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OPTIMIZATION OF CONSTRAINED MULTI-ITEM FUZZY
INVENTORY PROBLEMS USING GENETIC ALGORITHM
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Abstract: This paper proposes the strategy of optimizing constrained multi-item inventory
problems under fuzzy environment using a Genetic Algorithm (GA). The GA is used in
the sense that it is computationally simple yet powerful in its search for improvement. The
typical inventory analysis is sensitive to reasonable errors in the measurement of relevant
inventory costs. Therefore the inventory costs are assumed to be vague and imprecise in
this paper. The objective of minimizing the total inventory cost and the constraints’ goals
are also imprecise in nature. The impreciseness in these variables has been represented by
fuzzy linear membership functions. Numerical examples have been worked out to highlight
the method, and the results are compared with those of corresponding crisp models.
Sensitivity analysis has also been presented for one of the examples.
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1. INTRODUCTION

One most important difference among various inventory problems is the question of the
relevant costs which will enter into the analysis. The resolution of the cost measurement
problem depends very much on the kinds of company records available. In practice, some
of the costs may be inadequately determined directly from cost accounting records. Therefore
the inventory costs may be flexible with some vagueness in their values. These imprecise
and vague parameters are treated as fuzzy in nature.

Ever since Zadeh [1965] developed the concept of fuzzy set theory, a few authors have
exhibited their interests in topics of fuzzy mathematical programming (Zimmermann, 1985).
Trappey, et al., [1988] applied the theory of fuzzy nonlinear programming in manufacturing
problems with fuzzy goal and constraints. Yao and Lee [1998] developed an EOQ model
by considering order quantity as fuzzy and allowing shortages. Yao and Su [2000] developed
fuzzy inventory with backorder for fuzzy total demand based on interval valued fuzzy set.
Venkata Subbaiah, et al., [2000] considered EOQ model with shortages in fuzzy environment
by adopting the inventory costs as fuzzy variables. In all these cases, single item inventory
models are considered in fuzzy environment.
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In constrained multi-item inventory problems, it is required to optimize the objective
and satisfy a set of constraints on available resources. There are a variety of multi-item
models that have been studied in the literature, e.g., Rosenblatt and Rothblum [1990], Anily
[1991], Gallego, et al., [1996], Page and Paul [1976], Klein, et al., [1989], Aggarwal and
Park [1993], Gupta and Keung [1990], Afentakis, et al., [1984]. These models stem as
extensions of the classical EOQ models, and most of the available algorithms use heuristic
techniques to solve the problems approximately.

Generally in inventory systems, only linguistic (Vague) statements are used to describe
the problem and it may not be possible to define the objective and constraints’ goals precisely,
for example, at the beginning of a business/production, normally a target/limitation for the
objective (profit/total cost) is fixed. But, during the course of action, a retailer/producer is
forced to settle down with a higher/lower amount due to an adverse situation. The same
may be happened with respect to the constraints’ goals. Hence, the objective and constraint
goals are imprecise, i.e., they may be within some limits, and may be better described in a
fuzzy environment.

In this paper, constrained multi-item lot sizing problems are formulated in fuzzy
environment. The fuzzy concept is considered for ordering costs, carrying costs, unit costs,
and the limitations on total cost and constraints imposed. The impreciseness in these variables
is represented by linear membership functions. A real coded Genetic Algorithm is used to
solve the problems because GAs have much more global perspective than many traditional
optimization techniques. The methodology is illustrated numerically and the results are
compared with those obtained by crisp analysis. The sensitivity analysis with respect to
different values of parameters is also discussed.

2. PROBLEM FORMULATION

In a constrained multi-item inventory optimization problem, the purpose is to obtain the
optimal quantities of the items that minimize the total cost of inventory and satisfy a set of
constraints. The notations assumed are:

n = number of inventory items (or products).

m = number of constraints.

z; = demand of item —i per unit time (assumed to be known and constant).
¢,; = setup cost or order cost of item —i during an order interval.

¢; = Raw material and direct labour cost per unit of item —i.

I = Inventory holding charges expressed as decimal fraction of the inventory
value/unit time.
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q; = quantity of item —i produced or ordered.

L; = Limiting value of j t constraint imposed.

2.1. Crisp Formulation
The problem with the above notations can be formulated mathematically as
Minimize total cost:
f=2Zic1 5 Ziclg + qilci /2 + 7)) (2.1
Subject to constraints:
hi(x)-L;<0 for ji=12,..,m (2.2)
X=(q; q - qn)T2 0

The different practical constraints that may encounter with respect to multi-item lot
sizing problems are constraints on production facilities, storage facilities, time and money.

2.2. Linear Membership Function

A membership function p4; (x), assumed to be linearly increasing over the tolerance interval
p; can be expressed according to Zimmermann [1991] as:

1 for x<d,
W) =31—(x—d,)/p; for d <x<(d, +p,) (2.3)
0 for x>(d,+p;)

where d; and (d; + p;) are the tolerance limits for x.

Introducing a new variable, o, which corresponds essentially to 14, (x), the corresponding
fuzzy variable x at the defined aspiration level a is given by:

Wi (@) =d;+ (1 - a)p (2.4)

Similarly a membership function p;(x), assumed to be linearly decreasing over the tolerance
interval p; can be expressed as:

1 for x>dj
g (x) = l-(d; -x)/p; for (d;tp;)<x<d, (2.5)
0 for x<(d; xp;)

Hence, HZ;JI- ()=d;—(1-a)p;



196 V. D. Prasada Rao, K. V. Subbaiah, V. Ramachandra Raju & K. Narayana Rao

2.3. Fuzzy Formulation

The fuzzy set concepts are adopted for ordering costs, holding costs, unit costs, and the
limitations on total cost and constraints imposed. The impreciseness in these variables
have been expressed by linear membership functions. Considering the nature of the variables,
the membership functions are assumed to be non-decreasing for fuzzy inventory costs, and
non-increasing for fuzzy total cost. The membership functions of the constraints’ goals or
limitations are assumed to be non-decreasing or non-increasing depending on their nature
of variation. On applying fuzzy non-linear programming approach to the crisp model, the
formulation is:

Maximize: a
Subject to:
2210 (@ o (00 + g 1y (0) g (@0)/2 + 2, i () — by (o) < O (2.6)
That is,
2(zi(ei = =) pe)gi+ ;I = (1 =) pp (¢; = (1 =) p )2 + z;(¢; — (1 =) py)
- (f+1-a)py<0 (2.7)
and
hi(x) -pj@ <0 for j=1,2,..,m (2.8)

x=(q qz - qn)T 20

0<ac<l.

3. GENETIC ALGORITHM

GAs are theoretically and empirically proven to provide robust search in complex spaces
[Gold berg, 1999]. The decision variables in a GA are represented in binary strings or real
code. But the real coded GAs bring the GA a step closer to classical optimization techniques
[Deb, 2002]. The initial population of solutions is created by random selection of a set of
chromosomes (solutions). Once a chromosome is created, it is necessary to evaluate the
solution, particularly in the context of the underlying objective and constraint functions.
The evaluation of a solution means calculating the objective function value and constraint
violations. After assigning a relative merit to the solutions (called the fitness), the population
of solutions is modified to create hopefully a better population. In this process the three
main operators, viz., reproduction, crossover, and mutation are used. This completes the
generation of the GA. The following algorithm shows the working principle of the GA
implemented.
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Procedure Genetic Algorithm
begin
t=0
Initialize population : t
Evaluate population : t
while (not terminate-condition) do
begin
t=t+1
reproduction
crossover
mutation
evaluate population: t+ 1
end

end

The real coded GA used in the present study implements a tournament selection scheme,
where two solutions are compared and the best is selected. Crossing over is done by simulated
binary crossover (SBX) operator which works with two parent solutions and creates two
offspring [Deb and Agrawal, 1995]. Mutation is done by the polynomial mutation operator
[Deb and Goyal, 1996]. The exponents used for SBX and mutation are respectively 2 and
100. The GA parameters-crossover probability (p.), mutation probability (p,,), population
size (sp) and number of generations (ng)—used in all the simulation runs are p. = 0.9, p,, =
0.1, 5, =50, n, = 30.

4. NUMERICAL ILLUSTRATIONS AND DISCUSSION

To illustrate the proposed methodology, three different examples are considered.

Example 1: A multi-item inventory problem with two products 1 and 2 and two
constraints on lot sizes with respect to available warehouse space and the machine setup
time has the following numerical data:

Z; = 200 units/month, Z, = 400 units/month.
¢, = $12/unit, ¢, = $7/unit,
C’.l = $100/10t, CVZ = $25/10t,

I =0.005/month (0.5 % per month) f=$5200/month

a,, a, = Cubic feet of space required for storing one unit of products —1 and 2
=5 ft’, 35 ft’ respectively.

t;, t, = Time required per setup for products —1 and 2 =40 hrs, 10 hrs respectively.
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A = Total average available space excluding aisles, etc = 14000 .
T = Total available time for setups = 14 hrs.

The maximum acceptable violations of ¢,;, ¢, I, ¢|, ¢5, f, Aand T are: p,; =25; p,0 =
12.5; p;=0.25%; p.y = 5; per = 2.5; py=500; p, = 2500; pr=2.5.

The problem formulation in crisp consists of the objective function mentioned in
section-2.1 and the following constraints:

Warehouse space restriction:

Yio1500:9;/2-A<0 4.1)
Setup time restriction:
Y15 ,%t/q;-T<0 4.2)
4 < q;<qf

Assuming the membership functions of both the constraints’ limitations to be non-
increasing and applying fuzzy non-linear programming approach to the crisp formulation
(section- 2.3), the results of corresponding fuzzy formulation obtained by GA are furnished
in Table 1. It also shows the corresponding crisp model results. Table 2 presents the crisp
analysis of this problem for fixed values of constraints limitations and different combinations
of extreme values of each of the costs (c,;, ¢,0, I, ¢}, ¢,). Itis observed that the total cost of
fuzzy model falls within its range ($5200 to $5700) and among crisp models, the total cost
of only 8 out of 32 models fall within the range. If the parametric studies on the crisp model
are made, one of these studies will coincide with the optimum values of fuzzy model, but it
is a laborious process.Thus fuzzy analysis replaces the laborious and time consuming
parametric studies and obtains optimum results easily. The sensitivity of optimum solution
with respect to changes in fuzzy variables is shown in Tables 3 to 6.

Table 1
Comparision of Crisp and Fuzzy Model Results
Example Model Order quantities (units) f($) a
1 Crisp q,=1022.52; q,=650.85 5276.98 -
Fuzzy q,=1060.01; g,=645.18 5215.43 0.9691
2 Crisp q,=275.89; q,=1415.53; q,=100.09 2.0827 Millions -
Fuzzy q,=330.84; ¢q,=1371.41; q,=159.44 2.0717 Millions 0.9566
3 Crisp q,=227.58; gq,=216.33; g,=183.51 73,536.54

Fuzzy q,=218.86; ¢,=209.79; ¢,=189.41 73,166.60 0.9762
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Table 2
Crisp Analysis of Example 1
¢, ($) c,($) 1(%) c(3) c,($) q, (units) q, (units) 1(3)
100 25.0 0.50 12 7.0 1013.31 655.24 5276.86
100 25.0 0.25 12 7.0 1078.34 645.88 5255.85
100 25.0 0.50 12 4.5 1015.49 654.66 4272.79
100 25.0 0.25 12 4.5 1061.24 648.37 4253.83
100 25.0 0.50 7 7.0 1041.05 651.20 4264.18
100 25.0 0.25 7 7.0 1332.31 609.66 4248.41
100 25.0 0.50 7 4.5 1015.49 654.66 3260.11
100 25.0 0.25 7 4.5 1312.01 612.56 3246.49
100 12.5 0.50 12 7.0 1015.49 654.66 5269.25
100 12.5 0.25 12 7.0 1137.24 637.53 5248.06
100 12.5 0.50 12 4.5 1015.49 654.66 4265.16
100 12.5 0.25 12 4.5 1120.31 639.95 4246.06
100 12.5 0.50 7 7.0 1118.11 584.42 4256.23
100 12.5 0.25 7 7.0 1444.94 593.56 4240.10
100 12.5 0.50 7 4.5 1067.07 647.56 3252.42
100 12.5 0.25 7 4.5 1416.43 597.63 3238.24
75 25.0 0.50 12 7.0 1015.49 654.66 5271.96
75 25.0 0.25 12 7.0 1015.49 654.66 5251.00
75 25.0 0.50 12 4.5 1015.49 654.66 4272.79
75 25.0 0.25 12 4.5 1015.49 654.66 4248.96
75 25.0 0.50 7 7.0 1015.49 654.66 4259.27
75 25.0 0.25 7 7.0 1167.99 633.12 4244.39
75 25.0 0.50 7 4.5 1015.49 654.66 3255.18
75 25.0 0.25 7 4.5 1134.62 637.86 3242.41
75 12.5 0.50 12 7.0 1015.49 654.66 5264.33
75 12.5 0.25 12 7.0 1015.49 654.66 5343.36
75 12.5 0.50 12 4.5 1015.49 654.66 4260.23
75 12.5 0.25 12 4.5 1015.49 654.66 4241.32
75 12.5 0.50 7 7.0 1043.36 631.67 4251.61
75 12.5 0.25 7 7.0 1264.43 619.36 4236.41
75 12.5 0.50 7 4.5 1015.49 654.66 3247.54
75 12.5 0.25 7 4.5 1239.75 622.87 3234.47
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Table 3
Sensitivity Analysisof p,p_,p, ., P, P,, of Example 1
p,(%) 1(%) q, q, f A T p
0.00 0.5000 1060.01 645.18 5215.43 14077.12 14.077 0.96915
0.15 0.4954 1060.01 645.18 5215.43 14077.12 14.077 0.96915
0.25 0.4923 1060.01 645.18 5215.43 14077.12 14.077 0.96915
0.30 0.4907 1060.01 645.18 5215.43 14077.12 14.077 0.96915
0.40 0.4877 1151.85 633.64 5215.40 14077.00 14.077 0.9692
P € q, q, f A T o
00 100.00 1060.01 645.18 5215.43 14077.12 14.077 0.96915
25 99.22 1060.01 645.18 5215.43 14077.12 14.077 0.96915
30 99.07 1060.01 645.18 5215.43 14077.12 14.077 0.96915
50 98.45 1060.01 645.18 5215.43 14077.12 14.077 0.96915
70 97.84 1151.85 633.64 5215.40 14077.00 14.077 0.9692
P €2 q, q, f A T o
0.0 25.00 1060.01 645.18 5215.43 14077.12 14.077 0.96915
5.0 24.84 1060.01 645.18 5215.43 14077.12 14.077 0.96915
15.0 2453 1060.01 645.18 5215.43 14077.12 14.077 0.96915
20.0 24.38 1060.01 645.18 5215.43 14077.12 14.077 0.96915
25.0 2423 1151.85 633.64 5215.40 14077.00 14.077 0.9692
prl Cl ql qz f A T o
0 12.00 1096.39 625.90 5225.40 14127.00 14.127 0.9492
1 11.95 1040.24 652.62 5222.25 14111.25 14.111 0.9555
2 11.91 1040.13 655.44 5220.20 14101.00 14.101 0.9596
3 11.89 1057.42 651.24 5218.15 14090.75 14.090 0.9637
4 11.86 1192.47 627.10 5216.95 14084.75 14.084 0.9661
5 11.84 1060.01 645.18 5215.42 14077.12 14.077 0.96915
6 11.83 1052.41 651.20 5214.07 14070.37 14.070 0.97185
7 11.81 1014.65 652.66 5213.20 14066.00 14.066 0.9736
prZ Cz ql qz f A T o
0.0 7.00 1080.40 640.64 5225.25 14126.25 14.120 0.9495
0.5 6.97 1040.24 653.00 5222.15 14110.75 14.110 0.9557
1.0 6.96 1048.79 653.56 5219.90 14099.50 14.100 0.9602
1.5 6.94 1057.42 651.24 5218.15 14090.75 14.090 0.9637
2.0 6.93 1063.20 624.26 5216.55 14082.75 14.080 0.9669
2.5 6.92 1060.01 645.18 5215.42 14077.12 14.077 0.96915
3.0 6.91 1052.41 651.20 5214.10 14070.50 14.070 0.9718
4.0 6.90 1070.89 650.16 5212.35 14061.75 14.060 0.9753
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Sensitivity Analysis of p ), of Example 1

Table 4

p/ ql q2 f A T [24
000 1200.72 551.40 5200.00 14098.50 14.098 0.9606
200 1057.42 651.24 5207.26 14090.75 14.090 0.9637
400 1063.20 618.93 5212.76 14079.75 14.079 0.9681
500 1060.01 645.18 5215.45 14077.12 14.077 0.96915

1000 1131.67 637.77 5225.70 14064.25 14.060 0.9743

1500 1136.22 623.21 5233.60 14056.00 14.056 0.9776

2000 1215.30 569.43 5240.60 14050.75 14.050 0.9797

2500 1218.49 562.29 5244.25 14044.25 14.044 0.9823

Table 5
Sensitivity Analysis of p, of Example 1

pA A q/ qz f T o
000  14000.00 1021.56 643.98 5215.20 14.076 0.9696

1000  14031.10 1108.68 610.43 5215.55 14.078 0.9689

2500 14077.12 1060.01 645.18 5215.42 14.077 0.96915

3000  14092.10 1090.72 646.84 5215.35 14.076 0.9693

5000 14156.00 1160.62 589.74 5215.60 14.078 0.9688

6000  14198.60 1308.92 592.47 5216.55 14.082 0.9669

7000  14221.20 1110.37 627.83 5215.80 14.079 0.9684

Table 6
Sensitivity Analysis of p, of Example 1

pT T ql qz f A o

0.0 14.00 1215.04 626.88 5215.75 14078.75 0.9685

1.0 14.03 1149.72 610.98 5215.70 14078.50 0.9686

2.5 14.07 1060.01 645.18 5215.42 14077.12 0.96915

3.0 14.09 1127.67 626.89 5215.40 14077.00 0.9692

5.0 14.15 1069.86 599.36 5215.55 14077.75 0.9689

6.0 14.18 1072.61 627.65 5215.45 14077.25 0.9691

7.0 14.21 1058.50 608.58 5215.70 14078.50 0.9686

It is evident from Table 4 that, when pfincreases from O to 2500, o increases, A and T
decreases, and g, and g, varies respectively in between 1057 and 1218, and 551 and 651
with respect to a variation of f from 5200 to 5244. It is observed from Table 3 that, o, f, A
and T remains almost invariant with respect to increase in values of p;, p.,; , and p,,,; and
the values of g, and g, changes respectively from 1060 to 1151, and from 645 to 633 with
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respect to the corresponding variations of / from 0.5% to 0.4877 %, c,; from 100 to 99.84,
and ¢, from 25 to 24.23.

When p,, increases from O to 7 (Table 3), o increases, f, A and T decreases; and g, and
q, varies respectively in between 1014 and 1192, and 625 and 655 with respect to a variation
of ¢; from 12 to 11.81. And when p, increases from 0 to 4 (Table 3), o increases, f, A and T
decreases; and g, and g, varies respectively in between 1040 and 1080, and 624 and 653
with respect to a variation of ¢, from 7 to 6.9. Table 5 reveals that, when p, increases from
0 to 7000, a varies in between 0.9696 and 0.9669, f'is almost invariant, A increases, and T
varies in between 14.076 and 14.082. The values of g, and g, varies respectively in between
1021 and 1308, and 589 and 646 with respect to a variation of A from 14000 to 14221.2. It
is also clear from Table 6 that, when p increases from O to 7, o varies in between 0.9685
to 0.9692, fis almost invariant, 7 increases, and A varies in between 14077 to 14078.75.
The values of g, and g, varies respectively in between 1215 and 1058, and 599 and 645
with respect to a variation of T from 14 to 14.21.

Therefore it is to be noted that, the total cost (f), the limitations on available space (A)
and setup time (7)) are moderately sensitive to the variations in unit costs and violations of
total cost value. The changes in all the remaining fuzzy variables do not produce much
variation in total cost.

Example 2: Consider a company maintaining 3 inventory items with the following data:
Z, = 3,600 units/year; 2, = 24,000 units/year;  zz = 600 units/year;
¢, = $200/unit; ¢, = $ 50/unit; c3 = $250/unit;
¢, = $ 100/order; I=12% per year; f=8$2.05x 106/year;
TO = Maximum total number of orders/year = 36;

Al = Maximum average inventory investment = $ 1,00,000.

The maximum acceptable violations of ¢,, I, ¢|, ¢, ¢3, f, TO and Al are: p,, = 10;
P1=2%;p, =Po=Ps3=10;p;=0.5x 10°; Pro = 6; pay=20,000.

The objective function mentioned in section-2.1 along with the following constraints
will constitute the problem formulation in crisp.
Orders restriction.
Xio15,2lq;—TO<O0 4.3)
Average inventory restriction.

St ndic2 — AI<0 (4.4)
6 <q; <4
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Assuming the membership function of orders limitation to be non-decreasing and that
of average inventory limitation to be non-increasing, and applying fuzzy non-linear
programming approach to the crisp formulation, the results of corresponding fuzzy
formulation obtained by GA are furnished in Table 1.

Example 3: Consider the data of a machine shop producing 3 products in lots:

Z, = 500 units/year; 2, = 400 units/year; Z3 = 600 units/year;
¢, = $30/unit; ¢, = $20/unit; c3 = $ 70/unit;
¢,; = $800/lot; ¢, = $600/1ot; ¢,3 = $ 1000/1ot;
a,; =5Sq.m; a, =4 Sq.m; a;=10Sq.m;
I =20% per annum; f=1%$73,000/year;

A = Maximum available storage area = 4000 Sq.m;
Al = Maximum average inventory investment = $ 12,000.

The maximum acceptable violations of c,;, ¢,0, ¢,3, I, €1, ¢y, €3, f, A and Al are:
Pert = Pery = Per3 = 305 P = 5%3 Pet = Pea = Pe3 = 103 pp=7000; py = 300; py; = 2000.

The problem formulation in crisp includes the objective function of section-2.1 and the
following constraints.

Warehouse space restriction:

Yio1.,5,a,9-A<0 4.5)
Average inventory restriction:
Yio15,9:¢12-AI<0 (4.6)
6 <q; <4

Assuming the membership functions of constraints’ limitations to be non-increasing,
and applying fuzzy nonlinear programming approach to the crisp formulation, the results
of corresponding fuzzy formulation obtained by GA are furnished in Table 1.

5. CONCLUSIONS

In this paper constrained multi-item inventory problems are formulated in fuzzy environment,
and are solved by using a real coded GA. The fuzzification process provides a better
approximation of real phenomena. The GA finds the optimum quantities of the inventory
items that can yield global minimum of the objective function. This approach has been
illustrated with 3 different examples with a sensitivity analysis of one of them.
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Itis observed from the sensitivity analysis (of example 1) that the selection of violations
for fuzzy variables is not so critical because even 20% change in violations leads to less
percentage change in optimum ordering quantities and total inventory costs (Tables 3 to 6).
Here only linear membership functions are considered to represent the nature of variations
of fuzzy variables. The membership functions like parabolic, exponential, hyperbolic, etc.
can also be considered.
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