k and g. The main tools employed in the analysis are based on the 
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applications of the Banach fixed point theorem (see [3, 4]) coupled with Bielecki 
type norm (see [2, 4]) and the integral inequalities with explicit estimates given in 
[6] and [7].

2  Existence and Uniqueness
Our methods involve Banach’s fixed–point theorem and we now introduce the 
appropriate metric space setting. Let  be a constant and consider the space 
of continuous functions  such that  and denote this special 
space by  We couple the linear space  with suitable metric, 
namely

with a norm defined by

The above definitions of  are the variants of Bielecki’s metric 
and norm [2].

The following Lemma proved in [4] deals with some important properties of 

Lemma 1  If  is a constant, then:
i.	 is a metric, 
ii.	  is a norm, 
iii.	  is a Banach space, 
iv.	  is a complete metric space.

2.1  Solution to Integral Equation:
We are now ready to present the main result concerning the existence and uniqueness 
of solutions of equation (1).

Theorem 1  Let β>0, M≥0 be constants. Suppose that the functions f and g in 
equation (1) satisfy the conditions 

(4)
and

(5)
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If , then the integral equation (1) has a unique solution 
Proof. One can easily write the following equivalent formulation of equation (1), 

         (6)
Now we will prove that (6) has a unique solution and therefore, so the equation 

(1). Let  and define the operator T by 

        (7)
Next we shall show that T maps  into itself. From (7) and using the 
hypotheses we have

       (8)
We consider the following two cases.
Case 1:  From (8) and using hypotheses, we have

       (9)

where
(10)

Case 2:  From (8) and using hypotheses, we have
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(11)
By making the change of variable  we obtain

	 (12)
Using (12) in (11), we get

(13)
This proves that the operator T maps  into it self.

Now we verify that the operator T is a contraction map. Let  
From (7) and using the hypotheses, we have 

     (14)
We consider the following two cases.

Case 1:  From (14) and using hypotheses, we have
	       (15)

Case 2:  From (14) and using hypotheses with change of variable, we 
obtain

				    (16)
Since  it follows from the Banach fixed point theorem that T has a unique 
fixed point in , which is the required solution of equation (1). The proof 
is complete.
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2.2  Solution to Integro-differential Equation:
The result concerning the solutions of equation (2)–(3). 

Theorem 2 Let  be constants. Suppose that the 
functions F and k in equation (2) satisfy the conditions 

(18)

and

If  then the integral equation (2)–(3) has a unique solution
 

Proof. Let  and define the operator T by

  (19)
The T maps  into itself and is a contraction map, one can be completed 
by closely looking at the proof of Theorem 1 given above with corresponding 
modifications. Here we omit the details.

3  Explicit estimates on the solutions via inequalities
In this section, we obtain estimates on the solutions and study the continuous 
dependence on initial data and on the functions involved therein to the equations 
(1) and (2)–(3) under some suitable assumptions.

We need the following versions of the inequalities given in ([6], p. 20), see also 
([7], p. 11, Remark 1.2.1), and ([7], p. 29). We shall state them here for completeness.

Lemma 2 Let  where 
 and is a constant.

If 
 

where
Lemma 3 Let where 

 and  is a constant. If

A(t)
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for then

for  where A(t) is as in Lemma 2.

3.1  Uniqueness of solutions without the existence part:
The following theorem shows the uniqueness of solutions to (1) without the existence 
part.

Theorem 3  Suppose that the function f in equation (1) satisfies the condition

    (20)
where  where D is as in Lemma 2. Then the 
problem (1) has at most one solution  

Proof. Let x and y be two solutions of (1) and  
Then we have

      (21)

We consider the following two cases.
Case 1:  From (21) and using hypotheses, we have 

   (22)

Now, a suitable application of Lemma 2 to (22) (with c=0 and 
yields 

                                       (23)

Case 2:  From (21) and using hypotheses with change of variable 
we obtain

(24)
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Now, a  sui table  appl icat ion of  Lemma 2 to (24)  (with c=0 and 
 yields

				   (25)
From (23) and (25), we have . Thus there is at most one 
solution to (1). This completes the proof.

The following theorem shows the uniqueness of solutions to (2)–(3) without 
the existence part.

Theorem 4 Suppose that the function F,k in equation (2)–(3) satisfy the 
conditions 

where  where D is as in Lemma 
2. Then the problem (2)–(3) has at most one solution 
Proof. Let x and y be two solutions of (2)–(3) and 
The proof can be completed by closely looking at the proof of Theorem 3 given 
above with suitable modifications and application of Lemma 3. Therefore, here 
we omit the details.

3.2  Estimate on solutions:
The following theorem concerning the estimate on solution of (1). 

Theorem 5  Suppose that the function f in equation (1) satisfies the condition 
(20).  is any solution of equation (1), then 

           (28)

for and

           (29)
for  where B(t) and C(t) follow the definition of A(t) as in Lemma 2 and

Proof. By using the fact that the solution x(t) of equation (1) satisfies the 
equivalent equation (6) and the hypotheses, we have

          (30)

(26)
(27)
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We consider the following two cases.

Case 1: . From (30) and using hypotheses, we have
         (31)

Now, a suitable application of Lemma 2 to (31) yields

           (32)
Case 2: . From (30) and using hypotheses with change of variable 
(s-1=σ), we obtain

(33)

Now, a suitable application of Lemma 2 to (33) yields

              (34)
This completes the proof.

Next, we obtain the estimate on solution of the problem (2)–(3).
Theorem 6 Suppose that the function F,k in equation (2)–(3) satisfy the 

conditions (26) and (27) respectively. If  is any solution of the problem 
(2)–(3), then

 (35)

for  and 
   (36)

for  where B(t) and C(t) follow the definition of A(t) as in Lemma 2 and

Proof. Let x be any solution of (2)–(3). One can easily prove this result looking 
at the proof of Theorem 5 with corresponding modifications and application of 
Lemma 3. Thus, we omit the details. 
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4  Continuous Dependence 
In this section we shall deal with the continuous dependence of solutions of equations 
(1) and (2)–(3) on the initial data, functions involved therein and also on parameters.

4.1  Dependence on initial data
We shall deal with the continuous dependence of solutions of equations (2)–(3) on 
initial data.

Theorem 7  Suppose the hypotheses of Theorem 4 are hold. Let x and y be the 
solutions of the problem (2)–(3) with the initial conditions

                       (37)
(38)

respectively. Then

for  where B(t) and C(t) follow the definition of A(t) as in Lemma 2. 
Proof. By using the fact that x(t) and y(t) are solutions of equations (2)–(3) and 

 for  Then by the hypotheses, we have 

	    (41)

We consider the following two cases.
Case 1:  From (41) and using hypotheses, we have 

(42)

(39)

(40)
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Now, a suitable application of Lemma 3 to (42) yields

(43)

Case 2:  From (41) and using hypotheses with change of variable 
(s-1=σ), we obtain

    (44)

Now, a suitable application of Lemma 3 to (44) yields
     (45)

This completes the proof.

4.2  Dependence on the functions involved therein:
Consider the equations (1) and (2)–(3) and the corresponding equations 

                    (46)
and

(47)

(48)

for  where and ψ are defined as in (1) and (2)–(3).
The following theorem deal with the continuous dependence of solutions of 

equation (1) on the functions involved from right side.
Theorem 8 Suppose that the function f in equation (1) satisfies the condition 

(20). Furthermore suppose that
    (49)

(50)
where f and f̅ are the functions involved in equations (1) and (46), are 
arbitrary small constant and y(t) is a solution of equation (46). Then the solution 
x(t),  of equation (1) depends continuously on the functions involved on the 
right hand side of equation (1). 

Proof. Let Using the facts that x(t) and y(t) are 
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the solutions of equations (1) and (46) and the hypotheses we have
We consider the following two cases.
Case 1:  With application of Lemma 2 and using hypotheses, we have

                              (51)

Case 2:  With application of Lemma 2 and using hypotheses with 
change of variable (s-1=σ), we obtain

                        (52)

This completes the proof. 
Next theorem deal with the continuous dependence of solutions of equations 

(2)–(3) on the functions involved from right side.
Theorem 9  Suppose that the functions F,k in equation (2) satisfies the condition 

(26) and (27). Furthermore suppose that

(53)
(54)

where f and f̅ are the functions involved in equations (2)–(3) and (47), 
are arbitrary small constant and y(t) is a solution of equation (47). Then the solution 
x(t),  of equation (2)–(3) depends continuously on the functions involved on 
the right hand side of equation (2)–(3). 

Proof. Let  Using the facts that x(t) and y(t) are 
the solutions of equations (2)–(3) and (47) and the hypotheses we have
We consider the following two cases.
Case 1: .With application of Lemma 3 and using hypotheses, we have

(55)
Case 2:  With application of Lemma 3 and using hypotheses with 
change of variable (s-1=σ), we obtain

  (56)

This completes the proof.
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4.3  Dependence on the parameters
We next consider the following systems of Volterra integral equations and 
integrodifferential equations

(57)
(58)

(59)
(60)

             (61)
(62)

for  where μ_1,μ_2 are parameters and  and 
ψ are defined as in (1) and (2)–(3).
We set forth some hypotheses that will be used in our subsequent discussion  
(H1) The function f in equations (57) and (58) satisfies the condition 

      (63)

           (64)

where where D is as in Lemma 
2
(H2) The function F in equation and (59) and (61) satisfy the conditions

    (65)

(66)

where 
(H3) The function k in equation (59)and (61) satisfy the condition 

                        (67)

where  is as in Lemma 2.
The following theorem shows the dependency of solutions of equations (57), 

(58) on parameters.
Theorem 10  Assume that hypothesis (H1) holds. Let x and y be the solutions 

and
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of (57) and (58) respectively. Then 

   (68)
for where

and
(69)

for  where

Proof. Let x(t) and y(t) be solutions of equations (57) and (58) respectively and 
let  Then by the hypotheses, we have

(70)

We consider the following two cases.
Case 1:  From (70) and using hypotheses, we have 

   (71)

Now, a suitable application of Lemma 3 to (71) yields

   (72)
Case 2:  From (70) and using hypotheses with change of variable 
(s-1=σ), we obta

(73)

Now, a suitable application of Lemma 3 to (73) yields
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(74)
This completes the proof. 

The following theorem shows the dependency of solutions of equations (59) 
and (61)on parameters. 

Theorem 11 Assume that hypotheses (H2)-(H3) hold. Let x and y be the solutions 
of (59)–(60) and (61)–(62) respectively. Then 

   (75)

for  and

    (76)

for  where 

Proof. The proof of this theorem can be completed by following the proof of 
Theorem 10 with suitable modifications. We omit the details here. 
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